
entropy

Article

Evolved-Cooperative Correntropy-Based Extreme
Learning Machine for Robust Prediction

Wenjuan Mei 1, Zhen Liu 1 , Yuanzhang Su 2,*, Li Du 1 and Jianguo Huang 1

1 Department of Instrument Science and Technology, University of Electronic Science and Technology of
China, Chengdu 611731, China; meiwenjuan@std.uestc.edu.cn (W.M.); scdliu@uestc.edu.cn (Z.L.);
summer_christ@163.com (L.D.); xlhjg@uestc.edu.cn (J.H.)

2 Department of Applied Linguistics, University of Electronic Science and Technology of China,
Chengdu 611731, China

* Correspondence: syz@uestc.edu.cn; Tel.: +86-028-6183-0316

Received: 6 August 2019; Accepted: 12 September 2019; Published: 19 September 2019
����������
�������

Abstract: In recent years, the correntropy instead of the mean squared error has been widely taken as
a powerful tool for enhancing the robustness against noise and outliers by forming the local similarity
measurements. However, most correntropy-based models either have too simple descriptions of
the correntropy or require too many parameters to adjust in advance, which is likely to cause
poor performance since the correntropy fails to reflect the probability distributions of the signals.
Therefore, in this paper, a novel correntropy-based extreme learning machine (ELM) called ECC-ELM
has been proposed to provide a more robust training strategy based on the newly developed
multi-kernel correntropy with the parameters that are generated using cooperative evolution.
To achieve an accurate description of the correntropy, the method adopts a cooperative evolution
which optimizes the bandwidths by switching delayed particle swarm optimization (SDPSO) and
generates the corresponding influence coefficients that minimizes the minimum integrated error (MIE)
to adaptively provide the best solution. The simulated experiments and real-world applications show
that cooperative evolution can achieve the optimal solution which provides an accurate description on
the probability distribution of the current error in the model. Therefore, the multi-kernel correntropy
that is built with the optimal solution results in more robustness against the noise and outliers when
training the model, which increases the accuracy of the predictions compared with other methods.

Keywords: correntropy; information theory extreme learning machine; evolved cooperation

1. Introduction

With the rapid development of powerful computing environments and rich data sources, artificial
intelligence (AI) technology such as neural networks [1–3], adaptive filtering [4–6] and evolutionary
algorithms [7–9] has become increasingly more applicable for forecasting problems in various scenarios,
such as medicine [10–12], economy [13–15] and electronic engineering [16–18]. The methods have
acquired high reputations due to their great approximation abilities.

Although AI methods perform well when solving real world problems, most corresponding
models adapt the mean squared error (MSE) as the criterion for training hidden nodes or building the
cost functions, assuming that the data satisfy a Gaussian distribution. Moreover, the MSE is a global
similarity measure where all the samples in the joint space have the same contribution [19]. Therefore,
the MSE is likely to be badly affected by the noise and outliers that are hiding in the samples and
this happens commonly in applications, such as speech signals, images, real-time traffic signals and
electronic signals from ill-conditioned devices [20–22]. Therefore, MSE-based models are likely to
result in poor performance in real world applications.
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To conquer the weaknesses of the least mean squares (LMS), over the past decades, a number of
studies have proposed methods to improve the robustness of the model against the noise and outliers that
are contained in the data [23–27]. Among the existing technologies, M-estimators have been the focus of
many academic studies. By detecting the potential outliers during training procedures, the M-estimator
can eliminate the negative influences from the output weights that adversely affect the predictions [28].
Using these advantages, Zhou et al. [29] proposed a novel data-driven standard least-squares support
vector regression (LSSVR) applying the M-estimator, which reduces the interference of outliers and
enhances the robustness. However, there are difficulties accessing clean learning data without noises
so that the application on the M-estimator-based forecasting models based is limited.

Recently, information theoretic learning (ITL) has drawn considerable attention due to its good
performance avoiding the effect of the noise and outliers [30–35] and it has become an effective
alternative to the MSE criterion. In [36], the authors presented a novel training criterion based on
the minimum error entropy (MEE) to replace the MSE. By taking advantages of the higher order
description on entropy, MEE has become superior for non-Gaussian signal processing compared
with traditional training criteria. Inspired by the entropy and Parzen kernel estimator, Liu et al. [37]
proposed an extended definition of the correlation function for random processes using a generalized
correlation function, known as correntropy. Although different from global measurements, such as the
mean squared error (MSE), the correntropy is regarded as a local similarity measurement where its
value is primarily determined by the kernel function along x = y line [38], leading to high robustness
against noise and outlies. Moreover, the correntropy has many great properties such as symmetry,
nonnegativity and boundness. Most of all, it is easy to form convex cost functions based on the
correntropy, which is very convenient for training the models [39–42]. Therefore, the correntropy has
been widely used in forming robust models [43–45].

To enhance the forecasting ability of the model, in [46], the correntropy was introduced into the
affine projection (AP) algorithm to overcome the degradation of the identification performance with
impulsive noise environments. From the simulation results, it is easy to verify that the proposed
algorithm has achieved better performance than other methods. Another approach to improve the
robustness via the correntropy is enhancing the feature selection efficiencies [47–49]. In [50], the
kernel modal regression and gradient-based variable identification were integrated together using
the maximum correntropy criterion, which guarantees the robustness of the algorithm. Additionally,
in [51], a novel principal component analysis (PCA), based on the correntropy and known as the
correntropy-optimized temporal PCA (CTPCA), was adapted to enhance the robustness for rejecting
the outlier. The outlier improves the models training in simulation experiments. In addition to
providing the extractions of the features in neural networks and filtering methods, the correntropy
turns out to be a powerful tool for developing robust training methods that generate and adjust
the weights in the model. In [52], Wang et al. introduced a feedback mechanism using the kernel
recursive maximum correntropy to provide a novel kernel adaptive filters known as the kernel recursive
maximum correntropy with multiple feedback (KRMC-MF). The experiments show that the generated
filters have high robustness against outliers. In [53], Ahmad et al. proposed the correntropy based
conjugate gradient backpropagation (CCG-BP), which can achieve high robustness in environments
with both impulsive noise and heavy-tailed noise distributions. Unfortunately, most of the neural
networks have to adjust the weights of each node during each training iterations which wastes time
during the training process.

