
entropy

Article

Universality and Exact Finite-Size Corrections for
Spanning Trees on Cobweb and Fan Networks

Nickolay Izmailian 1,2,* and Ralph Kenna 3,†

1 A. Alikhanyan National Laboratory (Yerevan Physics Institute), Alikhanian Brothers 2,
Yerevan 375036, Armenia

2 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
3 Statistical Physics Group, Centre for Fluid and Complex Systems, Coventry University,

Coventry CV1 5FB, UK; r.kenna@coventry.ac.uk
* Correspondence: izmail@yerphi.am
† (Dated: 10 September 2019).

Received: 14 August 2019; Accepted: 11 September 2019; Published: 15 September 2019
����������
�������

Abstract: The concept of universality is a cornerstone of theories of critical phenomena. It is very
well understood in most systems, especially in the thermodynamic limit. Finite-size systems present
additional challenges. Even in low dimensions, universality of the edge and corner contributions
to free energies and response functions is less investigated and less well understood. In particular,
the question arises of how universality is maintained in correction-to-scaling in systems of the same
universality class but with very different corner geometries. Two-dimensional geometries deliver
the simplest such examples that can be constructed with and without corners. To investigate how
the presence and absence of corners manifest universality, we analyze the spanning tree generating
function on two different finite systems, namely the cobweb and fan networks. The corner free
energies of these configurations have stimulated significant interest precisely because of expectations
regarding their universal properties and we address how this can be delivered given that the finite-size
cobweb has no corners while the fan has four. To answer, we appeal to the Ivashkevich–Izmailian–Hu
approach which unifies the generating functions of distinct networks in terms of a single partition
function with twisted boundary conditions. This unified approach shows that the contributions to
the individual corner free energies of the fan network sum to zero so that it precisely matches that
of the web. It therefore also matches conformal theory (in which the central charge is found to be
c = −2) and finite-size scaling predictions. Correspondence in each case with results established
by alternative means for both networks verifies the soundness of the Ivashkevich–Izmailian–Hu
algorithm. Its broad range of usefulness is demonstrated by its application to hitherto unsolved
problems—namely the exact asymptotic expansions of the logarithms of the generating functions and
the conformal partition functions for fan and cobweb geometries. We also investigate strip geometries,
again confirming the predictions of conformal field theory. Thus, the resolution of a universality
puzzle demonstrates the power of the algorithm and opens up new applications in the future.

Keywords: universality; corrections to scaling; corners; spanning tree; cobwebm fan;
Ivashkevich-Izmailian-Hu algorithm
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1. Introduction

Spanning trees are of fundamental and practical importance for connected graphs as they represent
the most efficient manner in which every node in the structure can be linked. Their enumeration is
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a famous challenge in combinatorial graph theory originally considered by Kirchhoff in the context
of electrical networks [1]. Besides being of interest in mathematics as a fundamental challenge [2,3],
enumeration of such trees remains of importance to other disciplines such as physics, engineering
and computing [4,5]. Diverse contexts include standard [6] and loop-erased random walks [7],
and spanning tree numbers can be mapped to the partition function of the q-state Potts model [8] in the
limit of q approaching zero. Another limit is v→ 0, where v = eJ − 1, and J is the coupling constant,
with different fixed values of v/q delivering the generating function for spanning trees, or spanning
forests, etc. [9]. Another close relationship is to the sandpile model [10]. Because of this diversity
of applications [11], mathematical investigations of spanning trees continue apace, building on the
considerable progress already achieved. The exact numbers of spanning trees have been determined
for regular lattices [4,12,13], networks [14,15] and Sierpinski gaskets [16], and the well-known bijection
between close-packed dimer coverings and spanning tree configurations on two related lattices [17]
add to their attractiveness as a challenging realm of study.

Systems that are confined by various boundary conditions when finite in extent have the same
per-site properties in the bulk limit—e.g., free energy, internal energy, and specific heat. However,
boundary characteristics are manifest in the correction terms of finite systems. The study of finite-size
scaling and corrections to scaling in this context was instigated over 40 years ago ago by Fisher and
Barber [18] and continues to attract a great deal of attention both for fundamental and applied purposes
(see, e.g., [19,20] for well-known reviews and [21,22] for corner and boundary effects in Ising and
Potts models). Theoretical interest includes extrapolating finite or partially-finite systems to determine
critical and non-critical properties of their infinite counterparts. More practical interests in finite-size
effects stem from recent progress in fine processing technologies for nanoscale materials with novel
shapes that have recently been enabled [23–25]. To understand scaling and corrections terms, exact
results are of prime interest because only in these cases can the analysis deliver results without the
vagaries of numerical errors.

