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Abstract: This paper introduces pragmatic hypotheses and relates this concept to the spiral of
scientific evolution. Previous works determined a characterization of logically consistent statistical
hypothesis tests and showed that the modal operators obtained from this test can be represented in the
hexagon of oppositions. However, despite the importance of precise hypothesis in science, they cannot
be accepted by logically consistent tests. Here, we show that this dilemma can be overcome by the use
of pragmatic versions of precise hypotheses. These pragmatic versions allow a level of imprecision in
the hypothesis that is small relative to other experimental conditions. The introduction of pragmatic
hypotheses allows the evolution of scientific theories based on statistical hypothesis testing to be
interpreted using the narratological structure of hexagonal spirals, as defined by Pierre Gallais.
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1. Introduction

Standard hypothesis tests can lead to immediate logical incoherence, which makes their
conclusions hard to interpret. This incoherence occurs because such tests have only two possible
outcomes. Indeed, Izbicki and Esteves [1] shows that there exists no two-valued test that satisfies
desirable statistical properties and is also logically coherent.

In order to overcome such an impossibility result, Esteves et al. [2] propose agnostic hypothesis
tests, which have three possible outputs: (A) accept the hypothesis, say H, (E) reject H, or (Y) remain
agnostic about H. These tests can be made logically coherent while preserving desirable statistical
properties. For instance, both conditions are satisfied by the Generalized Full Bayesian Significance
Test (GFBST). Furthermore, Stern et al. [3] show that the GFBST’s modal operators and their respective
negations can be represented by vertices of the hexagon of oppositions [4–9], which is depicted
in Figure 1.

Figure 1. Hexagons of opposition for statistical modalities.
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This paper complements the above static representation with an analysis of the GFBST in the
dynamic evolution of scientific theories. The analysis is based on the metaphor of evolutive hexagonal
spirals [10,11], in which the logical modalities associated to scientific theories change over time, as in
Figure 2. Our key point in this paradigm is reconciling two apparently contradictory facts. On the one
hand, precise or sharp hypotheses, that is, hypotheses that have a priori zero probability are central in
scientific theories [12,13]. On the other hand, the GFBST never accepts (A) precise hypotheses. These
observations lead to the apparent paradox that, if the GFBST were used to test scientific theories, then
the acceptance step in the spiral of scientific theories would be forfeited.

We overcome this paradox by proposing the concept of a “pragmatic hypothesis” associated
to a precise hypothesis. Although precise hypotheses are commonly obtained from mathematical
theories used in areas of science and technology [12,13], the associated pragmatic hypothesis is an
imprecise hypothesis that is sufficiently good from the practical purpose of an end-user of the theories.
For instance, Newtonian theory assumes a gravitational force of magnitude given by the equation
F = G m1 m2 d−2, where the gravitational constant G has a precise value. However, the current
Committee on Data for Science and Technology (CODATA) value for the gravitational constant is
G = 6.67408(31) × 10−11m3 kg−1 s−2, which includes a standard deviation for the last significant
digits, 408± 31. Thus, it may be reasonable for a given end-user to assume that the theoretical form of
the last equation is exact, but that, pragmatically, the constant G can only be known up to a chosen
precision. As a result, one might wish to test an imprecise hypothesis associated to the scientific
hypothesis of interest [14,15].

This article advocates for the conceptual distinction between a precise scientific theory and an
associated pragmatic hypotheses. The alternate use of precise and pragmatic versions of corresponding
statistical hypotheses enables the GFBST to (pragmatically) accept scientific hypotheses. Moreover,
this alternate use allows the GFBST to track the evolution of scientific theories, as interpreted in the
context of Gallais’ hexagonal spirals.

Our main goal in this paper is to formalize testing procedures for a theory taking into consideration
the level of precision that is appropriate for a given end-user. To handle this problem, we consider
the end-user’s predictions about an experiment of his interest. The variation in these predictions
can be explained by a combination of the level of imprecision in the theory and by properties of
the end-user’s experiment. For instance, the latter source of variation is influenced by properties of
the equipment, including the precision, accuracy, and resolution of measuring devices [16,17], and
also error bounds for fundamental constants and calibration factors [18–26]. We propose to choose a
pragmatic hypothesis in such a way that the imprecision in the end-user’s predictions is mostly due to
his experimental conditions and not due to the level of imprecision in the theory that he uses.

In order to develop this argument, Section 2 first adapts Gallais’s metaphor of hexagonal spirals
to the evolution of science. Next, Section 3 proposes three methods of decomposing the variability
in an end-user’s predictions into the level of precision of the theory he uses and his experimental
conditions. Sections 3.1 and 3.2 use these decompositions in order to build pragmatic hypothesis.
They build pragmatic hypotheses for simple hypotheses and then prove that there exists a single
way of extending this construction to composite hypotheses while preserving logical coherence in
simultaneous hypothesis testing. This methodology is illustrated in Section 4. All proofs are found in
Appendix A.

2. Gallais’ Hexagonal Spirals and the Evolution of Science

Following a well-established tradition in structural semantics and narratology [27,28], Gallais and
Pollina [10] propose that many classical medieval tales follow the same organizational pattern. More
precisely, these narratives exhibit an underlying “intellectual structure” and are organized according
to an underlying archetypal format or prototypical pattern. This pattern includes both static and a
dynamical aspects. From a static perspective, the logical structure of the narrative is such that each
arch is represented by a vertex of the “hexagon of oppositions” [4]. The static hexagon of oppositions



Entropy 2019, 21, 883 3 of 17

is depicted in Figure 1 and represents in each vertex a modal operator among necessity (�), possibility
(♦), contingency (∆), and their negations (¬). These modal operators are structured according to three
axes of opposition, (=== ); a triangle of contrariety, (−−− ); another triangle of sub-contrariety,
(· · · ); and several edges of subalteration (−→ ). From a dynamical perspective, the temporal evolution
of the narrative follows a spiral (Figure 2) that unwinds (se déroule) around concentric and expanding
hexagons of opposition [10,11].

