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Abstract: Sample Entropy (SampEn) is a popular method for assessing the regularity of physiological
signals. Prior to the entropy calculation, certain common parameters need to be initialized: Embedding
dimension m, tolerance threshold r and time series length N. Nevertheless, the determination of these
parameters is usually based on expert experience. Improper assignments of these parameters tend to
bring invalid values, inconsistency and low statistical significance in entropy calculation. In this study,
we proposed a new tolerance threshold with physical meaning (rp), which was based on the sampling
resolution of physiological signals. Statistical significance, percentage of invalid entropy values and
ROC curve were used to evaluate the proposed rp against the traditional threshold (rt). Normal sinus
rhythm (NSR), congestive heart failure (CHF) as well as atrial fibrillation (AF) RR interval recordings
from Physionet were used as the test data. The results demonstrated that the proposed rp had better
stability than rt, hence more adaptive to detect cardiovascular diseases of CHF and AF.

Keywords: atrial fibrillation; cardiovascular time series; congestive heart failure; heart rate variability;
sample entropy

1. Introduction

Entropy provides valuable tools for quantifying the regularity of physiological time series and
important insights to understand the basic mechanisms of the cardiovascular system. In order to
better handle short time series in physiological signals, Pincus proposed approximate entropy (ApEn)
when studying heart rate changes in sudden death in infants [1]. Since then, ApEn is widely used
in many research fields [2,3]. However, due to the introduction of self-matching in the calculation
process, ApEn contains estimated bias [4]. To solve the shortcomings of bias and relative inconsistency,
Richman and Moorman developed sample entropy (SampEn), which was an improvement of ApEn
and solved the problem of self-matching [4]. For evaluating the non-linear complexity in shorter time
series, particular in physiological signals, SampEn is more adaptive compared to ApEn.

One of typical applications of SampEn in clinical measurement lies in distinguishing congestive
heart failure (CHF) from normal sinus rhythm (NSR) [5,6]. As mentioned earlier, three common
parameters such as embedding dimension m, tolerance threshold r and time series length N need to be
initialized. However, it reveals several changes in clinical application: (1) Different values of tolerance
threshold r lead to the inconsistency entropy results for CHF determination [7], (2) higher embedding
dimension m might cause invalid entropy results in calculation, and (3) decrease in RR segment length
is at the cost of lower statistical significance [8]. Thus, improving the performance of SampEn for
physiological signal analysis has become an important issue.
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For clinical applications, recommended r in ApEn is usually between 0.10 and 0.25 times the
standard deviation (SD) of the physiological data [9]. Since SampEn is the improvement version of
ApEn [4], these recommended parameter values are carried on as before [10,11]. Nevertheless, under
certain circumstances, NSR group presented higher SampEn results than those in the CHF group when
r was set to 0.10, while the outcomes reversed as r increased to 0.25 [8]. The inverted entropy results
make it hard to establish a unified standard to detect CHF subjects with a constant r value. Therefore,
our study proposes a solution to tackle the problem, employing a new mechanism to define threshold
r to avoid the inconsistency of SampEn in CHF detection.

The growth of embedding dimension from m = 1 to m = 4 also witnessed a shrink in valid SampEn
values for analyzing the typical 5 min RR time series [12]. Invalid entropy values appeared at higher
embedding dimensions should be eliminated. As well, in most cases, invalid outcomes resulted from
the division of similar vectors and dissimilar vectors. If the tolerance threshold was set too small,
all vectors would overrun that boundary, thus they were regarded as dissimilar, leading to invalid
SampEn results. The increase of m could only make the situation worse by expanding the distance
between two vectors. Again, the reason of this problem lies in the selection of r values.

Besides detecting CHF subjects, SampEn also applies to atrial fibrillation (AF) detection [13].
Similar problems appear when recommended threshold is used to discriminate AF subjects. However,
previous research has revealed that the constant threshold (r = 30 ms) performed better than the
commonly used threshold (r = 0.20) when analyzing short-time AF segments [14]. This finding
enlightened us to explore thresholds with physical meaning in SampEn calculation. We hypothesized
the analogous conclusion would also apply to AF detection.