In 2002, Ivashkevich, Izmailian, and Hu [26] developed a method that delivers exact finite-size
corrections for various functions of fundamental importance—e.g., partition functions and their
derivatives. The method was applied to iconic models of statistical physics such as the Ising,
dimer, and Gaussian models and the results demonstrated that the partition function of each model
can be written as a generic partition function with twisted-boundary conditions, viz. Zα,β with
(α, β) = (1/2, 0), (0, 1/2), and (1/2, 1/2). Building upon this approach, computations by Izmailian,
Oganesyan, and Hu [27] delivered finite-size corrections to the free energy of the square-lattice dimer
model under five distinct sets of boundary conditions (namely free, cylindrical, and toroidal boundaries
as well as the Möbius strip and the Klein bottle). The dependence of finite-size corrections on the
aspect ratio was found to be sensitive to boundary conditions as well as to the parity of the number of
lattice sites along the lattice axes. In 2014, Izmailian et al. [28] found that in the case of a rectangular
(2M− 1)× (2N − 1) lattice with free and cylindrical boundary conditions, with a single monomer
on the boundary, the partition functions of the anisotropic dimer model can be written in terms
of a partition function with twisted-boundary conditions Zα,β with (α, β) = (0, 0). Based on these
considerations, the exact asymptotic expansions of the free energy were calculated.

Let us denote a connected graph by G = G(V, E), where V is the set of its vertices and E is the
set of its edges. A spanning tree T is a subgraph of G which has |V| − 1 edges with at least one edge
at each vertex (we consider the case without loops). The number of edges attached to a vertex is its
degree or coordination number. In 2000, closed-form expressions for the spanning-tree generating
function were derived by Tzeng and Wu for a d-dimensional hypercubic lattice with free and periodic
boundary conditions and for a combination of the two. Analogous results were obtained for a simple
quartic net embedded on two nonorientable surfaces, namely the Klein bottle and Möbius strip [12].
In 2015, Izmailian and Kenna considered five different sets of boundary conditions for the spanning
tree on finite square lattices, and expressed the partition functions in terms of a principal partition
function with twisted-boundary conditions. In each case, they also derived the exact asymptotic
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expansions of the logarithm of the partition function [29]. Izmailian, Kenna and Wu also derived the
spanning-tree-generating function for cobweb and fan networks [14,15].

In this paper, we complement the above studies by deriving expressions for the generating
function of the spanning tree on cobweb and fan networks in terms of a partition function with
twisted-boundary conditions Z0,1/2(z,M,N ). The significance of this result is that it verifies the
applicability of the methods and algorithms developed in Ref. [26]. To demonstrate the broad range
of the usage of said the algorithm to hitherto unsolved problems, we furthermore derive the exact
asymptotic expansions of the logarithm of the generating function for all networks mentioned above.
In all cases we show that the exact asymptotic expansion of the free energy takes the form

f = fbulk +
2 f1s
M

+
2 f2s

N
+ fcorn

ln S
S

+
f0(ρ)

S
+

∞

∑
p=1

fp(ρ)

Sp+1 . (1)

Here, S = M× N is the area of the lattice, ρ = zξ and ξ = M/N is the aspect ratio. The term z is

z =
x
y

, (2)

where x and y are the weights associated with the edges in the horizontal and vertical directions,
respectively. The bulk free energy is fbulk, the surface free energies are f1s and f2s and the corner free
energy is fcorn. The leading finite-size correction term is f0(ρ) and the subleading correction terms are
fp(ρ) for p = 1, 2, 3, . . ..

The bulk free energy term fbulk is nonuniversal as are the surface free energies f1s and f2s and the
subleading correction terms fp(ρ) (p = 1, 2, 3, . . .). In contrast, fcorn is believed to be universal [30,31].
The leading finite-size correction term f0(ρ) is related to the conformal partition function and, in the
limits ρ→ ∞ and ρ→ 0, its value is related to the conformal anomaly c and conformal weights of
the underlying conformal theory [32,33]. Moreover, in 1991, Kleban and Vassileva [34] have shown
that in a rectangular geometry on the plane the leading finite-size correction term f0(ρ) contains a
geometry-dependent universal part funiv(ρ) given by

funiv(ρ) =
c
4

ln [η(ρ)η(1/(ρ))]. (3)

Here, η(ρ) is the Dedekind η function. However, Kleban and Vassileva [34] mentioned that f0(ρ)

can also contain a non-universal additive constant fnonuniv, which is not calculable via conformal field
theory methods:

f0(ρ) = funiv(ρ) + fnonuniv. (4)

There is little evidence to support these predictions from either exact solutions or numerical
determinations [28,29,35]. An efficient bond propagation algorithm was recently used to compute the
partition function of the Ising model with free edges and corners in two dimensions on a rectangular
lattice [35]. An efficient bond propagation algorithm was recently used to compute the partition
function of the Ising model with free edges and corners in two dimensions on a rectangular lattice [35].
They verify the predictions of conformal field theory presented in by Equation (3) with central charge
c = 1/2. Later, the conformal field theory prediction Equation (3) was confirmed [28] for the dimer
model on odd-odd square lattices with one monomer on the boundary, for which the central charge is
c = −2 and for another model in the c = −2 universality class, i.e., the spanning-tree model with free
boundary conditions [29]. Moreover, the non-universal additive constant fnonuniv has been determined
in rectangular geometry in the Ising universality class [35] and in c = −2 universality class for the
dimer model [28] and spanning tree model [29]. We are not aware of any other results similar to
Equation (3) for other geometries, except the plane. For example, in the torus geometry, the leading
finite-size correction term f0(ρ) has been derived for three models on a torus in different universality
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classes, namely the Ising (c = 1/2) [36], dimer (c = −2) [37] and Gaussian (c = 1) models [26].
They take the form