Figure 2. Gallais’ evolutionary spiral.

Because the evolution of science can also be conceived as following a spiral pattern [29], its
analysis can benefit from the structure in the works by the authors of [10,11]. From a static perspective,
the logical modalities induced by agnostic hypothesis tests [3] can be represented in the hexagon of
oppositions. From a dynamic perspective, scientific theories evolve as a spiral which unwinds around
the following states:

• A1- Extant thesis: This vertex represents a standing paradigm, an accepted theory using well-known
formalisms and familiar concepts, relying on accredited experimental means and methods, etc.
In fact, the concepts of a current paradigm may become so familiar and look so natural that they
become part of a reified ontology. That is, there is a perceived correspondence between concepts of
the theory and “dinge-an-sich” (things-in-themselves) as seen in nature [29,30].

• U1- Analysis: This vertex represents the moment when some hypotheses of the standing theory are
put in question. At this moment, possible alternatives to the standing hypotheses may still be only
vaguely defined.
• E1- Antithesis: This vertex represents the moment when some laws of the standing theory have to

be rejected. Such a rejection of old laws may put in question the entire world-view of the current
paradigm, opening the way for revolutionary ideas, as described in the next vertex.
• O2- Apothesis/ Prosthesis: This vertex is the locus of revolutionary freedom. Alternative models

are considered, and specific (precise) forms investigated. There is intellectual freedom to set aside
and dispose of (apothesis) old preconceptions, prejudices and stereotypes, and also to explore and
investigate new paths, to put together (prosthesis) and try out new concepts and ideas.

• Y2- Synthesis: It is at this vertex that new laws are formulated; this is the point of Eureka moment(s).
A selection of old and and new concepts seem to click into place, fitting together in the form of new
laws, laws that are able to explain new phenomena and incorporate objects of an expanded reality.

• I2- Enthesis: At this vertex new laws, concepts and methods must enter and be integrated into
a consistent and coherent system. At this stage many tasks are performed in order to combine
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novel and traditional pieces or to accommodate original and conventional components into an
well-integrated framework. Finally, new experimental means and methods are developed and
perfected, allowing the new laws to be corroborated.
• A2- New Thesis: At this vertex, the new theory is accepted as the standard paradigm that succeeds

the preceding one (A1). Acceptance occurs after careful determination of fundamental constants
and calibration factors (including their known precision), metrological and instrumentational error
bounds, etc. At later stages of maturity, equivalent theoretical frameworks may be developed
using alternative formalisms and ontologies. For example, analytical mechanics offers variational
alternatives that are (almost) equivalent to the classical formulation of Newtonian mechanics [31].
Usually, these alternative worldviews reinforce the trust and confidence on the underlying laws.
Nevertheless, the existence of such alternative perspectives may also foster exploratory efforts and
investigative works in the next cycle in evolution.

Table 1 applies this spiral structure to the evolution of the theories of orbital astronomy and
chemical affinity. The evolution of orbital astronomy has been widely studied [32]. The evolution of
chemical affinity is presented in greater detail in Stern [29], Stern and Nakano [33].

Table 1. Evolution of orbital astronomy and chemical affinity.

Vertex Orbital Astronomy Chemical Affinity
I1- Enthesis/ Ptolemaic/ Copernican Geoffroy affinity table and
A1- Thesis cycles and epicycles highest rank substitution
U1- Analysis Circular or oval orbits? Ordinal or numeric affinity?
E1- Antithesis Non-circular orbits Non-ordinal affinity
O2- Apothesis Elliptic planetary orbits, Integer affinity values,
/Prosthesis focal centering of sun for arithmetic recombination

Y2- Synthesis Kepler laws! Morveau rules and tables!
I2- Enthesis Vortex physics theories, Affinity + stoichiometry
A2- Thesis Keplerian astronomy substitution reactions
U2- Analysis Tangential or radial forces? Total or partial reaction?
E2- Antithesis Non-tangential forces Non-total substitutions
O3- Apothesis Radial attraction forces, Reversible reactions,
/Prosthesis inverse square of distance equilibrium conditions

Y3- Synthesis Newton laws! Mass-Action kinetics!
I3- Enthesis/ Newtonian mechanics & Thermodynamic theories
A3- Thesis variational equivalents for reaction networks

The above spiral structure highlights that a statistical methodology should be able to obtain each
of the six modalities in the hexagon of oppositions. Before an acceptance vertex (A) in the hexagon
is reached by the spiral of scientific evolution, theoretically precise or sharp hypotheses must be
formulated. However, a logically coherent hypothesis test, such as the GFBST, can choose solely
between rejecting or remaining agnostic (i.e., corroborating) such sharp hypotheses. Once the evolving
theory becomes (part of) a well-established paradigm, the GFBST can be used with the goal of accepting
non-sharp hypotheses in the context of the same paradigm, a context that includes fundamental
constants and calibration factors (and their respective uncertainties), metrological error bounds,
specified accuracies of scientific intrumentation, etc. The non-sharp versions of sharp hypotheses used
in such tests are called pragmatic, and their formulation is developed in the following sections.