This study aims to examine whether threshold with physical meaning would be better than
traditionally recommended threshold during SampEn calculation. Verifications will be performed on
CHF and NSR groups, AF and non-AF groups, to validate the effect of physically meaningful threshold.
The rest of paper is organized as follows. Section 2 describes the algorithm of SampEn and its limitation
in clinical application. On that basis, the proposed threshold is introduced. The experiment process
and results are presented in Sections 3 and 4 respectively. Section 5 concludes the study.

2. Methods

2.1. Sample Entropy

SampEn was taken as a baseline algorithm in this study. The calculation process of SampEn was
summarized as follows [4,15]:

For RR segment x(i) derived from a recording with length N, where 1 ≤ I ≤N, given the parameters
m and r, the vector sequences Xm

I can be formulated as:

Xm
i =

{
x(i), x(i + 1), · · · , x(i + m− 1)

}
1 ≤ i ≤ N −m (1)

The vector Xm
i represents m consecutive x(i) values. Then the distance between Xm

i and Xm
j based

on the maximum absolute difference is defined as:

dm
i, j = d

[
Xm

i , Xm
j

]
= max

0≤k≤m−1

∣∣∣x(i + k) − x( j + k)
∣∣∣ (2)

For each Xm
i , we denote Bm

i (r) as (N − m)−1 times the number of Xm
j (1 ≤ j ≤ N − m) that meets

dm
i, j ≤ r. Similarly, we set Am

i (r) as (N − m)−1 times the number of Xm+1
j that meets dm+1

i, j ≤ r for all 1 ≤ j ≤
N − m.

Then SampEn is defined by

SampEn = (m, r , N) = −ln
(∑N−m

i = 1
Am

i (r)/
∑N−m

i = 1
Bm

i (r)
)

(3)

Herein, we pre-define two parameters in the calculation of entropy metrics: Embedding dimension
m = 1, 2, 3, 4 and tolerance threshold r = 0.10, 0.15, 0.20 and 0.25 times the standard deviation of the RR
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interval time series. Since the appropriate embedding dimension m is suggested to deal with the time
series with a length of 10m to 10m+1, a relatively large m may lead to inefficient entropy results, thus we
use m no more than 4. Likewise, the values of r we choose are verified to provide stable outputs for
certain RR interval time series. The length of time series usually varies largely, from dozens such as
75 points, to up to thousands of points. Meanwhile, time series that contains less than 200 points is not
recommended for either ApEn or SampEn because of inadequate vector matching [16,17]. We therefore
select the time series length N to be 300 and 1000 to check the influence of various-size RR interval
segments [18].

2.2. How Vector Similarity Changes When r Changes

Typically, recommended r for clinical use is between 0.10 and 0.25 times the standard deviation
(SD) of the data. A greater SD will increase the determination threshold for consideration of a vector
matching and vice versa with a smaller SD [1,17]. Studies have also proved that choosing a higher r
value of 0.25 or 0.3 then the relationship becomes unstable with respect to changing data length [19].
Conversely, choosing a smaller r can lead to an increased number of self-matches [20]. Moreover,
SampEn has been suggested to be highly dependent on signal-to-noise ratio [19,21]. To avoid a
significant noise contribution on SampEn computation, one must choose r larger than most of the noise.
Hence, the selection of r appears to be the most difficult to choose. When r is determined, there will be
a vector distance distribution matrix consist of 0 and 1 for the time series [22]. However, there might
be no changes in the corresponding distance matrix when r varies from 0.10 to 0.25. This motivated
our work in exploring the nature of the problem.

Herein we take the CHF analysis for demonstration. As physiological signals were sampled at a
specific frequency, the sampling resolution played a key role in the time series. ECG signals of both
NSR and CHF groups were digitized at 128 Hz [23], which means the interval between every two
sampling point is approximately 8 ms. Thus, to make r larger than the sampling resolution under
recommended values, the SD of time series should be from 32 to 80 ms. In fact, most RR intervals of
ECG signals can’t reach this range [24]. Figure 1 presented the SD distribution of RR intervals from
NSR group and CHF group when N = 300 and 1000 respectively. Considering the sampling resolution
of ECG signals was 128 Hz, SD below 32 ms was invalid. Nevertheless, for N = 300 in NSR group, SD
under 32 ms was nearly 40% of all RR intervals from 54 subjects. The same result was approximately
75% of all RR intervals from 29 subjects in CHF group, even worse than the NSR group. When N was
extended to 1000, though less obvious, the same outcome was observed, where 25% of NSR group and
50% of CHF group had SD under 32 ms, respectively.
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In previous research, the inconsistency of SampEn was reported for distinguishing CHF from
NSR subjects [8]. The problem was showed in Figure 2 by box plot. As r increased from 0.10 to 0.25,
the SampEn values of NSR group were first higher than those of the CHF group, then became lower.
Therefore, it was hard to distinguish CHF from NSR as there existed no regularity for the relation
between entropy values from these two different groups.
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Figure 2. The distribution ranges of SampEn between NSR and CHF groups at different setting of
tolerance threshold when (A) N = 300, m = 2 and (B) N = 1000, m = 2. The symbol ‘*’means statistical
significance p < 0.05 and ‘**’means statistical significance p < 0.01, using t-test.