f0(ρ) = − ln
θ2 + θ3 + θ4

2η(ρ)
for the Ising model, (5)

f0(ρ) = − ln
θ2

2 + θ2
3 + θ2

4
2η2(ρ)

for the dimer model, (6)

f0(ρ) = ln
√

ρ η2(ρ) = ln η(ρ)η(1/ρ) for the Gaussian model. (7)

One can see from Equations (5)–(7) that in the torus geometry the leading finite-size correction
term f0(ρ) cannot be represented in a form similar to Equation (3). Nevertheless, they are related to
the conformal partition function in a torus geometry. For example, for the c = 1/2 universality class,
the conformal partition function on torus (Z) is given by (see, for example, Ref. [38], page 349)

Z =
θ2

η
+

θ3

η
+

θ4

η
. (8)

It is easy to see from Equations (5) and (8) that, for the Ising universality class in the torus
geometry, the leading finite-size correction term f0(ρ) is related to the conformal partition function on
the torus Z. The same is true for other geometries and for other universality classes.

In this paper, we derive the leading finite-size correction terms f0(ρ) for the spanning tree model
on cobweb and fan networks using the algorithm developed in Ref. [26]. We show to which conformal
partition functions they are related. We also derive the leading finite-size correction term f0(ρ) for the
Ising model on a cobweb network to see the difference between the corresponding conformal partition
functions in the c = −2 and c = 1/2 universality classes. We are also especially interested in the
universal corner terms fcorn because they are logarithmic. Using CFT, Cardy and Peschel predicted
that a corner with an angle π/2 and two edges under free boundary conditions has

fcorn(0, 0) = − c
32

. (9)

In this formula, c represents the central charge defining the universality class of the system [31].
We confirmed this in Refs. [35,39] for the square and triangular lattices with free boundary conditions.
Imamura et al. [40] and Bondesan et al. [41,42] also used CFT to study the corner terms with different
free boundary conditions and found that the contribution to the free energy from a corner with two
edges is

fcorn(αβ) = ∆αβ −
c

32
. (10)

This formula, where ∆αβ represents the conformal weight of the boundary operator inserted at
the corner, was verified in our previous work on the Ising model on the square lattice with different
boundary conditions [43].

2. Spanning Tree on Networks

Let us consider the problem of enumerating weighted spanning trees on the M× N network.
The enumeration of spanning trees involves the evaluation of the tree generating function (or partition
function) ZSp

network

ZSp
network(L; x, y) = ∑

T
xnx yny , (11)

where we assign weights x and y, respectively, to edges in the horizontal and vertical directions.
The summation is taken over all spanning tree configurations T on L and nx and ny are the numbers of
edges in the spanning tree in the respective directions.
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2.1. Spanning Tree on the Cobweb Network

The cobweb lattice Lcob is an M× N rectangular lattice with periodic boundary conditions in the
horizontal direction and nodes on one of the two boundaries in the other direction connected to an
external common node. Therefore, there is a total of MN + 1 nodes and 2MN edges. Topologically,
Lcob is of the form of a wheel consisting of N spokes and M concentric circles (see Figure 1) where
the circumference of the circle corresponds to the “horizontal” direction and spokes correspond to
the “vertical” direction. Note that the cobweb lattice Lcob can be considered as rectangular self-dual
lattices [44]. The tree generating function (or partition function) for the spanning tree model on cobweb
network has been obtained in [14] and can be written as

ZSp
cobweb(L; x, y) = yMN

N−1

∏
n=0

M−1

∏
m=0

4
[

z sin2 πn
N

+ sin2 π(m + 1/2)
2M + 1

]
, (12)

where z = x/y and x and y are weights of the edges in the spoke and circle directions, respectively.

Figure 1. An M × N cobweb network with M = 3 and N = 8 (a). An M × N fan network with
M = 3 and N = 7 (b). The weights x and y are assigned to the bonds in circular and radial directions,
respectively. The cobweb network can be considered as a cylinder, where all sites on the one boundary
are connected to an external common site, which is denoted by 0, while the fan network can be
considered as a plane rectangular lattice, where all sites on one of four boundaries are connected to an
external common site.

It has been shown [26,27,29,45] that the exact partition functions of the Ising model,
dimer model and spanning tree model on different planar lattices under free, cylindrical and
periodic boundary conditions can be written in terms of the single expression Zα,β(z,M,N ) with
(α, β) = (1/2, 0), (0, 1/2) and (1/2, 1/2), where

Z2
α,β(z,M,N ) =

M−1

∏
m=0

N−1

∏
n=0

4
[

z sin2 (n + α)π

N + sin2 (m + β)π

M

]
, (13)

with (α, β) 6= (0, 0). Note that the general theory about the asymptotic expansion of Zα,β(z,M,N ) has
been given in [26,27].