Recently, forecasting models with parameters that are free from adjustments have gained
increasingly more attention due to their fast training speeds for the models [54–56]. Combined with
the correntropy, these algorithms have shown great potential in real-world applications. For example,
Guo et al. [57] developed a novel training method for echo state networks (ESNs) based on a correntropy
induced loss function (CLF), which provides robust predictions for time-series signals. Similar to
ESNs, extreme learning machines (ELMs) have received great attention on fast learning due to the
random assignments of the hidden layer and being equipped with simpler structures, such as single
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layer feedback networks (SLFNs) [58–60]. It has been proven that the hidden nodes can be assigned
with any continuous probability distribution, while the model satisfies the universal approximation
and classification capacity [61]. In particular, the extreme learning machine has been applied and
received a high reputation for predicting production processes [62,63], system anomalies [64], etc. [65].
In [66], the authors first developed the correntropy-based ELM that uses the regularized correntropy
criterion in place of the MSE with half quadratic (HQ) optimization which is called the regularized
correntropy criterion for an extreme learning machine (RCC-ELM). Later, Chen et al. [67] extended
the dimensions of the correntropy by combining two kinds of correntropy together to enhance the
flexibility of the model to generate more robust ELM called ELM by maximum mixture correntropy
criterion (MMCC-ELM). The experimental results show that the learning method performs better than
the conventional maximum correntropy method. Although the RCC-ELM and MMCC-ELM possess
high robustness compared with other ELM methods, the corresponding correntropy is constrained by
no more than two kernels. The kernel bandwidth required for the assignments by users in advance
is likely to degrade the model due to the improper description on the probability distribution of the
signal with the correntropy.

To conquer the weakness of the existing correntropy-based ELMs, this paper focuses on providing
a more robust predicting model with adaptive generation based on multi-kernel correntropy which
can bring an accurate description of the current errors of ELM. This study developed a more flexible
and robust forecasting ELM based on a newly developed adaptive multi-dimension correntropy using
evolving cooperation. In the proposed method, the output weights of the ELM are trained based
on the maximum multi-dimension correntropy with no constraints on the dimensions of the kernels.
To achieve the most appropriate assignment of the parameters of each kernel in the correntropy,
a novel evolving cooperation method is developed to concurrently optimize the bandwidths and the
corresponding influence coefficients to achieve the best estimations of the residual errors of the model.
Furthermore, the training approach has been developed based on the properties of the multi-dimension
correntropy. The main contribution of the paper can be summarized as follows.

• The proposed method develops a novel correntropy criterion with multiple kernels to improve
the flexibility for depicting the probability distribution of the current error of the predicting model.
Then, a convex cost function has been developed based on the multiple kernel correntropy, which
can provide a more robust training strategy for ELMs, resulting in high performance on the
predictions against noise and outliers.

• To accurately describe the probability distribution of the current error, the proposed method
develops a cooperating evolution strategy to adaptively generate proper bandwidths and
coefficients to suit the error distribution which enhances the accuracy on the approximation for
the correntropy, leading to more robust training.

The experiments compare the performance of the proposed method and several state-of-art
methods using both simulated data and real-world data, which show that the proposed method obtains
more the robust predictions than other methods. Finally, the proposed method is incorporated into the
forecasting model for the current transfer ratio (CTR) signals for the optical couplers, and it achieves
high accuracies and robustness.

The rest of the paper is as follows. The next section introduces the framework of the proposed
method and multi-dimension correntropy. Section 3 describes the evolved cooperation for the kernels
with multi-dimension correntropy and Section 4 provides the training procedures of the forecasting
model. Then, Section 5 estimates the performance of the proposed method using both simulation data
and real-world applications. Finally, the conclusion is drawn in Section 6.

2. The Framework of the Proposed Method

The structure of the prediction model that is built using the proposed method is similar to those of
other ELM-based methods. Figure 1 shows the basic structure of the method. Generally, the network
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includes one input layer, one hidden layer and one output layer. The hidden output is calculated
using the given input vectors and the weights and the biases of the hidden nodes which are randomly
assigned [54]:

h = f (wx + b) (1)

where f (.) is the activation function and (w,b) are the weights and bias of the hidden nodes.
With the hidden layer, the network can simulate any kind of function by generating the output

weights with the least mean squares (LMS) The cost function is calculated as follows [58]:

JLS =||Y−T|| (2)

where T is the expected output and Y is the predicted output of the model. Y calculated with the
hidden outputs h and the output weights β as follows:

Y = βh (3)

Therefore, the output layer is calculated as follows:

β = (HTH)−1HTT (4)

Further, to constrain the output weights, the output layer is calculated as follows:

β = (HTH + λI)−1HTT (5)

where λ is the constraining coefficient.
Although the output weights that are calculated by Equation (4) or Equation (5) can provide good

predictions using the training data, the model has suffered with the outliers and noises in the data
which negatively affect the predictions. To overcome the problem, the correntropy, as a high order
similarity measurement, has been used in some recently developed methods.