3. Pragmatic Hypotheses

In order to derive pragmatic hypotheses from precise ones, it is necessary to define an idealized
future experiment. Let θ be an unknown parameter of interest, which is used to express scientific
hypotheses and that takes values in the parameter space, Θ. A scientific hypothesis takes the form
H0 : θ ∈ Θ0, where Θ0 ⊂ Θ. Whenever there is no ambiguity, H0 and Θ0 are used interchangeably.
Also, the determination of θ is useful for predicting an idealized future experiment, Z, which takes
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values in Z . The uncertainty about Z depends on θ by means of Pθ∗ , the probability measure over Z
when it is known that θ = θ∗, θ∗ ∈ Θ.

Often, it is sufficient for an end-user to determine a pragmatic hypothesis, that is, that the
parameter lies in a set of plausible values, which is larger than the null hypothesis. This set can be
chosen in such a way that the variation over predictions about a future experiment is mostly due to
experimental conditions rather than to the imprecision in the value of the parameter. This section
formally develops a methodology for determining these pragmatic hypotheses.

In order to compare two parameter values, we use a “predictive dissimilarity”, dZ, which is a
function, dZ : Θ×Θ→ R+, such that dZ(θ0, θ∗) measures how much the predictions made for Z based
on θ∗ diverge from the ones made based on θ0. We define and compare three possible choices for such
a dissimilarity.

Definition 1. The Kullback–Leibler predictive dissimilarity, KLZ, is

KLZ(θ0, θ∗) = KL(Pθ∗ ,Pθ0) =
∫
Z

log
(

dPθ∗

dPθ0

)
dPθ∗ ,

that is, KLZ(θ0, θ∗) is the relative entropy between Pθ∗ and Pθ0 .

Example 1 (Gaussian with known variance.). Let Z = (Z1 . . . , Zd) ∼ N(θ, Σ0) be a random vector with a
multivariate Gaussian distribution:

dPθ(z)
dz

= ‖2πΣ0‖−0.5 exp
(
−0.5(z− θ)tΣ−1

0 d(z− θ)
)

KLZ(θ0, θ∗) =
∫
Rd

log
(

dPθ∗(z)
dPθ0(z)

)
dPθ∗(z) = 0.5(θ0 − θ∗)tΣ−1

0 (θ0 − θ∗),

When d = 1 and Σ0 = σ2
0 ,

KLz(θ0, θ∗) =
(θ0 − θ∗)2

2σ2
0

(1)

The KL dissimilarity evaluates the distance between the predictive probability distributions for
the future experiment under two parameter values, θ0 and θ∗. Although the KL dissimilarity is general,
it can be challenging to interpret. In particular, it can be hard to establish the quality of the predictions
for Z based on θ∗ when Z is actually generated from θ0 and KLZ(θ0, θ∗) ≤ ε. A more interpretable
dissimilarity is obtained by taking dZ(θ0, θ∗) to measure how far are the best predictions for Z based
on θ∗ and θ0. In this case, if one makes a prediction for Z based on θ∗, z∗, and Z was actually generated
using θ0, then dZ(θ0, θ∗) ≤ ε guarantees that z∗ will be at most ε apart from the best possible prediction.
Such a dissimilarity is discussed in the following definition.

Definition 2 (Best prediction dissimilarity—BP.). Let Ẑ : Θ→ Z be such that Ẑ(θ0) is the best prediction
for Z given that θ = θ0. For example, one can take

Ẑ(θ0) = arg min
z∈Z

δZ,θ0(z),

where δZ,θ0 : Z → R is such that δZ,θ0(z) measures how bad z predicts Z when θ = θ0. The “best prediction
dissimilarity”, BPZ(θ0, θ∗), measures how badly Ẑ(θ∗) predicts Z relatively to Ẑ(θ0) when θ = θ0. Formally,

BPZ(θ0, θ∗) = g

(
δZ,θ0(Ẑ(θ

∗))− δZ,θ0(Ẑ(θ0))

δZ,θ0(Ẑ(θ0))

)
,
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where g : R −→ R is a motononic function. The choice of g in a particular setting aims at improving the
interpretation of the best prediction dissimilarity criterion.

Example 2 (BP under quadratic form.). Let Z = Rd, µZ,θ = E[Z|θ], ΣZ,θ = V[Z|θ] and S be a positive
definite matrix. Define the quadratic form induced by S to be ‖z‖2

S = zTSz and

δZ,θ0(z) = E
[
‖Z− z‖2

S|θ = θ0

]
The optimal prediction under θ∗ is Ẑ(θ∗) = µZ,θ∗ . It follows that

δZ,θ0(Ẑ(θ
∗)) = E

[
‖Z− µZ,θ∗‖2

S|θ = θ0

]
= ‖µZ,θ0 − µZ,θ∗‖2

S + E
[
‖Z− µZ,θ0‖

2
S|θ = θ0

]
In particular, δZ,θ0(Ẑ(θ0)) = E

[
‖Z− µZ,θ0‖2

S|θ = θ0
]
. Therefore,

BPZ(θ0, θ∗) = g

(
‖µZ,θ0 − µZ,θ∗‖2

S
E
[
‖Z− µZ,θ0‖2

S|θ = θ0
]) (2)

In this example, BPZ can be put in the same scale as Z by taking g(x) =
√

x. Also, two choices of S are of
particular interest. When S = V[Z|θ = θ0]

−1, Equation (2) simplifies to

BPZ(θ0, θ∗) = g
(

d−1‖µZ,θ0 − µZ,θ∗‖2
Σ−1

Z,θ0

)
(3)

Similarly, when S is the identity matrix, Equation (2) simplifies to

BPZ(θ0, θ∗) = g

(
‖E[Z|θ = θ0]− E[Z|θ = θ∗]‖2

2
tr(V[Z|θ = θ0])

)
(4)

Equation (4) admits an intuitive interpretation. The larger the value of tr(V[Z|θ = θ0]), the more Z is dispersed
and the harder it is to predict its value. Also, ‖E[Z|θ = θ0]− E[Z|θ = θ∗]‖2

2 measures how far apart are the
best prediction for Z under θ = θ0 and θ = θ∗. That is, BPZ(θ0, θ∗) captures that, if one predicts Z assuming
that θ = θ∗ when it is actually θ = θ0, then the error with respect to the best prediction is increased as a function
of the distance between the predictions over the dispersion of Z.