Based on these shortcomings of current SampEn, a new threshold method of r needs to be explored.
Combining the analysis of RR intervals, we proposed a new tolerance threshold named as rp, which
has physical meaning over sampling resolution. We denoted the traditional tolerance threshold as rt

hereafter. The details of these two thresholds are summarized below.

2.3. Selection of r Value: Traditional or Physically Meaningful

When the physically meaningful r was applied to time series, the direct and effective relation
between RR intervals and threshold was presented. This is shown in Figure 3 using a CHF subject
as an example. The rt values were 0.10, 0.15, 0.20 and 0.25, and rp values were 12 ms, 20 ms, 28 ms
and 36 ms, which were presented as a cut point of sampling period (8 ms) in the legend. As shown in
Figure 3, for most of time, rt was mostly below the minimum time difference of RR intervals, explaining
why SampEn did not change over various rt. However, the magenta lines of rp intersected the curve of
RR interval time difference more frequently, leading to the significant entropy variance as rp changed.

When the product of threshold and SD is smaller than most time difference of RR intervals, it leads
to two outcomes. If the product is larger than a sampling period, the SampEn value is valid, otherwise
it is not. Since time series with slight heart rate variation is common in clinical data, changing rt value
makes SampEn results unpredictable. Figure 4 shows the percentage of valid RR segments at m = 1, 2,
3 and 4 combined with rt from 0.10 to 0.25 under N = 300. Although for m = 1 and 2, all RR segments
presented valid entropy results, the increase of m might lead to invalid values at certain proportion for
both NSR and CHF groups. In contrast, rp is directly determined by multiples of sampling period,
which possesses certain matching degree to the time series, thus avoids invalid values in entropy
calculation fundamentally.
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2.4. New Calculate Method for SampEn

Thus, a new calculate method for SampEn was proposed based on the conception of rp. When
processing a time series, we use its sampling resolution to calculate the corresponding sampling period.
The physically meaningful threshold then is determined as non-integer multiples of sampling period,
which can be either integer or non-integer, but has to be larger than one sampling period. Once rp has
been determined, the same algorithm of SampEn is applied according to Equations (1) to (3).

First, entropy measures the conditional probability that two short vectors of length m that match
within a distance tolerance rp will also match at the m + 1 st point. Thus, the determination for vector
similarity is crucial, which relays on the measure of the distance between two vectors. Chebyshev
distance (i.e., the element maximum distance) is applied here according to the traditional usage [13].
Second, once we have the distances between the two vectors, we can determine their similarity or
dissimilarity using a determination rule function. In the definition of SampEn, similarity of vectors is
based on Heaviside function [4,10]. The main feature of the Heaviside function is that it provides a
step function that converts the input into activity equal to 0 or 1. It leads to a kind of conventional
two-state classifier, where an input pattern is judged its belongingness to a given class by whether
it satisfies certain precise properties required of membership [25]. The contributions of all the data
points inside the boundary are treated equally, while the data points just outside the boundary are left
out. Third, a probability-based estimation is used to generate the entropy value.
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3. Data and Experiment

3.1. Data

Variations of RR intervals could be described by the conventionally accepted term “heart rate
variability” (HRV), which analyzes the interval between consecutive beats [26]. Since HRV was
confirmed to be a strong and independent predictor of mortality after an acute myocardial infarction,
clinical importance has been attached to it. With the availability of new ECG recorders such as Holter,
HRV has the potential to provide additional valuable insight into physiological and pathological
conditions. For example, the analysis of HRV can give insight into autonomic abnormalities, which is
an important aspect of heart failure [27]. This could also explain why heart failure subjects represent
reduced HRV. Moreover, HRV is also a hallmark of AF. Study has found that HRV was greater in
patients with lone AF than in those with cardiac disorders [28]. Therefore, in this study, we chose
inter-beat interval time series data on both heart failure and AF subjects.