In [62], the cost function built using the correntropy as follows:

JRCC= maxβ[
N∑

p=1

G(tp−hβ)−λ
∣∣∣∣∣∣β∣∣∣∣∣∣] (6)

where G(tp − hβ) is the Gussian kernel calculated as follows:

G(tp−hβ)= exp(−
(tp−hβ)

2σ2 ) (7)

where σ is the bandwidth of the kernel.
Therefore, the output layer is calculated as follows:

β = (HTΛH− λI)−1HTΛT (8)

where Λ is the diagonal matrix of the local optimal solution. It is calculated as follows:

ατ+1
p = −G(tp−hβ) (9)

To further improve the flexibility of the correntropy, the cost function with a mixed correntropy is
defined in [67] as follows:

JMMCC= 1−
1
N

N∑
i=1

[αGσ1(ei) + (1−α)Gσ2(ei)]+λ
∣∣∣∣∣∣β∣∣∣∣∣∣ (10)
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Therefore, the output is calculated as follows:

β = (HTΛH + λ′I)−1HTΛT (11)

where the λ′ = 2Nλ and Λ is the diagonal matrix with elements calculated as follows:

Λii = α/σ1Gσ1(ei) + (1−α)/σ2Gσ2(ei) (12)
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With two coefficients, Equation (9) gives a more accurate estimation of the costs of the output layer,
leading to a higher robustness of the model. Although Equations (7) and (9) can acquire better local
similarity measurements compared with Equation (5), both criterions limit the correntropy into two
kernels, leading to an inappropriate description on the probability distribution of the data. Additionally,
the bandwidths and the coefficients must be assigned by users, thus limiting the performance of the
corresponding model in real world applications which can be badly affected since the bandwidths are
not suitable for the estimation of the correntropy. To provide a more flexible criterion for the training
strategy with a more appropriate description of the probability distribution of the data, the proposed
method develops a multi-kernel correntropy criterion that is calculated as follows:

k(T− βH) =
K∑

i=1

αiGσi(T− βH) (13)

where αi is the influence coefficients controlling the weight of each kernel. By using multiple kernels
to construct the correntropy, the proposed method brings a more accurate approximation on the
probability distribution of the samples, leading to a high prediction performance of the model. Based on
the corretropy using Equation (13), the proposed method built a convex cost function for training
the output weights, which has been analyzed in Section 4. For the suitable assignments of the
parameters in Equation (13), a novel generation strategy using an evolved cooperating process based
on SDPSO with the MIE to generate the parameters adaptively has been developed. Therefore, the
framework of the proposed method can be summarized in Figure 2. The proposed method developed
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an evolved-cooperation strategy to generate the optimized solution of the influence coefficients and
the bandwidths which suits the distribution of the prediction errors. To achieve an accurate estimation,
the bandwidth was generated based on switching delayed particle swarm optimization (SDPSO) [68]
and the influence coefficients were calculated based on the cost function for estimating the probability
distribution function of errors.

The basic procedures of the method are as follows. Supposing that the input vector of the samples
is represented as x = {x1, x2, . . . , xN}, calculate the output of hidden nodes with randomly assigned
weights and biases as Equation (1). Then, adapt the cooperating evolution technology for training
the output weights. For each iterations of the evolution, the output of the predicting model can be
generated using Equation (3). Compared with the actual outputs, the predicted outputs result in
current error e with the model. Based on the current error e, the proposed method makes the best
assignments of the bandwidths in the correntropy with SDPSO and accesses the optimal coefficients
based on MIE. This is shown in the next section. Using the generated correntropy, a list of diagnostic
kernels can be calculated which effects the updating of the output layer to reach higher accuracy. This is
presented in Section 4. The processes stop when the cost function of the model is stable.
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More details are presented in the next section.

3. The Cooperating Evolution Process for the Bandwidth and Influence Coefficients of the Kernel

For the correntropy that is defined by Equation (12), the bandwidth and the influence coefficients
are for the similarity measurements since the bandwidths act as the zoom lens for the measurements
and the coefficients determine the effect that each kernel has on the estimation of the correntropy
according to the assigned bandwidth. They are defined as follows:

σ = {σ 1,σ2,σ3, . . . ,σM} (14)

A = {α1,α2,α3, . . . ,αM} (15)
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Therefore, the bandwidth and the influence coefficients should be carefully assigned to match the
probability distribution of the samples to achieve the best effect of the correntropy on generating the
output weights of the prediction model. Since the correntropy depicts the probability distribution of
the distance between the actual output and the model response, the bandwidth and the coefficients are
able to form the probability distribution (pdf) function as follows:

f̂ (e) =
N∑

i=1

α1Gσ1(ei) + α2Gσ2(ei) + · · ·+ αNGσn(ei) (16)

In applications, the real joint probability distribution for the cases are unknown. Therefore, the
joint pdf can only be estimated for a finite number of samples{(ti,yi)}, where i = 1, 2, . . . , N:

f(e) =
1
N

g(
{
(t k, yk )

∣∣∣∣∣∣tk − yk

∣∣∣= e}) (17)

where g(S) is the cardinal number of the set S.
Using the kernel contrasts between the pdf estimated with the assigned parameters and the pdf

estimated using the data, the least mean integrated error (MIE) can be calculated as follows:

MIE = E(
∫

( f̂ (e) − f (e))2de) (18)

Based on the MIE, the performance of the bandwidth and coefficients can be estimated using
the contrasts with the pdf from the data. Therefore, the optimization of these parameters can be
transformed to finding the solution with the minimum MIE.

In the proposed method, the switching delay particle swarm optimization is adapted to search
for the best bandwidth. To achieve this, the particles are initialized with a list of potential bandwidth
setting σc = {σc,1, σc,2, . . . , σc,N}. With respect to each bandwidth of the particle, the velocities for the
evolution of the particles are defined as follows:

vσc = {vσc,1, vσc,2, . . . , vσc,N} (19)

Meanwhile, the influence coefficient is denoted as vector A:

Ac =
{
αc,1,αc,2,αc,3, . . . ,αc,M

}
(20)

where αi is the influence coefficient according to σc,i.