In what follows, we will show that the tree generating function on the cobweb network can be
expressed in terms of Z0,1/2(z,M,N ) withM = 2M + 1 and N = N

Z2
0,1/2(z, 2M + 1, N) =

N−1

∏
n=0

2M

∏
m=0

4
[
z sin2 nπ

N + sin2 (m+1/2)π
2M+1

]
. (14)
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First, we express double products ∏N−1
n=0 ∏2M

m=0 f (n, m) in terms of ∏N−1
n=0 ∏M−1

m=0 f (n, m), where

f (n, m) = 4
[
z sin2 nπ

N + sin2 (m+1/2)π
2M+1

]
. (15)

It is easy to show that

N−1

∏
n=0

2M

∏
m=0

f (n, m) =

(
N−1

∏
n=0

f (n, M)

)(
N−1

∏
n=0

M−1

∏
m=0

f (n, m)

)2

, (16)

with f (n, M) = 4
(
z sin2 nπ

N + 1
)
.

With the help of the identity [46]

K−1

∏
k=0

4
[

sinh2 ω + sin2 kπ
K

]
= 4 sinh2 (K ω) , (17)

the product ∏N−1
n=0 f (n, M) can be written as

N−1

∏
n=0

f (n, M) = 4zN sinh2
[

Narcsinh
√

1/z
]
. (18)

Now, using Equations (12)–(16) and (18), the tree generating function on the cobweb network can
be expressed finally as

ZSp
cobweb(L; x, y) = Q1 Z0,1/2(z, 2M + 1, N), (19)

with

Q1 =
yMN

2zN/2 sinh
[
Narcsinh

√
1/z

] . (20)

Thus, we have linked the cobweb partition function to the more general expression Zα,β(z,M,N ),
further extending the applicability of the latter.

2.2. Spanning Tree on the Fan Network

The fan lattice Lfan is an M× N rectangular lattice of M rows and N columns with free boundary
conditions on three sides of the lattice and nodes on the fourth boundary connected to an external
additional node. Therefore, there is a total of MN + 1 nodes and 2MN −M edges. We use the term
Dirichlet–Neumann to describe the boundary conditions along the fourth boundary. Topologically, the
obtained lattice is of the form of “fan” consisting of N radial lines and M transverse arcs (see Figure 1),
where transverse arcs correspond to the “horizontal” direction and radial lines correspond to the
“vertical” directions. In other words, we impose Neumann or free boundary conditions along the
two border spokes and along the outermost arc. We use the term Dirichlet–Neumann to describe the
boundary conditions along the innermost arc.

The tree generating function for the spanning tree model on the fan network has been obtained
in [14] and can be written as

ZSp
fan(L; x, y) = yMN

M−1

∏
m=0

N−1

∏
n=0

4
[

z sin2 πn
2N

+ sin2 π(m + 1/2)
2M + 1

]
, (21)

where z = x/y.
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In what follows, we will show that the tree generating function on the fan network can be
expressed in terms of the single quantity Z0,1/2(z, 2M + 1, 2N)

Z2
0,1/2(z, 2M + 1, 2N) =

2N−1

∏
n=0

2M

∏
m=0

4
[
z sin2 nπ

2N + sin2 (m+1/2)π
2M+1

]
. (22)

Now, we first express double products ∏2N−1
n=0 ∏2M

m=0 f (n, m) in terms of
∏N−1

n=0 ∏M−1
m=0 f (n, m), where

f (n, m) = 4
[
z sin2 nπ

2N + sin2 (m+1/2)π
2M+1

]
. (23)

It is easy to show that f (2N − n, m) = f (n, 2M−m) = f (n, m) and thus

2N−1

∏
n=0

2M

∏
m=0

f (n, m) =
∏N−1

n=0 f (n, M)2 ∏2M
m=0 f (N, m)

∏2M
m=0 f (0, m)

(
N−1

∏
n=0

M−1

∏
m=0

f (n, m)

)4

. (24)

With the help of the identities [46]

K−1

∏
k=0

4
[

sinh2 ω + sin2 kπ
K

]
= 4 sinh2 (K ω) , (25)

K−1

∏
k=0

4
[

sinh2 ω + sin2 (k+1/2)π
K

]
= 4 cosh2 (K ω) , (26)

M−1

∏
m=0

4 sin2 (m + 1/2)π
M

= 4, (27)

the products ∏2M
m=0 f (N, m), ∏N−1

n=0 f (n, M)2 and ∏2M
m=0 f (0, m) can be written as

N−1

∏
n=0

f (n, M)2 =
4z2N

1 + z
sinh2

[
2Narcsinh

√
1/z

]
(28)

2M

∏
m=0

f (N, m) = 4 cosh2 [(2M + 1)arcsinh
√

z
]
, (29)