Example 3 (Gaussian with known variance.). Consider Example 1 and let δZ,θ0(z) be as in Example 2. It
follows from Equation (4) that when S is the identity matrix,

BPZ(θ0, θ∗) = g

(
‖θ0 − θ∗‖2

2
tr(Σ0)

)
(5)

Similarly, it follows from Equation (3) that when S = Σ−1
0 ,

BPZ(θ0, θ∗) = g
(

d−1(θ0 − θ∗)tΣ−1
0 (θ0 − θ∗)

)
(6)

Conclude from Equation (6) that, if S = Σ−1
0 and g(x) = x, then BPZ(θ0, θ∗) = 2d−1KLZ(θ0, θ∗). Also, when

d = 1, Σ0 = σ2
0 and g(x) =

√
x, both Equation (5) and Equation (6) simplify to

BPZ(θ0, θ∗) = σ−1
0 |θ0 − θ∗| (7)
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In some situations, Z is the average of m independent observations distributed as N(θ, Σ0). In this case,

Z ∼ N(θ, m−1Σ0). It follows from Equation (5) that BPZ(θ0, θ∗) = g
(

m‖θ0−θ∗‖2
2

tr(Σ0)

)
when S is the identity,

and BPZ(θ0, θ∗) = g
(

md−1(θ0 − θ∗)tΣ−1
0 (θ0 − θ∗)

)
when S = Σ−1

0 .

Although BPZ is more interpretable then KLZ, it also relies on more tuning variables, such as δ, Ẑ,
and g. A balance between these features is obtained by a third predictive dissimilarity, which evaluates
how easy it is to recover the value of θ between θ0 or θ∗ based on Z.

Definition 3 (Classification distance—CD.). Let θ̂θ0,θ∗ : Z → Θ be such that

θ̂θ0,θ∗(z) = arg max
θ∈{θ0,θ∗}

fZ(z|θ)

θ̂θ0,θ∗ assigns to each possible outcome of the future experiment z, in which the values of θ, θ0, or θ∗ make the
experimental result more likely. The classification distance between θ0, θ∗, and CD(θ0, θ∗) is defined as

CD(θ0, θ∗) = 0.5P
(
θ̂θ0,θ∗(Z) = θ0|θ0

)
+ 0.5P

(
θ̂θ0,θ∗(Z) = θ∗|θ∗

)
− 0.5

CD(θ0, θ∗) + 0.5 is the best Bayes utility in an hypothesis test of θ0 against θ∗ using a uniform prior for θ and
the 0/1 utility [15]. By subtracting 0.5 from this quantity, CD(θ0, θ∗) varies between 0 and 0.5 and is a distance.
Also,

CD(θ0, θ∗) = 0.5TV(Pθ0 ,Pθ∗) = 0.25‖Pθ0 − Pθ∗‖1,

where TV(Pθ0 ,Pθ∗) = supA |Pθ0(A) − Pθ∗(A)| and ‖Pθ0 − Pθ∗‖1 =
∫
Z |Pθ0(z)− Pθ∗(z)|dz is the

L1-distance between probability measures.

Example 4 (Gaussian with known variance.). Consider Examples 1 and 3, when d = 1, Σ0 = σ2
0 , obtain

CDZ(θ0, θ∗) = Φ
(
|θ0 − θ∗|

2σ0

)
− 1

2
(8)

Note that, in this case, CD would be the same as BP if, instead of taking g(x) =
√

x, one chose g(x) =

Φ(0.5
√

x)− 0.5.

Although analytical expressions for CD are generally not available, it is possible to approximate it
via numerical integration methods.

The choice between predictive dissimilarity functions depends on the type of guarantee the
end-user wishes to obtain. In particular, BP, KL, and CD is not an exhaustive list of dissimilarities.
However, some of their properties can be useful in obtaining a choice. For instance, although BP yields
a metric on the parameter space, KL and CD are dissimilarities between probability functions. That
is, although BP will generate pragmatic hypothesis that have parameter values numerically close to
a given θ0, KL and CD will yield pragmatic hypothesis that have parameter values lead to similar
prediction about Z. Also, although KL evaluates similarity between predictions from an information
theoretic perspective, CD evaluates them from a perspective of hypothesis tests.

3.1. Singleton Hypotheses

We start by defining the pragmatic hypothesis associated to a singleton hypothesis. A singleton
hypothesis is one in which the parameter assumes a single value, such as H0 : θ = θ0. In this case, the
pragmatic hypothesis associated to H0 is the set of points whose dissimilarity to θ0 is at most ε, as
formalized below.
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Definition 4 (Pragmatic hypothesis for a singleton.). Let H0 : θ = θ0, dZ be a predictive dissimilarity
function and ε > 0. The pragmatic hypothesis for H0, Pg({θ0}, dZ, ε), is

Pg({θ0}, dZ, ε) = {θ∗ ∈ Θ : dZ(θ0, θ∗) ≤ ε}

Note that for ε1 < ε2, Pg({θ0}, dZ, ε1) ⊆ Pg({θ0}, dZ, ε2).