Since the samples provide disperse values of the outputs, the pdf from the data is estimated using
the discrete version of Equation (16):

F =
{
f(m1), f(m2), . . . , f(mk )

}
(21)

f(m) =
1
N

g(
{
(t k, yk )

∣∣∣m− ε ≤ ∣∣∣tk−yk

∣∣∣ ≤ m + ε}) (22)

where the vector m = {m1, m2, . . . , mk} is a list of values that satisfy m1 < m2 < . . . < mk and |mi −

mi−1| = ε. ε is the step length of the estimation.
Accordingly, the values from Equation (15) with respect to m are equivalent to the following set:

F̂ =
{

f̂ (m1), f̂ (m2), · · · , f̂ (mk)
}

(23)

They can be calculated as:
F̂ = AK (24)
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where K is the kernel matrix, which is as follows:

K =


Gσ1(e1) Gσ1(e2)

Gσ2(e1) Gσ2(e2)

. . . Gσ1(eN)

. . . Gσ2(eN)
...

...
GσM(e1) GσM(e2)

. . .
...

. . . GσM(eN)

 (25)

By inserting Equations (20) and (22) into Equation (17), the following cost function can be obtained:

MIE = (AK− F)(AK− F)T (26)

Then, the following differential equations with respect to A are calculated:

2(AK− F) = 0 (27)

Therefore, the coefficient can be calculated using the assigned bandwidth as follows:

A = FKT(KKT)
−1

(28)

Since each particle contains one solution for the kernels’ parameters, the personal best solution pσ
and the global best solution gσ is updated by minimizing the costs. Then, the particles are updated
as follows:

vσc(k + 1)= wvσc+c1(k)×r1(pσ(k−(k)) − σc(k)))+c2(k)×r2(gσ(k− τ2(k) − σc(k))) (29)

σc(k + 1)= σc(k)+vσc(k + 1) (30)

where c1(k) and c2(k) are the acceleration coefficients and τ1(k) and τ2(k) are the time delays. All the
parameters are adjusted based on the evolution factor, Ef, which determines the evolutionary states,
and it is calculated as follows:

Ef = (dg−dmin)/(dmax−dmin) (31)

where dg is the global best particle among the mean distance. It is calculated as:

dg =
1
N

N∑
i=1

||σc,i−gσ
∣∣∣∣∣∣ (32)

With the estimate on Ef, the parameters can be selected as shown in Table 1.

Table 1. The strategies for selecting the parameters.

State Range of Ef c1 c2 pσ gσ τ1 τ2

Convergence 0 ≤ Ef < 0.25 2 2 pσ(k) gσ(k) 0 0

Exploitation 0.25 ≤ Ef < 0.5 2.1 1.9 pσ(k− τ1(k)) gσ(k) [k·rand1] 0

Exploration 0.5 ≤ Ef < 0.75 2.2 1.8 pσ(k) gσ(k− τ2(k)) 0 [k·rand2]

Jumping out Ef > 0.75 1.8 2.2 pσ(k− τ1(k)) gσ(k− τ2(k)) [k·rand1] [k·rand2]

The final solution of the bandwidth and the influence coefficients are determined as the solution
that minimizes the costs during the evolution procedures.

In summary, the cooperative evolution process is shown in Algorithm 1. First, the bandwidth
and the corresponding velocity of each particle are randomly assigned. Then, for each iteration of
the process, the influence coefficients are evolved using the bandwidth based on the MIE and the
particles are updated using the cost function. Finally, the algorithm finds the best solutions for the
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bandwidth and the influence coefficients, from which the kernel depicts the pdf from the data. Based
on the generated kernel, the correntropy can lead to a model with good robustness.

Algorithm 1 Evolved cooperation for the kernel parameters

Input: the samples {xi,ti},i = 1, 2, . . . , N
Output: the vector of bandwidth σ and the vector of influence coefficients A

Parameters: the step length and the number of iterations L
Initialization: Set the cost function of the best solution MIEbest to∞ and randomly assign the bandwidth of

the kernels σc = {σc,1, σc,2, . . . , σc,N} and the corresponding velocity vσc = {vσc,1, vσc,2, . . . , vσc,N}.
1: for k = 1, 2, . . . L do
2: Generate the best influence coefficients Ac using Equation (26) for each particles.
3: Calculate value of cost function for each particle MIEc based on Equation (24)
4: Update the personal best solution pσ and the global best solution gσ based on minimizing the cost function.
5: Calculate the Ef of the iteration with Equation (29)
6: Access the parameters for evolution based on Table 1
7: Update the swarm with Equations (27) and (28)
8: end for
9: Return the global best bandwidth gσ and the corresponding influence coefficients

4. Training the Extreme Learning Machine Using the Multi-Dimension Correntropy

To improve the robustness of the extreme learning machine, in the proposed method, the training
procedure of the output layer as Equation (5), is replaced by the developed calculation using the
mixture correntropy that is generated using the evolved kernel from Section 3. The loss function for
the output layer is developed according to the following properties.

Property 1. K(Y,T) is symmetric, which means the following: K(Y,T) = K(T,Y).

Property 2. K(T,Y) is positive and bounded, which means the following: 0 < K(Y,T) < = 1 and K(T,Y) = 1 if
and only if T = Y.