Two MIT-BIH RR interval time series databases were used from http://www.physionet.org [23],
a free-access, on-line archive of physiological signals. The NSR RR Interval Database was used as the
non-pathological and control group data. This database included 54 long-term RR interval recordings
of subjects in normal sinus rhythm aged 29 to 76. The CHF RR Interval Database was used as the
pathological group data. This database included 29 long-term RR interval recordings of subjects aged
34 to 79, with congestive heart failure (NYHA classes I, II, and III). Each of the long-term RR interval
recordings is 24 h long including both day-time and night-time. Both the NSR and CHF subjects took
the Holter ECG measurement under the similar level of physical activity. The original ECG signals
were digitized at 128 Hz, and the beat annotations were obtained by automated analysis with a manual
review and correction.

MIT-BIH AF database and MIT-BIH arrhythmia database were used to test the AF RR interval
time series data. The MIT-BIH AF database includes 25 long-term ECG recordings with rhythm and
beat annotation files. Individual ECG recordings are 10 h in duration and were sampled at 250 Hz,
resulting in a minimum temporal resolution of 4 ms for the RR time series. Rhythm annotations were
performed manually for four types: AF, AFL (atrial flutter), J (AV junctional rhythm) and N (used to
indicate all other rhythms). Beat annotations were prepared using an automated detector with two
recordings (no. 05091 and no. 07859) corrected manually. The MIT-BIH arrhythmia database includes
48 short-term (30 min) ECG recordings. This database includes 23 subjects with non-AF rhythms
and eight AF subjects with both AF rhythm and a variety of non-AF rhythms. The sampling rate
was 360 Hz, giving a minimum temporal resolution of about 3 ms for the RR time series. Beats were
annotated independently by at least two cardiologists. The NSR RR Interval Database mentioned
above was also used as the non-pathological and control group data in AF analysis.

3.2. Experiment Scheme

Figure 5 shows the block diagram of the evaluation process for CHF detection used in this
study. It consists of three major steps. Equation (1) pre-processing and segmenting for each RR
interval recording; Equation (2) entropy calculation for each RR segment with different combinations
of parameters; and Equation (3) comparison between NSR and CHF groups to determine whether
SampEn with physically meaningful threshold is better than the traditional SampEn.

In Equation (1), the RR intervals greater than 2 s were first removed from the raw RR interval
recordings to ignore the influence from the artifacts. For each beat in the raw ECG signals, it was
annotated as a normal (denoted as ‘N’) or abnormal heartbeat. The abnormal heartbeats were usually
caused by the ectopic beats such as supra-ventricular ectopic beats or ventricular ectopic beats,
depending on the localization of the ectopic focus. The RR intervals derived from the abnormal
heartbeats could confound the entropy analysis of HRV [29], and therefore were removed from the RR
interval recordings. Table 1 shows the total number of RR intervals for both NSR and CHF groups,
as well as the numbers of RR intervals after these two removing procedures. After that, we used

http://www.physionet.org
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two different length windows N to segment the long-term RR interval recordings to form the RR
segments for the entropy calculation. In this study, we set N = 300 and N = 1000 respectively to observe
the performances of entropy measures for different length of RR segments. We did not consider the
overlapping operation between adjacent N-length windows since the previous study reported that
overlapping between adjacent N-length windows did not improve atrial fibrillation organization
estimation with respect to the analysis of non-overlapping windows [30]. Table 1 also shows the
total numbers of RR segments for both NSR and CHF groups when setting N = 300 and N = 1000,
respectively. For each RR segment, we removed the RR intervals without 99% confidence interval (CI),
(i.e., ± 3 × SD).
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Table 1. Statistical results of the numbers of RR interval recordings, RR intervals and RR segments
from the 54 NSR and 29 CHF RR Interval Databases.