2M

∏
m=0

f (0, m) = 4. (30)

Now using Equations (21)–(24), (28)–(30) the tree generating function on the fan network can
finally be expressed as

ZSp
fan(L; x, y) = Q2 Z1/2

0,1/2(z, 2M + 1, 2N), (31)

with

Q2 =
yMN(1 + z)1/4√

2zN sinh
[
2Narcsinh

√
1/z

]
cosh

[
(2M + 1)arcsinh

√
z
] . (32)

Again, we have extended the applicability of the general expression Zα,β(z,M,N ) by linking it
to the fan partition function.
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3. Asymptotic Expansion of Free Energy

Thus, we have expressed the generating functions of the spanning tree on cobweb and fan
networks in terms of a principal partition function with twisted-boundary conditions Z0,1/2(z,M,N )

only. Based on such results, one can use the exact asymptotic expansions of Z0,1/2(z,M,N ) given
in Ref. [26] to derive the exact asymptotic expansions of the free energy of the spanning tree
f = − 1

S ln Z for all networks mentioned above in terms of the Kronecker’s double series [26], which
are directly related to elliptic θ functions. For the reader’s convenience, the asymptotic expansion of
ln Z0,1/2(z,M,N ) is given in Appendix A.

Using Equation (A3), we can easily write down all the terms of the exact asymptotic expansion
Equation (1) of the free energy, f = − 1

S ln Z for all models under consideration.
The bulk free energy fbulk in Equation (1) for the weighted spanning tree on finite M× N + 1

lattices for all networks is given by

fbulk = − ln y− 2
π

∫ π
0 ωz(k)dk = − ln y− 1

π ∑∞
n=0(−1)n(n + 1/2)−2zn+1/2

= − ln y− z1/2 Φ(−z,2, 1
2 )

π ,
(33)

where ωz(k) is given by Equation (A2) and Φ(−z, 2, 1/2) is the Lerch transcendent. In particular,
for isotropic spanning tree (z = 1), the Lerch transcendent is now Φ(−1, 2, 1/2) = 4G, where
G = 0.915965594 . . . is the Catalan constant.

3.1. Asymptotic Expansion of Free Energy of the Spanning Tree on the Cobweb Network

Using Equations (19), (20) and (A3), the exact asymptotic expansions of the free energy for the
spanning tree on the cobweb network, f = − 1

S ln ZSp
cobweb can be written as

f = − 1
S ln ZSp

cobweb = − ln y +
1
2 ln x+arcsinh 1√

z

(M+ 1
2 )

− 1
S ln Z0,1/2(z, 2M + 1, N)

= fbulk +
2 f1s

(M+ 1
2 )
− 1

S ln θ2(2
√

z ξ)
η(2
√

z ξ)
+ 4πξ

S ∑∞
p=1

(
π2ξ

S

)p Λ2p
(2p)!

K
1
2 ,0
2p+2(2 i

√
z ξ)

2p+2 ,
(34)

where fbulk is given by Equation (33), the surface free energy f2s is equal to zero and f1s is given by

f1s =
1
4

ln x +
1
2

arcsinh
1√
z

, (35)

and S and ξ are given by

S =

(
M +

1
2

)
N, ξ =

M + 1
2

N
. (36)

The expression for S is neither equal to the number of nodes or of edges; instead, it emerges
from the asymptotic expansion of the logarithm of Z0,1/2(z, 2M + 1, N). Thus, the exact asymptotic
expansions of the free energy for the spanning tree on the cobweb network can be written in the form
given by Equation (1). For the leading correction terms f0(zξ), we obtain

f0(zξ) = − ln
θ2(2
√

z ξ)

η(2
√

z ξ)
. (37)

To check whether or not the leading finite-size correction term f0(ρ) given by Equation (37) can
be represented in a form similar to Equation (3), we have to consider the Ising model (c = 1/2) on
the cobweb network [8]. We have obtained that the exact asymptotic expansions of the free energy
for the Ising model on the cobweb network can be written in the form given by Equation (1) with



Entropy 2019, 21, 895 9 of 16

z = 1 (the details of the calculation will be reported elsewhere). The bulk free energy fbulk for the Ising
model on the cobweb network is given by

fbulk = −1
2

ln 2− 2G
π

. (38)

The surface free energy f2s is equal to zero and f1s is given by

f1s =
1
2

ln(1 +
√

2)− 1
8

ln 2− 1
4π

∫ π

0
ln
(√

2 sin x +
√

1 + sin2 x
)

dx, (39)

and the leading finite-size correction term f0(ξ) for the Ising model in the rectangular geometry on the
cobweb network is given by

f0(ξ) = −
1
2

ln
2 θ4(2 ξ)

η(2 ξ)
. (40)

Note that S and ξ for Ising model on the cobweb network are also given by Equation (36).
Thus, we can see from Equations (37) and (40) that the leading finite-size correction term f0(ξ)

cannot be represented in a form similar to Equation (3). Instead, based on Equations (37) and (40),
we can predict that the conformal partition function on the cobweb network for the Ising (c = 1/2)
universality class ZIsing is given by

ZIsing =

√
2 θ4(2 ξ)

η(2 ξ)
(41)

and, for the spanning tree (c = −2) universality class, the conformal partition function on cobweb
network Zcobweb

Sp is given by

Zcobweb
Sp =

θ2(2
√

z ξ)

η(2
√

z ξ)
. (42)

For subleading correction terms fp(zξ) for p = 1, 2, 3, . . . , we get

fp(z ξ) =
2π2p+1ξ p+1

(2p)!(p + 1)
Λ2p K0,1/2

2p+2(2i
√

z ξ).