Property 3. K(T,Y) involves all the even moments of e, which means the following:

K(T, Y)= E[e2n]
∞∑

n=0

(−1)n∑M
i=1αiσ

2n
i

2n∏M
i=1(σi)

2nn!
(33)

Property 4. When the first bandwidth is large enough, it satisfies the following:

K(T, Y)≈
M∑

i=1

αi −

∑M
i=1αiσ

2
i

2
∏M

i=1σ
2
i

E[e2] (34)

Proof. For lim
x→0

exp(x) ≈ 1 + x, suppose that σ1 is large enough, K(T,Y) can be approximated as follows:

K(T, Y)= α1Gσ1(e)+α2Gσ2(e)+ . . .+ αmGσm(e)

= α1

(
1− e2

2σ2
1

)
+α2

(
1− e2

2σ2
2

)
+ . . .+ αm

(
1− e2

2σ2
m

)
=

m∑
i=1

αi −

∑M
i=1αiσ

2
i

2
∏M

i=1σ
2
i

E[e2]

(35)

that completes the proof. �
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Remark 1. Based on Property 4, the mixed C-loss is defined as L(T,Y) = 1 − K(T,Y), which is approximately
equivalent to the mean square error (MSE) with a large enough bandwidth.

Property 5. The empirical mixed C-loss L(e) that is a function of e is convex at any point satisfying
||e||∞ = max|ei| ≤ σ1.

Proof. Build the Hessian matrix of the C-loss function L(e) with respect to e as follows:

HL(e)=

[
∂L(e)
∂ei∂ej

]
= diag(ξ1,ξ2, . . . ,ξN) (36)

The elements of matrix ξ is calculated as follows:

ξi =
m∑

i=1

αi
σ4

i − e4
i

Nσ4
i

Gσi(ei) (37)

It is obvious that ξi is positive. Therefore, L(e) is convex. �

Remark 2. Using Property 4 and Property 5, the loss function of the output weights is based on the empirical
mixed C-loss L(e) from the data observations, which can be defined as follows:

J = L(T, Y)+Λ
∣∣∣∣∣∣β∣∣∣∣∣∣2= 1−

1
N

N∑
i=1

M∑
j=1

α jGσ j(ei)+Λ
∣∣∣∣∣∣β∣∣∣∣∣∣2 (38)

Based on Equation (38), the training criterion is generated for improvement on the robustness of the model.

Taking the differential of the loss function, it is easy to get the following:

∂J(β)
∂β = 0

−

N∑
i=1
{[
∑M

j=1
α j

σ2
j
Gσ j(ei)]eihT

i }+ 2NΛβ = 0

N∑
i=1

(ϕ(ei)hT
i hiβ−ϕ(ei)tihT

i ) +Λ′β = 0

N∑
i=1

(ϕ(ei)hT
i hiβ+Λ′β =

N∑
i=1

(ϕ(ei)tihT
i )

β = [HTΛH +Λ′I]−1HTΛT

(39)

whereΛ′= 2NΛ,ϕ(ei) =
∑M

j=1
αj

σ2
j
Gσj(ei) andΛ is a diagonal matrix with diagonal elementsΛii = ϕ(ei),

which provides the local similarity measurements between the predicted output and the actual outputs.
When the training data contain large noise or many outliers, the corresponding diagonal elements are
relatively low which induce the effects of such samples. Therefore, the algorithm can achieve high
robustness against noises and outliers in the signals.

Since Equation (37) is a fixed-point equation because the diagonal matrix depends on the weight
vector, the optimal solution should be solved by applying the evolved cooperation using Equation (37).

Therefore, combined with the kernel optimization in Section 3, the whole training process can be
summarized in Algorithm 2, which is referred to as the ECC-ELM algorithm in this paper.
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Algorithm 2 ECC-ELM

Input: the samples {xi,ti}, i = 1, 2, . . . , N
Output: output weights

Parameters: the number of hidden nodes N, the number of iterations L, the iterations T and termination
tolerance ε

Initialization: Randomly set the weights and bias of the hidden nodes and initialize the output weights β
using Equation (5)
1: for t = 1, 2, . . . , T do
2: Calculate the residual error: ei = ti − hiβ, i = 1, 2, . . . , N
3: Calculate the kernel parameters {σ, A} using Algorithm 1
4: Calculate the diagonal matrix Λ: Λii = ϕ(ei) =

∑M
j=1

αj Gσj (ei)

5: Update the output weight using Equation (37)
6: Until |Jk(β) − Jk−1(β)| < ε

7: end for

5. Analysis on Time Complexity and Space Complexity of ECC-ELM

In this section, the time complexity of the proposed method is analyzed and compared with the
other algorithms. The main time complexity of the ECCELM comes from the cooperating evolution
process and the training process of the model. The cooperative evolution contains the calculations
of the influence coefficients and the particles updating with the time complexity of O(ItNK2), where
It is the number of iterations, N is the number of particles and K is the number of disperse values
of the outputs. To train the ELM, the procedures share the same time complexity as the RCC-ELM
and MMCC-ELM, which is O(IhNl(5M+M2)), where Ih is the amount of iterations for training and
Nl is the number of training data. Additionally, M is the number of hidden nodes. Therefore, the
time complexity of ECC-ELM is O(IhNl(5M+M2+ItNK2)), which is slightly higher than those of the
RCC-ELM and MMCC-ELM but it satisfies the requirements in most applications.

With respect to the spatial complexity, the ECC-ELM has the same complexity as the prediction
models using the RCC-ELM, which is O(N+(N+2)M+Nl

2). Additionally, the space complexity
consumed by evolving process is O(2N+K). Therefore, the space complexity of ECC-ELM is
O(N+(N+2)M+Nl

2+2N+K), which has the same order as RCC-ELM and MMCC-ELM.
In summary, the time complexity and spatial complexity are practical for most applications.