Variables NSR Group CHF Group

Name of RR interval recordings nsr001–nsr054 chf201–chf229
No. of RR interval recordings 54 29

No. of RR intervals 5,790,504 3,312,195
No. of RR intervals after removing greater than 2 s 5,780,148 3,306,394

No. of RR intervals after removing abnormal heartbeats 5,738,937 3,102,120
No. of RR segments when setting N = 300 19,101 10,324

No. of RR segments when setting N = 1000 5711 3089

In Equation (2), SampEn with different thresholds were used to calculate the entropy values for
each RR segment under the different parameter settings: embedding dimension m was set as 1 and 2
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respectively, and rt was set from 0.05 to 0.30 with a step of 0.01 for SampEn. We further set rp from
1.5 times to 26.5 times sampling period with a step of one sampling period, reasoning that threshold
within a sampling period makes no difference to results. As the original ECG signals were digitized at
128 Hz, we considered the sampling period to be 8 ms approximately.

In Equation (3), the entropy results were compared between the NSR and CHF groups under
the different combinations of parameters m, r and N, aiming to explore whether rp is superior to rt in
distinguish the CHF patients from the NSR subjects.

Figure 6 shows the block diagram of the evaluation process for AF analysis used in this study.
Likewise, it also consists of three major steps. Equation (1) pre-processing and segmenting for each RR
interval recording; Equation (2) entropy calculation for each RR segment with different combinations
of parameters; and (3) comparison between non-AF and AF groups to determine whether SampEn
with physically meaningful threshold is better than the traditional SampEn.
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In Equation (1), for the MIT-BIH AF database, arrhythmia database and NSR database, all RR
time series were regarded as either non-AF rhythm or AF rhythm. Data pre-processing was performed
on the classified RR episodes. RR intervals greater than 2 s were removed to eliminate the influence of
the missed QRS detection due to noise or ECG electrode drop out. Two types of beat window length
(BWL)—30 and 60 beats—were used to segment RR episodes without overlap. Table 2 shows the
detailed database profile.

Table 2. Statistical results of the data profile for AF and non-AF rhythms from the MIT-BIH NSR
database, MIT-BIH AF database and MIT-BIH arrhythmia database.

Variable AF Rhythm Non-AF Rhythm

No. of rhythm episodes 406 (16.9%) 1999 (83.1%)
No. of RR intervals 533,085 (8.3%) 5,892,134 (91.7%)

No. of RR intervals after removing greater than 2 s 533,029 (7.5%) 6,529,842 (92.5%)
No. of RR segments (30-beat) 17,591 (7.4%) 218,798 (92.6%)
No. of RR segments (60-beat) 8709 (7.4%) 109,215 (92.6%)

In Equation (2), embedding dimension m was set as 1 and 2, respectively. As for traditional
threshold, we still used 0.10, 0.15, 0.20 and 0.25 for AF subjects and the control group. Nevertheless, the
sampling resolutions for the MIT-BIH AF database and MIT-BIH arrhythmia database were different
from the NSR RR Interval Database, thus the set of physically meaningful threshold needed to be
considered carefully. Noticing the lowest sampling frequency of these databases was 128 Hz, we
supposed the sampling period for all the ECG signals was still 8 ms. Thus, we chose to adopt the
previous rp values 1.5, 2.5, 3.5 and 4.5 times sampling period 8ms for AF analysis, which were 12 ms,
20 ms, 28 ms and 36 ms in time domain. Since the sampling frequency for the MIT-BIH AF database
and MIT-BIH arrhythmia database were 250 Hz and 360 Hz respectively, such set of rp could meet
our demand.

In Equation (3), the entropy results were compared between the non-AF and AF groups under the
different combinations of parameters m, r and BWL. These entropy results were compared between the
AF and non-AF rhythm types.

3.3. Statistical Analysis

When applying to CHF detection, for each RR segment length of N = 300 and N = 1000, there
were 52 entropy values for each RR segment using SampEn with rt (two embedding dimensions and
26 traditional thresholds). Likewise, there were also 52 entropy values for each RR segments using
SampEn with rp (two embedding dimensions and 26 physically meaningful thresholds). The overall
mean and SD values of these two methods were calculated across all RR interval recordings, separately
for the NSR and CHF groups. Student’s t-test was used to test the statistical difference between the
two groups. All statistical analyses were performed using the MATLAB software (Version R2017a,
The MathWorks, Natick, USA). Statistical significance was reported with p < 0.05. To prove that the
proposed rp is also reliable for time series with other segment length, we added statistical tests at
N = 5000 and N = 10,000 to verify its effectiveness.