The coefficients Λ2p are given in Equation (A7) and the Kronecker’s double series K0,1/2
2p+2(izξ) in

terms of the elliptic theta functions are given in [26,27] for arbitrary p.
It is easy to see from Equation (34) that the exact asymptotic expansions of the free energy for

the spanning tree on the finite cobweb network do not contain the corner free energy fcorner, as it
should be, since the logarithmic corner corrections to the free energy density should be absent for the
systems without corners.

3.2. Asymptotic Expansion of Free Energy of the Spanning Tree on the Fan Network

Using Equations (31), (32) and (A3), the exact asymptotic expansions of the free energy for the
spanning tree on the fan network, f = − 1

S ln ZSp
fan can be written as

f = − 1
S ln ZSp

fan

= − ln y +
1
2 ln x+arcsinh 1√

z

(M+ 1
2 )

+ arcsinh
√

z
N − 1

4S ln 4(1 + z)− 1
2S ln Z0,1/2(z, 2M + 1, 2N)

= fbulk +
2 f1s

(M+ 1
2 )

+ 2 f2s
N −

1
4S ln 4(1 + z)− 1

2S ln θ2(
√

z ξ)
η(
√

z ξ)

+ πξ
S ∑∞

p=1

(
π2ξ
4S

)p Λ2p
(2p)!

K
0, 1

2
2p+2(i

√
z ξ)

2p+2 ,

(43)
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where fbulk is given by Equation (33), the surface free energies f1s is given by Equation (35) and f2s is
given by

f2s =
1
2

arcsinh
√

z, (44)

and S and ξ are again given by Equation (36). The exact asymptotic expansions of the free energy for
the spanning tree on the fan network can again be written in the form given by Equation (1). For the
leading correction terms f0(zξ), we obtain

f0(zξ) = −1
4

ln 4(1 + z)− 1
2

ln
θ2(
√

z ξ)

η(
√

z ξ)
. (45)

Thus, from Equation (45), one can see that a geometry-dependent universal part of the free energy
funiv(zξ) in the rectangular geometry on the fan network is given by

funiv(zξ) = −1
2

ln
θ2(
√

z ξ)

η(
√

z ξ)
, (46)

while a non-universal additive constant fnonuniv is given by

fnonuniv = −1
4

ln 4(1 + z). (47)

As for the case of the cobweb network, we can predict that the conformal partition function for
c = −2 universality class on the fan network Zfan

Sp is given by

Zfan
Sp =

√
θ2(
√

z ξ)

η(
√

z ξ)
. (48)

It will be interesting to check whether or not the leading finite-size correction term f0(
√

z ξ)

given by Equation (45) can be represented in a form similar to Equation (3) by considering models in
different universality classes on the fan network, as well as to compute that term by the conformal
field theory method.

For subleading correction terms fp(zξ) for p = 1, 2, 3, . . . , we get

fp(z ξ) =
π2p+1ξ p+1

4p(2p)!(2p + 2)
Λ2p K0,1/2

2p+2(i
√

z ξ). (49)

The coefficients Λ2p are given in Equation (A7) and Kronecker’s double series K0,1/2
2p+2(izξ) in terms

of the elliptic theta functions are given in [26,27].
Since the fan network is the plane rectangular lattice with three free boundary conditions and one

with Dirichlet–Neumann boundary conditions, we have four corners for the fan network and one can
expect the corner free energy fcorner contribution in the exact asymptotic expansions of the free energy
Equation (43). However, it is easy to see from Equation (43) that, in the exact asymptotic expansions of
the free energy for the spanning tree on the finite fan network, the corner free energy fcorner is equal
to zero. Let us consider the corners of the fan network. Two of these corners have two edges each of
which are subject to free boundary conditions and two corners have two edges of which one is under
free and the other under Dirichlet–Neumann boundary conditions. Thus, the corner free energy fcorner

can be written as a sum of four corner contribution, namely

fcorner = 2 fcorn(0, 0) + 2 fcorn(0, β), (50)
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where fcorn(0, 0) is the contribution to the free energy from the corner with two edges with free
boundary conditions, which is given by Equation (9) with central charge c equal to c = −2, namely

fcorn(0, 0) =
1

16

and fcorn(0, β) is the contribution to the free energy from the corner with two edges one under free
and another under Dirichlet–Neumann boundary conditions, which is given by Equation (10) with
central charge c = −2 and ∆0,β = −1/8. Here, ∆0,β = −1/8 is the conformal weight of the boundary
operator inserted at that corner. Thus, fcorn(0, β) is equal to

fcorn(0, β) = ∆0,β −
c

32
= − 1

16

and the total contribution from the corners to free energy fcorner is equal to zero. Although the fan
network has four corners and each of these gives corner contributions to the free energy, the sum of
these contributions ( fcorner) is equal to zero. Thus, our results confirm both conformal theory [31,40–42]
and finite-size scaling [47] predictions.