6. Experiments

6.1. The Simulation of the Sinc Function with Sas noises

In this section, the simulation experiments using the Sinc function with random noises are
presented. They compare between serval state-of-art algorithms with the proposed method, which
are the R-ELM, the RCC-ELM, the MMCC-ELM and our method. The training and test samples were
randomly assigned according to the Sinc function and random noises were added with respect to
alpha-stable distribution. This is represented as follows:

y = αSinc(x) + ρ (40)

where α is the scale of the function which is set to 8.0 and Sinc(x) is the Sinc function. The Sinc function
is represented as follows:

Sinc(x) =
{

sin (x)/x x , 0
1 x = 0

(41)

Moreover, ρ is the noise that satisfies the following characteristic function [69]:

ρ =

{
exp (−δα|θ|α(1− jβsign(θ) tan (πα2 ))) + jµθ α , 1
exp (−δ1

|θ|1(1− jβ(π/2)sign(θ) log (πα2 ))) α = 1
(42)
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The parameters α, β, γ and µ are real and characterize the distribution of the random variable X.
Here, the alpha-stable probability distribution function is denoted as S(α,β,γ,µ). In these experiments,
the four parameters were assigned to three different conditions to provide three types of noises.
The assignment of the parameters in each sample is presented in Table 2.

Table 2. The assignments of the parameters in each sample.

Sample # α β γ µ

Sample 1 1 0 0.001 0

Sample 2 0.7 0 0.0001 0

Sample 3 1.2 0 0.001 0

Each sample contained 200 data, with half of the data being used for training and another half for
testing. To get a proper estimation of the performances of each method, the experiments were operated
with the best optimization of parameters. This is presented in Table 3.

Table 3. The assignment of the parameters for each algorithms.

Algorithm Parameter Sample 1 Sample 2 Sample 3

R-ELM
N 100 100 100
λ 0.00001 0.0001 0.0001

RCC-ELM

N 100 100 100
λ 0.00001 0.00001 0.00001

Ihq 30 30 30
ε 0.0001 0.0001 0.0001
σ 1 1.2 1.2

MMCC-ELM

N 100 100 100
λ 0.00001 0.00001 0.00001

Ihq 30 30 30
ε 0.0001 0.0001 0.0001

Σ1 2 2.2 4.3
Σ2 0.8 0.8 8.5
α 0.8 0.8 0.9

ECC-ELM

N 100 100 100
λ 0.00001 0.00001 0.00001

Ihq 30 30 30
ε 0.0001 0.0001 0.0001

Each experiment was conducted 30 times and the averages were taken. The comparison of the
accuracies of these algorithms is presented in Table 4. Compared with other algorithms, the R-ELM and
ECC-ELM achieve lower mean square errors due to the advantages of the correntropy. The performance
of R-ELM is relatively poor due to the effect of noises. The performance of MMCC-ELM also improved
by the correntropy. However, since the fixed dimension of the correntropy, the accuracy can be badly
influenced by unnecessary assignments on the second order of the bandwidth. Furthermore, it is clear
that the proposed algorithm achieves the lowest training MSE, which means that it is the most accurate
method for simulation of the Sinc function.
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Table 4. The comparison of the accuracies of the four algorithms.

Samples
ELM RCC-ELM MMCC-ELM ECCC-ELM

Training
MSE

Testing
MSE

Training
MSE

Testing
MSE

Training
MSE

Testing
MSE

Training
MSE

Testing
MSE

Sample 1 0.336 0.6601 0.1339 0.3505 0.7225 1.1085 0.1415 0.3595
Sample 2 0.0828 0.11 0.0507 0.0892 1.363 2.189 0.0257 0.0576
Sample 3 0.2219 0.2572 0.2076 0.2339 0.868 0.7583 0.2046 0.2237

To further analyze the predictive abilities of these four algorithms, Figure 3 depicts the differences
between the actual function and the predicted function for each algorithm. It is clear that all the
algorithms achieve relatively good prediction on the Sinc function. However, the prediction results of
the ELM have been badly influenced by the noises in all three samples. Additionally, the MMCC-ELM
performance is poor on sample 2 and sample 3, which is probably due to the assignments with high
dimension parameters. The RCC-ELM and ECC-ELM provide good predictions, which are almost
identical to the actual functions in all three samples. The ECCELM has the closet predicted function
with the Sinc function, which also proves that the method has high reliability against noise.Entropy 2019, 21, x  13 of 23 
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Furthermore, an experiment on sample 1 was conducted to compare the cost function for the
output weights with the MMCC-ELM and ECC-ELM since they share similar cost functions. The results
are shown in Figure 4, which show that the cost function of ECC-ELM is quite lower than the cost
of MMCC-ELM. Additionally, the costs of the ECC-ELM become stable for less than 25 iterations
for all three examples than MMCC-ELM. This shows the improvements on training the model with
ECC-ELM taking the cooperating evolution technique. Since both algorithms finish the generation of
the model when the cost function becomes stable, it can be concluded that the proposed model has
faster convergence on training the prediction model.
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Figure 5 illustrates the effects of the evolutionary process on the optimization of the kernel
bandwidth and influence coefficients. From Figure 5, it can be seen that the cost function for the kernel
bandwidth quickly drops during the evolution process. Moreover, Ef continuously decreases during
the process, which means that the particle swarm become stable and the best solution occurs. Figure 6
compares the actual pdf function and the estimated pdf function. It can be seen that the algorithm
achieves a comparatively accurate estimation of the distribution of the errors.

Entropy 2019, 21, x  14 of 23 

 

the model when the cost function becomes stable, it can be concluded that the proposed model has 
faster convergence on training the prediction model. 

Figure 5 illustrates the effects of the evolutionary process on the optimization of the kernel 
bandwidth and influence coefficients. From Figure 5, it can be seen that the cost function for the 
kernel bandwidth quickly drops during the evolution process. Moreover, Ef continuously decreases 
during the process, which means that the particle swarm become stable and the best solution occurs. 
Figure 6 compares the actual pdf function and the estimated pdf function. It can be seen that the 
algorithm achieves a comparatively accurate estimation of the distribution of the errors. 