Example 5 (Gaussian with known variance). Consider Examples 1 and 3 when d = 1, Σ0 = σ2
0 and

g(x) =
√

x. It follows from Equations (1), (7) and (8) that

Pg({θ0}, BPZ, ε) = [θ0 − εσ0, θ0 + εσ0]

Pg({θ0}, KLZ, ε) =
[
θ0 −

√
2εσ0, θ0 +

√
2εσ0

]
Pg({θ0}, CDZ, ε) =

[
θ0 − 2Φ−1(0.5 + ε)σ0, θ0 + 2Φ−1(0.5 + ε)σ0

]
Note that the size of each of the pragmatic hypothesis is proportional to σ0. This occurs because each

predictive dissimilarity functions makes the prediction error due to the unknown parameter value small with
respect to that due to the data variability, σ2

0 .

3.2. Composite Hypotheses

Next, we consider pragmatic hypotheses for general hypotheses H0 : θ ∈ Θ0, where Θ0 ⊂ Θ.

Definition 5. For each hypothesis Θ0 ⊆ Θ, predictive dissimilarity dZ and ε > 0, Pg(Θ0, dZ, ε) is the
pragmatic hypothesis associated to Θ0 induced by dZ and ε. Whenever dZ and ε are clear or not relevant to the
result, we write Pg(Θ0) instead of Pg(Θ0, dZ, ε).

In order to construct these pragmatic hypotheses, we use logically coherent agnostic hypothesis
tests. For each hypothesis, an agnostic hypothesis test can either reject it (1), accept it (0), or remain
agnostic (1/2) [34]. Esteves et al. [2] shows that an agnostic hypothesis test is logically coherent if and
only if it is based on a region estimator. Such tests are presented in Definition 7 and illustrated in
Figure 3.

R(x)

H0Hc
0

φR(x) = 0

R(x)

H0

Hc
0

φR(x) = 1

R(x)
H0

Hc
0

φR(x) = 1/2

Figure 3. φ(x) is an agnostic test based on the region estimator R(x) for testing H0.

Definition 6. Let X denote the sample space of the data used to test a hypothesis. A region estimator is a
function, R : X −→ P(Θ), where P(Θ) is the power set of Θ.

Definition 7 (Agnostic test based on a region estimator.). The agnostic test based on the region estimator R
for testing H0, φR

H0
, such that

φR
H0
(x) =


0 , if R(x) ⊆ H0

1 , if R(x) ⊆ Hc
0

1
2 , otherwise.
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Besides the logical conditions on the hypothesis test, one might also impose logical restraints
on how pragmatic hypotheses are constructed. For instance, let A and B be two hypothesis, such
that B logically entails A, that is, B ⊆ A. If a logically coherent test accepts B, then it also accepts A.
This property is called monotonocity [1,35–37]. One might also impose that Pg, such that if a logically
coherent hypothesis test accepts Pg(B), then it should also accept Pg(A). Similarly, let (Ai)i∈I be a
collection of hypothesis which cover A, that is, A ⊆ ∪i∈I Ai. If a logically coherent hypothesis test
rejects every Ai, then it rejects A. This property is called union consonance. One might also impose
that Pg is such that, if a logically coherent hypothesis test rejects Pg(Ai) for every i, then it should
also reject Pg(A). The above conditions define the logical coherence of a procedure for constructing
pragmatic hypotheses.

Definition 8. A procedure for constructing pragmatic hypothesis, Pg, is logically coherent if, for every logically
coherent hypothesis test φ and sample point x:

1. If φPg(B)(x) = 0 for some B ⊆ A, then φPg(A)(x) = 0.
2. If φPg(Ai)

(x) = 1 for every i ∈ I and A ⊆ ∪i∈I Ai, then φPg(A)(x) = 1.

In order to motivate the above definition, consider that the frequencies of AA, AB, and BB in
a given population are θ1, θ2, and θ3, respectively. Note that B := {0.25, 0.5, 0.25} is a subset of
A = {(p2, 2p(1− p), (1− p)2) : p ∈ [0, 1]}, which denotes the Hardy–Weinberg equilibrium. That is,
if the frequencies AA, AB, and BB are, respectively, 0.25, 0.5, and 0.25, then the population follows the
Hardy–Weinberg equilibrium. As a result, if one pragmatically accepts that the population satisfies the
specified proportions, then one might also wish to pragmatically accept that the population follows the
Hardy–Weinberg. Similarly, if one pragmatically rejects for every p ∈ [0, 1] that the frequencies of AA,
AB, and BB are, respectively, p2, 2p(1− p), and (1− p)2, then one might also wish to pragmatically
reject that the population follows the Hardy–Weinberg equilibrium. These conditions are assured in
Definition 8.

In a logically coherent procedure for constructing pragmatic hypotheses, the pragmatic hypothesis
associated to a composite hypothesis is completely determined by the pragmatic hypotheses associated
to simple hypotheses. This result is presented in Theorem 1.

Theorem 1. A procedure for constructing pragmatic hypothesis, Pg, is logically coherent if and only if, for
every hypothesis, Θ0, Pg(Θ0) =

⋃
θ∈Θ0

Pg({θ}).

Using Theorem 1, it is possible to determine a logically coherent procedure for constructing
pragmatic hypotheses by determining only the pragmatic hypothesis associated to simple hypothesis,
such as in Section 3.1. Theorem 1 is illustrated in Section 4. One can also obtain the following general
relation between predictive dissimilarities.

Lemma 1. Pg(Θ0, KLZ, 8ε2) ⊆ Pg(Θ0, CDZ, ε).

Besides being logically coherent, it is often desirable in statistics [38,39] and in science [12,13] for
a procedure to be invariant to reparametrization, so as to ensure that the procedure reaches the same
conclusions whatever the coordinate system is used to specify both the sample and the parameter
spaces. For instance, the pragmatic hypothesis that is obtained using the International metric system
should be compatible to the one that is obtained using the English metric system. Invariance to
reparametrization is formally presented in Definition 10.