4. Spanning Tree on Infinitely Long Strips

Finally, let us consider the case of an infinitely long strip. Conformal invariance implies that,
for an infinitely long two-dimensional (2D) strip of finite width L at criticality, the finite size scaling
behavior of the critical free energy f has the form [32,33]

f = fbulk +
2 fsurf

L
+

A
L2 + O

(
L−3

)
, (51)

where the bulk free energy density fbulk and the surface free energy fsurf are nonuniversal constants.
In contrast, A is a universal constant, but may depend on the boundary conditions. In some 2D
geometries, the values of A are known [32,33,48] to be related to the central charge (c) and the
conformal weight of the ground state ∆

A = 4πζ
(

∆− c
24

)
in cylinder geometry, (52)

A = πζ
(

∆− c
24

)
in strip geometry, (53)

where the anisotropy factor ζ is a nonuniversal constant.
Let us consider the spanning tree case on the cobweb and fan network in the case when M→ ∞

(or ξ → ∞). In that case, the cobweb becomes an infinitely long cylinder with circumference N and the
fan network becomes an infinitely long strip of width N and with free boundary condition on both
sides of the strip. The asymptotic expansion of the free energy for the cobweb and fan networks can be
obtained from Equations (34) and (43), respectively. Using the facts that

lim
ξ→∞

θ2(
√

z ξ) = lim
ξ→∞

2e−
π
√

zξ
4 = 0, (54)

lim
ξ→∞

θ4(
√

z ξ) = lim
ξ→∞

θ3(
√

z ξ) = 1, (55)

lim
ξ→∞

η(
√

z ξ) = lim
ξ→∞

e−
π
√

zξ
12 = 0, (56)

the asymptotic expansion of the free energy for the cobweb network on the infinitely long cylinder
with circumference N can be obtained from Equation (34)

f = fbulk +
π
√

z
3N2 + . . . . (57)
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Thus, by choosing L = N, the anisotropy factor ζ =
√

z, the central charge c = −2 and conformal
weight of the ground state ∆ = 0, we get full agreement with conformal field predictions for cylinder
geometry given by Equation (51).

Again, using Equations (54) and (56), the asymptotic expansion of the free energy for the fan
network on the infinitely long strip with width N and with free boundary condition on both sides of
the strip can be obtained from Equation (43)

f = fbulk +
2 f2s

N
+

π
√

z
12N2 + . . . , (58)

where f2s is given by Equation (44). Thus, by choosing L = N, the anisotropy factor ζ =
√

z, the central
charge c = −2 and conformal weight of the ground state ∆ = 0, we get full agreement with conformal
field predictions for strip geometry given by Equation (53).

Let us now consider the spanning tree case on the cobweb and fan networks in the case when
N → ∞ (or ξ → 0). In that case, both the cobweb and fan network become infinitely long strips with
width M and with free boundary condition on one side of the strip and Dirichlet–Neumann boundary
conditions on another side of the strip. The asymptotic expansion of the free energy for the cobweb
and fan networks can be obtained from Equations (34) and (43), respectively.

To obtain the asymptotic expansion of the free energy for cobweb and fan networks, we need the
behavior of the θ2(τ) - function and Dedekind’s η(τ) - function under the Jacobi transformation

τ → τ′ = −1/τ.

The result for the θ2(τ)-functions and Dedekind’s η(τ) function is given in Appendix A
of Ref. [49]:

θ2(τ
′) = (−iτ)1/2θ4(τ), (59)

η(τ′) = (−iτ)1/2η(τ). (60)

Using Equations (55), (56), (59) and (60), one can obtain the asymptotic behavior of θ2(τ
′) and

η(τ′) as τ′ → 0 (or N → ∞). Then, from Equations (34) and (43), one can obtain the asymptotic
expansion of the free energy for the cobweb and fan networks on the infinitely long strip in the
following form

f = fbulk +
2 f1s

M + 1/2
− π

24
√

z(M + 1/2)2 + . . . , (61)

where f1s is given by Equation (35). Thus, by choosing L = M + 1/2, the anisotropy factor ζ = 1/
√

z,
the central charge c = −2 and conformal weight of the ground state ∆ = −1/8, we will get full
agreement with conformal field predictions given by Equations (51) and (53).

5. Conclusions

We analyzed spanning-tree generating functions for finite-size cobweb and fan networks and
showed that each can be expressed in terms of a single, unifying partition function with twisted
boundary conditions. This reveals that the four corner free energies of the fan network cancel each
other out so that their sum matches the vanishing total value for the cobweb (which has no corners).