  
(a) (b) 

 
(c) 

Figure 4. The comparison on the cost function values of the extreme learning machine by maximum 
mixture correntropy criterion (MMCC-ELM) and ECC-ELM (a) comparison with sample 1; (b) 
comparison with sample 2; (c) comparison with sample 3. 

 
Figure 5. The dynamic changes of the evolution factor (Ef) and costs during the cooperative evolution. Figure 5. The dynamic changes of the evolution factor (Ef) and costs during the cooperative evolution.

Entropy 2019, 21, x  15 of 23 

 

6.2. The Performance Comparison on Benchmark datasets 

To further assess the proposed algorithm, the performance of the ECC-ELM and other methods 
were compared using the data set from the UCI machine learning repository [70], awesome public 
dataset [71] and the United Nations development program [72], which are listed in Table 5. The 
assignments of the parameters are shown in Table 6, all of which refer to the best performance of each 
algorithm. Each experiment was conducted 30 times and the average performance was reported. 

 

Figure 6. Comparison between the estimated pdf and actual pdf. 

Table 5. The information on the data sets. 

Data Set Features 
Observations 

Training Numbers Testing Numbers 
Servo 5 83 83 
Slump 10 52 51 

Concrete 9 515 515 
Housing 14 253 253 

Yacht 6 154 154 
Airfoil 5 751 751 

Soil moisture 124 340 340 
HDI 12 93 93 
HIV 10 65 65 

The performance is compared in Table 7, which shows that the proposed algorithm is able to 
achieve better prediction accuracies than other methods. Additionally, the performance of the 
proposed method is relatively stable compared with other correntropy-based extreme learning 
machines.

Figure 6. Comparison between the estimated pdf and actual pdf.

6.2. The Performance Comparison on Benchmark datasets

To further assess the proposed algorithm, the performance of the ECC-ELM and other methods were
compared using the data set from the UCI machine learning repository [70], awesome public dataset [71]
and the United Nations development program [72], which are listed in Table 5. The assignments of
the parameters are shown in Table 6, all of which refer to the best performance of each algorithm.
Each experiment was conducted 30 times and the average performance was reported.

The performance is compared in Table 7, which shows that the proposed algorithm is able to
achieve better prediction accuracies than other methods. Additionally, the performance of the proposed
method is relatively stable compared with other correntropy-based extreme learning machines.

Figure 7 compares the actual output value and the predicted value for the Servo data set. It is
clear that the predicted values are basically identical to the actual output values, and it has not been
influenced by the outliers in the data.
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To illustrate the evolutionary processes for optimizing the bandwidth, Figure 8 depicts the
distributions of the particles and the evolution of the optimal solutions. It can be seen that the
distribution of the particles dynamically changes based on the state of the PSO process. The optimal
solution is adjusted and stabilizes during the process, which allows the optimal solution of the
bandwidth assignments to generate a more accurate model.

Table 5. The information on the data sets.

Data Set Features
Observations

Training Numbers Testing Numbers

Servo 5 83 83
Slump 10 52 51

Concrete 9 515 515
Housing 14 253 253

Yacht 6 154 154
Airfoil 5 751 751

Soil moisture 124 340 340
HDI 12 93 93
HIV 10 65 65
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Table 6. Parameter settings of each algorithm.

Algorithm Parameter Servo Slump Concrete Housing Yacht Airfoil Soil Moisture HDI HIV

R-ELM
N 90 190 185 180 185 200 200 100 100
λ 0.00010000 0.00050000 0.00020000 0.00020000 0.00002000 0.00002000 0.00002000 0.00001000 0.00001000

RCC-ELM

N 120 100 200 200 200 180 180 150 120
λ 0.00001000 0.00010000 0.00000100 0.00010000 0.00000001 0.00000001 0.00000001 0.00000001 0.00000001

Ihq 30 30 30 30 30 30 30 30 30
ε 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000
σ 0.00100000 0.00001000 0.00005000 0.01000000 0.00000100 0.00000100 0.00000100 0.00000100 0.00000130

MMCC-ELM

N 90 165 200 200 195 150 150 150 150
λ 0.00100000 0.00001000 0.00005000 0.01000000 0.00000100 0.00000100 0.00000100 0.00000100 0.00000100

Ihq 30 30 30 30 30 30 30 30 30
ε 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000

Σ1 0.2 0.5 0.5 0.5 0.5 0.2 1.0 1.2 0.7
Σ2 2.8 1.6 2.6 2 2 2.7 0.7 0.8 0.3
α 0.8 0.3 0.5 0.8 0.8 0.5 0.6 0.7 0.6

ECC-ELM

N 90 180 180 180 180 200 200 200 200
λ 0.00100000 0.00001000 0.00005000 0.01000000 0.00000100 0.00000100 0.00000100 0.00000100 0.00000100

Ihq 30 30 30 30 30 30 30 30 30
ε 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000 0.00010000

Table 7. The performance comparison.