Definition 9.
(
P∗θ∗
)

θ∗∈Θ∗ is a reparameterization of (Pθ)θ∈Θ if there exists a bijective function, f : Θ→ Θ∗,
such that for every θ ∈ Θ, Pθ = P∗f (θ).
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Definition 10. Let
(
P∗θ∗
)

θ∗∈Θ∗ be a reparametrization of (Pθ)θ∈Θ by a bijective function, f : Θ → Θ∗.
Also, let dZ and d∗Z be predictive dissimilarity functions. The functions dZ and d∗Z are invariant to the
reparametrization if for every logically coherent procedure for constructing pragmatic hypotheses, Pg,

f [Pg(Θ0, dZ, ε)] = Pg( f [Θ0], d∗Z, ε),

Definition 10 states that, if Θ0 is an hypothesis and invariance to reparametrization holds, then
the pragmatic hypothesis obtained in a reparametrization of Θ0, say Pg( f [Θ0]), is the same as the
transformed pragmatic hypothesis associated to Θ0, f [Pg(Θ0)]. Theorem 2 presents a sufficient
condition for obtaining invariance to reparametrization.

Theorem 2. Let
(
P∗θ∗
)

θ∗∈Θ∗ be a reparameterization of (Pθ)θ∈Θ given by a bijective function, f . If dZ and d∗Z
satisfy dZ(θ0, θ) = d∗Z( f (θ0), f (θ)), then dZ and d∗Z are invariant to this reparametrization.

Corollary 1. If dZ and d∗Z are the same choice between KL, BP, or CD, then dZ and d∗Z are invariant to every
reparametrization.

The procedures for constructing pragmatic hypotheses induced by KL and CD also satisfy an
additional property given by Theorem 3.

Theorem 3. Let Zm = (Z1, . . . , Zm), where Zi’s are i.i.d. Fθ and (Fθ)θ∈Θ is identifiable [40,41]. Also, let
KLm and CDm be the dissimilarities calculated using Zm. If Pg is logically coherent, then, for every Θ0 ⊆ Θ
and ε > 0,

(i) (Pg(Θ0, KLm, ε))m≥1 and (Pg(Θ0, CDm, ε))m≥1 are non-increasing sequences of sets
(ii) Pg(Θ0, KLm, ε)

m→∞−−−→ Θ0 and Pg(Θ0, CDm, ε)
m→∞−−−→ Θ0.

Theorem 3 states that the sequence of pragmatic hypotheses for Θ0 induced by dZm is
non-increasing if the dissimilarity is evaluated by either KL or CD. The greater the number of
observable quantities Zm, the easier it is to distinguish two parameter values θ0 and θ∗, and therefore
the smaller the amount of parameters that are taken as close to θ0. Also, as the sample size goes
to infinity, the pragmatic hypothesis associated to Θ0 converges to to Θ0. In other words, for each
θ0 ∈ Θ0, no other parameter value can predict infinitely many observable quantities with a precision
sufficiently close to that of θ0.

4. Applications

In the following, pragmatic hypotheses for standard statistical problems are derived.
Coscrato et al. [42] provide additional examples and methods for obtaining pragmatic hypotheses.

Example 6 (Gaussian with unknown variance.). Consider the setting from Example 5, but with σ2 unknown
and 0 < σ2 ≤ M2. In this case, the parameter is θ = (µ, σ2). Consider the composite hypothesis H0 : {µ0} ×
(0, M2], which is often written as H0 : µ = µ0. In this case, let θ0 = (µ0, σ2

0 ) and Θ0 = {µ0} × (0, M2].
Proceeding as in Example 5, it follows that

Pg({θ0}, BPZ, ε) = [µ0 − εσ0, µ0 + εσ0]× (0, M2]

Pg(Θ0, BPZ, ε) = [µ0 − εM, µ0 + εM]× (0, M2] Theorem 1

The rectangular shape of these pragmatic hypotheses seems to be unreasonable, as, for instance, whether a point
(µ, σ2) is close to (µ0, σ2

0 ) does not depend on σ2
0 . This is a consequence of the choice of δ in Example 5.

Figure 4 presents the pragmatic hypotheses for H0 : µ = 0, σ2 = 1 and H0 : µ = 0 when ε = 0.1
and M2 = 2, and using the KL and CD dissimilarities. Contrary to BP, the hypotheses obtained from these
dissimilarities do not have a rectangular shape. In particular, the triangular shape of the pragmatic hypotheses
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for H0 : µ = 0 is such that the closer σ2 is to 0, the smaller the range of values for µ that are included in the
pragmatic hypothesis. This behavior might be desirable, as when σ2 is small, there is little uncertainty about the
value of Z, and consequently a narrow interval of values of µ can predict Z with precision ε.

Figure 4. Pragmatic hypotheses in Example 6 for H0 : µ = 0 with KL (upper), CD (lower), ε = 0.1, and
M2 = 2. H0 is represented by a red line in all figures.