Thus, we have extended the applicability of the twisted-boundary-method to a broad set
of circumstances, opening up possible new approaches to efficiently investigate a multitude of
spanning-tree problems of both fundamental and practical relevance. For example, one could work
backwards and seek different models which fit to the same Zα,β and thus obey a class of “strong”
universality. To further demonstrate the power of the approach, we have used it to derive exact
finite-size corrections for the logarithm of the generating function of the spanning tree on both of these
networks. Then, based on the unified partition functions, we derived the exact asymptotic expansion of
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the logarithm of the partition function for the spanning tree on the cobweb and fan networks. We also
explain in the context of conformal field theory why the corner free energy for fan network, with its four
corners, is equal to zero. Based on our results for the leading finite-size correction term f0 for the fan
and cobweb networks, we have predicted the conformal partition functions in a c = −2 universality
class for fan and cobweb geometries. For the Ising model, we have also predicted the conformal
partition functions in the Ising (c = 1/2) universality class for cobweb geometries. In addition, finally,
we have investigated the strip geometry for both of the above-mentioned models and find an excellent
agreement with conformal field theory predictions. Thus, we have confirmed universality for spanning
trees and affirmed the robustness of the twisted-boundary-condition approach, opening new possible
conduits to future research in a long-standing field of interest for a number of disciplines.
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Appendix A. Asymptotic Expansion of and Z0, 1
2
(z,M,N )

For the convenience of the reader, in this appendix, we present the exact asymptotic expansions
of the logarithm of Z0, 1

2
(z,M,N ) given in Ref. [26].

With the help of the identity,

4 |sinh (Mω + iπβ)|2 = 4
[

sinh2Mω + sin2 πβ
]
=

M−1

∏
m=0

4
[

sinh2ω + sin2
(

π(m+β)
M

)]
,

the partition function with twisted boundary conditions Zα,β(z,M,N ) given by Equation (13) can be
transformed into the simpler form

Zα,β(z,M,N ) =
N−1

∏
n=0

2
∣∣∣sinh

[
Mωz

(
π(n+α)
N

)
+ iπβ

]∣∣∣ , (A1)

where lattice dispersion relation has been used

ωz(x) = arcsinh(
√

z sin x). (A2)

The exact asymptotic expansion of the logarithm of Z0, 1
2
(z,M,N ) in terms of the Kronecker’s

double series [26,50] can be written as

ln Z0, 1
2
(z,M,N ) =

S
π

∫ π

0
ωz(x)dx + ln

θ2(
√

zρ)

η(
√

zρ)
− 2πρ

∞

∑
p=1

(
π2ρ

S

)p Λ2p

(2p)!

K0, 1
2

2p+2(i
√

zρ)

2p + 2
, (A3)

where S =MN , ρ =M/N , η(τ) is the Dedekind - η function

η(τ) = eπiτ/12
∞

∏
n=1

(
1− e2πiτn

)
. (A4)

Dedekind’s η function satisfies the following identity:

2η(τ)3 = θ2(τ)θ3(τ)θ4(τ), (A5)
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where θ2(τ), θ3(τ), θ4(τ) are elliptic theta functions. K0, 1
2

2p (τ) is Kronecker’s double series [26,50].
The differential operators Λ2p that appear here can be expressed via coefficients z2p of the Taylor

expansion of the lattice dispersion relation ωz(x)

ωz(x) = x

(
√

z +
∞

∑
p=1

z2p

(2p)!
x2p

)
, (A6)

with z2 = −
√

z(1 + z)/3, z4 =
√

z(1 + z)(1 + 9z)/5, z6 = −
√

z(1 + z)(1 + 90z + 225z2)/7, etc.

Λ2 = z2,

Λ4 = z4 + 3z2
2

∂

∂z
,

Λ6 = z6 + 15z4z2
∂

∂z
+ 15z3

2
∂2

∂z2 , (A7)

...

Λp =
p

∑
r=1

∑
(

zp1

p1!

)k1

. . .
(

zpr

pr!

)kr p!
k1! . . . kr!

∂k

∂zk . (A8)

Here, summation is over all positive numbers {k1 . . . kr} and different positive numbers
{p1, . . . , pr} such that p1k1 + . . . + prkr = p and k = k1 + . . . + kr − 1.

The
∫ π

0 ωz(x)dx is given by

∫ π

0
ωz(x)dx =

z1/2 Φ(−z, 2, 1
2 )

2
, (A9)

where Φ(x, s, α) is the Lerch transcendent defined as

Φ(x, s, α) =
∞

∑
n=0

(α + n)−sxn. (A10)

In particular, for the isotropic spanning tree (z = 1), the Lerch transcendent is now Φ(−1, 2, 1/2) =
4G, where G is the Catalan constant given by

G =
∞

∑
n=0

(−1)n

(2n + 1)2 = 0.915965594 . . . . (A11)

Kronecker’s double series K0, 1
2

2p (τ) can all be expressed in terms of the elliptic θ-functions only [26].
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