Data Set
R-ELM RCC-ELM MMCC-ELM ECCC-ELM

Training RMSE Testing RMSE Training RMSE Testing RMSE Training RMSE Testing RMSE Training RMSE Testing RMSE

Servo 0.0590 ± 0.009 0.1039 ± 0.0164 0.0740 ± 0.0106 0.1031 ± 0.0148 0.0839 ± 0.0174 0.0989 ± 0.0187 0.1047 ± 0.0181 0.8742 ± 0.0131
Slump 0.0081 ± 0.0011 0.0461 ± 0.0095 0.0000 ± 0.0000 0.0422 ± 0.0094 0.0001 ± 0.0000 0.0408 ± 0.0101 0.0001 ± 0.0001 0.354 ± 0.1890

Concrete 0.0738 ± 0.0021 0.0917 ± 0.0045 0.0561 ± 0.0018 0.0872 ± 0.0066 0.0560 ± 0.0021 0.0867 ± 0.0064 0.0561 ± 0.0018 0.0852 ± 0.0053
Housing 0.0439 ± 0.0043 0.0896 ± 0.0124 0.0495 ± 0.0045 0.0830 ± 0.0110 0.0554 ± 0.0045 0.0821 ± 0.0101 0.0352 ± 0.0013 0.0791 ± 0.0110

Yacht 0.0366 ± 0.0093 0.0529 ± 0.0090 0.0125 ± 0.0008 0.0349 ± 0.0113 0.0125 ± 0.0008 0.0328 ± 0.0074 0.0172 ± 0.0027 0.0268 ± 0.0031
Airfoil 0.0974 ± 0.0074 0.1031 ± 0.0077 0.0736 ± 0.0022 0.0906 ± 0.0054 0.0736 ± 0.0025 0.0898 ± 0.0051 0.0736 ± 0.0023 0.0889 ± 0.0046

Soil moisture 0.0032 ± 0.0011 0.0095 ± 0.0013 0.0007 ± 0.0001 0.0015 ± 0.0003 0.0006 ± 0.0000 0.0012 ± 0.0002 0.0006 ± 0.0000 0.0009 ± 0.0001
HDI 0.0004 ± 0.0001 0.0006 ± 0.0002 0.0001 ± 0.0000 0.0003 ± 0.0001 0.0001 ± 0.0000 0.0003 ± 0.0001 0.0001 ± 0.0000 0.0003 ± 0.0001
HIV 0.0376 ± 0.0220 0.0599 ± 0.0130 0.0050 ± 0.0017 0.0079 ± 0.0009 0.0047 ± 0.0006 0.0065 ± 0.0004 0.0059 ± 0.0007 0.0059 ± 0.0006



Entropy 2019, 21, 912 18 of 23

6.3. The Performance Estimations for Forecasting the CTR of Optical Couplers

Finally, to estimate the performance of a real application, the proposed method has been used to
predict the current transfer ratio for optical couplers. This is one type of transmission device for electric
signals and optical signals with wide applications to the isolation transfer of signals, A/D transmission,
D/A transmission, digital communications and high-pressure control. For optical couplers, the CTR is
an essential factor for estimating the operating status of optical couplers. In this section, the proposed
method was used to give the predictions of CTR for the optical couplers to predict the health condition
of the devices.

For the experiments, the degenerating signals of four optical couplers were recorded and
transformed into the samples historical CTR value as input vectors and the CTR value of the next
time as the expected output. The training data was the samples that were generated from the optical
couplers’ records over the first ten years and the testing data were the samples that were generated
from the last ten years.

Figure 9 depicts the evolutionary process of the PSO procedure. It shows that the Ef value quickly
decreases during the evolutionary process and stabilizes within 17 iterations, resulting in the optimal
solution that is provided by the swarm.

Finally, the predicted results of the four optical couplers are shown in Figure 10. It is clear that the
generated ELM network accurately predicts the CTR value of each optical coupler and is robust with
the noises of the signals. Therefore, the proposed method is able to achieve good performance for the
optical couplers.
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Table 8 presents the numerical results of the CTR prediction, which compares the actual CTR and
the predicted CTR. It is clear that the proposed method can very accurately provide the prediction on
the state of Optical Couplers (OCs). Additionally, the time consumption is presented in Table 8 which
shows that the proposed method is able to obtain high accuracy on the prediction of the future CTR of
the OC and the predicting time is quite low within 5 ms. Therefore, the proposed method can achieve
high performance on real applications.

Table 8. The performance of the predicted model that is generated using the ECCELM.

Time (year) Actual CTR Predicted CTR Normalized Error Predicting Time (ms)

1 87.90 88.03 0.0037 2.98
2 87.70 88.01 0.0068 4.02
3 87.40 87.94 0.0274 3.92
4 85.50 87.15 0.0095 4.98
5 86.30 87.02 0.0122 2.26
6 85.93 86.61 0.0084 3.22
7 85.86 85.40 0.0188 5.74
8 84.73 85.30 0.0145 4.48
9 84.01 84.33 0.0115 5.85
10 83.31 83.38 0.0023 4.87

7. Conclusions

To improve the robustness of the forecasting model, the paper provides a novel correntropy-based
ELM called the ECC-ELM. It uses a multi-dimension correntropy criterion and the evolved cooperation
method to adaptively generate the parameters for kernels. In the proposed algorithm, SDPSO
is integrated by minimizing the MIE to determine the proper bandwidths and their corresponding
influence coefficients to estimate the probability distributions of the residual error of the model. A novel
training process was developed based on the properties of the multi-dimension correntropy and it was
able to build the convex cost function to calculate the output weights for the ELM. The experiments
on the simulated data and real-world application were conducted to estimate the accuracy of the
probability distribution of the signal and robustness on predicting the samples. The simulation results
with the Sinc function proved that the proposed method can generate the multi-kernel correntropy
with high accuracy on describing the probability distribution of the signals and fast converge on
the evolution process. This leads to high robustness of the proposed method compared with the
other methods. The performance comparisons on the benchmark datasets show that the proposed
method can achieve higher accuracy and more stability than the other methods. Finally, the CTR
prediction experiments show the proposed method can achieve high accuracy within acceptable time
consumption on real world applications. Although the proposed algorithm has predictive advantages,
there are still several limitations on the study. One limitation is the proposed method is only applicable
for an ELM with one hidden layer, which requires extensions on multi-layer networks. The other
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limitation is that the proposed method only provides an offline training model. Therefore, how to
update the online prediction model becomes another interesting topic for future research. The codes
and data of the research are available at https://github.com/mwj1997/ECC-ELM.
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