Example 7 (Hardy–Weinberg equilibrium). Let Z ∼ Multinomial(m, θ), where θ = (θ1, θ2, θ3), θi ≥ 0,
and ∑3

i=1 θi = 1. The Hardy–Weinberg (HW) hypothesis [43], H0, which is depicted in the red curve in
Figure 5 satisfies

H0 : θ ∈ Θ0, Θ0 =
{(

p2, 2p(1− p), (1− p)2
)

: 0 ≤ p ≤ 1
}

If θ
p
0 = (p2, 2p(1− p), (1− p)2), δZ(z) = E[‖Z − z‖2

2|θ = θ
p
0 ] and g(x) =

√
x, then it follows from

Example 2 that

BPZ(θ
p
0 , θ∗) =

(
m× (θ1 − p2)2 + (θ2 − 2p(1− p))2 + (θ3 − (1− p)2)2

p2(1− p2) + 2p(1− p)(1− 2p(1− p)) + (1− p)2(1− (1− p)2)

)0.5

The pragmatic hypotheses that are obtained using KL, BP, and CD for the HW hypothesis are depicted in
Figure 5. The choice between BP or KL and CD has a large impact over the shape of the pragmatic hypotheses.
Although, for BP, the width of the pragmatic hypothesis is approximately uniform along the HW curve, the width
of the pragmatic hypotheses obtained using KL and CD is smaller towards the edges of the HW curve. This
behavior could be expected, as towards the edges of the HW curve, Z has the smallest variability. The figure also
depicts the challenge in calibrating KL. Although the pragmatic hypotheses for BP and CD have similar sizes
when using ε = 0.1, this result was obtained for KL while using ε = 0.01.
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Figure 5. Pragmatic hypotheses obtained for the HW equilibrium, depicted in red, using m = 20,
ε = 0.1 for BP and CD and ε = 0.01 for KL. The blue regions indicate the pragmatic hypothesis
for HW and p = 1

3 (top) and for HW (bottom). The lower, middle, and right panels were obtained,
respectively, with BP, KL, and CD. The green regions in the right panels represents 80% HPD regions
for the genotype distribution of each of the eight groups collected by Brentani et al. [44] and two
simulated datasets.

The pragmatic hypotheses in Figure 5 are further tested using data from Brentani et al. [44], which is
presented in Table 2. This study had the goal of verifying association between the APOE-ε4 gene and Alzheimer
disease. The lower panels of Figure 5 present the 80% HPD regions for the distribution of this gene in each of the
eight groups observed in the study. Additionally, they present two simulated datasets, 9 and 10. Groups 9 and
10 were generated by populations that were, respectively, not under and under the HW equilibrium. Group 9
and 10 fall, respectively, outside and inside of the pragmatic hypothesis.

Table 2. Genotype counts for the eight groups in Brentani et al. [44]. Also, the decision of the GFBST
agnostic hypothesis test [2] for testing in each group the pragmatic Hardy–Weinberg equilibrium
hypothesis with m = 20. The decisions are the same for KL, BP, and CD.

AA AD DD Decision
1 4 18 94 Agnostic
2 6 53 74 Accept
3 57 118 100 Agnostic
4 58 97 48 Agnostic
5 120 361 194 Agnostic
6 206 309 142 Accept
7 110 148 44 Accept
8 34 22 12 Agnostic
9 198 282 520 Reject

10 641 314 45 Accept

Example 8 (Bioequivalence). Assume that Z = (X, Y) ∼ N((µ1, µ2), σ2I2), with σ known. We derive the
pragmatic hypothesis for H0 : µ1 = µ2, that is, for {(µ1, µ2) ∈ R2 : µ1 = µ2}. Such a test might be used in
a bioequivalence study, where X and Y are the concentrations of an active ingredient in a generic (test) drug
medication and in the brand name (reference) medication [45], respectively. As H0 is composite, it helps to derive
the pragmatic hypothesis of its constituents.
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In order to do so, let θ0 = (µ0, µ0), µ0 ∈ R, θ∗ = (µ∗1 , µ∗2), and Hθ0 : θ = θ0. If δZ,θ∗(z) =

E
[
(X− z1)

2 + (Y− z2)
2|θ = θ∗

]
and g(x) =

√
x, then

BPZ(θ0, θ∗) =

√
(µ∗1 − µ0)2 + (µ∗2 − µ0)2

2σ2

Hence, Pg({θ0}, BPZ, ε) =
{
(µ∗1 , µ∗2) : (µ∗1 − µ0)

2 + (µ∗2 − µ0)
2 ≤ 2ε2σ2} , which is a circle with center

(µ0, µ0) and radius
√

2εσ, as depicted on the left panel of Figure 6. In this case, the pragmatic hypothesis is the
Tier 1 Equivalence Test hypothesis suggested by the US Food and Drug Administration [45]. The pragmatic
hypothesis for H0 : µ1 = µ2 is obtained by taking the union of the pragmatic hypotheses associated to its
constituents, as illustrated in the right panel of Figure 6. Specifically,

Pg(H0, BPZ, ε) = {(µ∗1 , µ∗2) : |µ∗2 − µ∗1 | ≤ εσ}

The pragmatic hypothesis for H0 using KL is obtained similarly. Note that

KLZ(θ0, θ∗) = 0.5BP2
Z(θ0, θ∗)

Therefore, Pg({θ0}, KLZ, ε) =
{
(µ∗1 , µ∗2) : (µ∗1 − µ0)

2 + (µ∗2 − µ0)
2 ≤ 2εσ2} and

Pg(H0, KLZ, ε) = Pg(H0, KLZ, 0.5ε2)

The pragmatic hypothesis for H0 that is obtained using CD has no analytic expression. However, by
observing that N(µ, σ2) = µ + σN(0, 1), it is possible to show that there exists a monotonically increasing
function, h : R −→ R, such that

Pg(H0, CDZ, 0.5ε2) = {(µ∗1 , µ∗2) : |µ∗2 − µ∗1 | ≤ h(ε)σ}

(a) H0 : µ1 = µ2 = µ0. (b) H0 : µ1 = µ2.
Figure 6. Pragmatic hypotheses using BP in Example 8 when σ is known.

That is, the pragmatic hypothesis associated to H0 have the same shape as in the right panel of Figure 6.
They differ solely on how many standard deviations correspond to the width of the pragmatic hypothesis.

5. Final Remarks

The spiral structure studied in the work by the authors of [10] can be used to describe scientific
evolution. However, in order for the analogy to be complete, it is necessary to indicate what types
of scientific theories or hypotheses are effectively tested in the acceptance vertex of the hexagon of
oppositions. We defend that these are pragmatic hypotheses, which are sufficiently precise for the
end-user of the theory.
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In order to make this statement formal, we introduce three methods for constructing a pragmatic
hypothesis associated to a precise hypothesis. These methods are based on three predictive dissimilarity
functions: KL, BP and CD. Each of these methods have different advantages. For instance, the scale
of BP and CD is more interpretable than KL, making it easier to determine whether the former are
large or small. On the other hand, BP relies on the definition of more functions than KL and CD, such
as δZ,θ0(z) in Definition 2. If these function are chosen inadequately, then the shape of the resultant
pragmatic hypothesis might be counterintuitive or meaningless. Finally, CD often does not have an
analytic expression. It relies on numerical integration over the sample space, which can be taxing in
high dimensions.

The applications at Section 4 present adequate choices of metrics and bounds (defining pragmatic
hypotheses) for some given theoretical and experimental setups. Nevertheless, the authors did not
propose a general or automated recipe for making these choices, nor do they think this to be a feasible
goal. In future research, the authors intend to explore a variety of application cases, some using
historical data of important experiments, and discuss possible choices of metrics and bounds for each
case. The authors hope that, in time, the accumulation of such examples will provide useful guidelines
for the good use of methods developed in this paper, in the same way that the statistical literature
provides useful guidelines for choosing good statistical models for practical applications.
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Appendix A. Proofs

Proof of Lemma 1. Let θ ∈ Pg(Θ0, KLZ, 8ε2). It follows from Theorem 1 that there exist θ0 ∈ Θ0, such
that KLZ(θ0, θ) ≤ 0.5ε2. Conclude from Pinsker’s inequality that CDZ(θ0, θ) ≤

√
8−1KLZ(θ0, θ) = ε,

that is, θ ∈ Pg(Θ0, CDZ, ε).

Proof of Theorem 1. Let Pg be logically coherent. Pick an arbitrary θ0 ∈ Θ0 and note that, if R(x) ≡
Pg({θ0}), then φR

Pg({θ0})
(x) = 0. Since Pg is logically coherent, conclude that φR

Pg(Θ0)
(x) ≡ 0, that is,

Pg({θ0}) ⊆ Pg(Θ0). Since θ0 ∈ Θ0 was arbitrary, conclude that⋃
θ0∈Θ0

Pg({θ0}) ⊆ Pg(Θ0) (A1)

Next, let R(x) ≡ ⋂θ0∈Θ0
Pg({θ0})c. For every θ0 ∈ Θ0, φR

Pg({θ0})
(x) = 1. Since Pg is logically coherent,

φR
Pg(Θ0)

≡ 1, that is, Pg(Θ0) ⊆ Rc ≡ ⋃θ0∈Θ0
Pg({θ0}). Conclude that

Pg(Θ0) ⊆
⋃

θ0∈Θ0

Pg({θ0}) (A2)

It follows from Equations (A1) and (A2) that Pg(Θ0) =
⋃

θ0∈Θ0
Pg({θ0}). It also follows from direct

calculation that, if Pg(Θ0) =
⋃

θ0∈Θ0
Pg({θ0}), then Pg is logically coherent.
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Proof of Theorem 2. Let Θ0 ⊆ Θ

Pg( f [Θ0], d∗Z, ε) = {θ∗ ∈ Θ∗ : ∃θ∗0 ∈ f [Θ0] s.t. d∗Z(θ
∗, θ∗0 ) ≤ ε}

= {θ∗ ∈ Θ∗ : ∃θ∗0 ∈ f [Θ0] s.t. dZ( f−1(θ∗), f−1(θ∗0 )) ≤ ε}
= f [{θ ∈ Θ : ∃θ0 ∈ Θ0 s.t. dZ(θ, θ0) ≤ ε}]
= f [Pg(Θ0, dZ, ε)]

Proof of Theorem 3. Since the Zi’s are i.i.d., KLm(θ0, θ∗) = mKLZ1(θ0, θ∗). It follows that

Pg(Θ0, KLm, ε) =
⋃

θ0∈Θ0

Pg({θ0}, KLm, ε)

=
⋃

θ0∈Θ0

Pg({θ0}, mKLZ1 , ε) =
⋃

θ0∈Θ0

{
θ∗ ∈ Θ : KLZ1(θ0, θ∗) ≤ m−1ε

}
Thus, (Pg(Θ0, KLm, ε))m≥1 is a non-increasing sequence of sets. It follows that

lim
m→∞

Pg(Θ0, KLm, ε) =
⋂

m≥1

⋃
θ0∈Θ0

{
θ∗ ∈ Θ : KLZ1(θ0, θ∗) ≤ m−1ε

}
=

⋃
θ0∈Θ0

⋂
m≥1

{
θ∗ ∈ Θ : KLZ1(θ0, θ∗) ≤ m−1ε

}
=

⋃
θ0∈Θ0

{
θ∗ ∈ Θ : KLZ1(θ0, θ∗) = 0

}
=

⋃
θ0∈Θ0

{θ0} = Θ0

where the next-to-last equality follows from the assumption that (Fθ)θ∈Θ is identifiable. The proofs for

the CD divergence follows from the fact that TV(Pθ0 ,Pθ∗) ≤
√

KL(Pθ0 ,Pθ∗).
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