Furthermore, the receiving operator curve (ROC) curve and the index of area under the curve
(AUC) were used to evaluate the effectiveness of SampEn using different thresholds in CHF detection.
Entropy values on one side of a threshold c were labelled as CHF while values on the other side of c
were labelled as NSR. Classifier accuracy was assessed via the following performance metrics:

• Sensitivity: Se = TP/(TP+FN)
• Specificity: Sp = TN/(TN+FP)

where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives and false
negatives respectively. The ROC curve is a plot (Se) versus (1-Sp) for many possible values of c, which
varied from the minimum to the maximum of the entropy outputs, with a step of 1% of the range.
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Unlike the analysis of CHF subjects with time series measuring hundreds of RR intervals, entropy
calculation related to AF subjects uses short time series [31]. In this study, we used AF episodes with
BWL of 30 and 60 beats to compare the performances of rt and rp. Similarly, after the calculation of
entropy values, student’s t-test was used to test the statistical difference between the non-AF and AF
groups. The proportion of invalid values was listed out as well.

3.4. Stability Test

In clinical applications, signals are commonly contaminated by artefacts, such as a drift and
interference caused by several bioelectric phenomena, or by intrinsic noise from the recorder or noise
from electrode-skin contact [32]. If a turbulence could cause SampEn to change dramatically, the
determination to distinguish CHF subjects from NSR subjects might lead to a wrong diagnosis. Thus,
we tested the robustness of SampEn for both traditional threshold and physically meaningful threshold
and compared them to determine whether the proposed threshold had better stability.

4. Results

4.1. Results of CHF & NSR

SampEn results as well as statistical significance were calculated and then plotted for half of
entropy values listed in Section 3 in Figures 7–10. The lengths of RR segments were 300 and 1000, and
embedding dimension was set as 1 and 2, respectively. For SampEn with traditional threshold of all
combinations of (N, m), the blue line of NSR and the red line of CHF intersected at a particular point in
the plot, and negative logarithm of p value first decreased but then increased as rt increased, revealing
the inconsistency when using rt. In contrast, the lines of two different groups remained separate
for SampEn with physically meaningful threshold, as negative logarithm of p value monotonically
decreased. In fact, when converting rt to time period by multiplying SD, the traditional threshold only
equaled to a relatively small part at the beginning of the rp curve, thus the p value was non-monotonic.
Moreover, the minimum value of negative logarithm of p value for rp was still above the magenta line
(p value = 0.01). Therefore, the use of rp in SampEn performed better in detecting CHF. Besides, smaller
rp values such as 1.5 times sampling period (i.e., 12 ms) turned out to be more statistically significant.
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Figure 10. Entropy calculation and statistical analysis contrasting rt (left) with rp (right) between NSR
and CHF groups at N = 1000 and m = 2 for (A) SampEn results and (B) statistical significance.

Table 3 shows results of SampEn with rt or rp for the two groups using different combinations
of (m, r) when setting N = 300 and N = 1000. Since the traditional threshold values 0.10, 0.15, 0.20
and 0.25 are commonly used, we selected these four values for rt in Table 3, and the most statistically
significant rp values (12, 20, 28, 36 ms, i.e., 1.5, 2.5, 3.5 and 4.5 times sampling period) for the proposed
method. As shown in Table 3, for N = 300, SampEn with rt had statistical significances only for m = 1
and 2 combined with r = 0.10 and 0.15. However, SampEn with rp had statistical significances for all
thresholds when m = 1 and 2. When extending RR segment length to N = 1000, SampEn with rt had
statistical significances for combinations satisfying r = 0.10 and 0.25 as well as m = 2 combined with
r = 0.15. In comparison, SampEn with rp remained almost the same amount of statistical significances
as those for N = 300. The proportion of the combinations of (m, r) to statistically distinguish the two
groups out of all calculated combinations for traditional SampEn was 50% when N = 300 and 62.5%
when N = 1000. In comparison, the same proportion was 100% at both N = 300 and N = 1000 for the
proposed method. Thus, SampEn with physically meaningful threshold might be more adaptive to
shorter time series when detecting CHF. In addition, it is important to note that traditional SampEn
values in the NSR group were larger than those in the CHF group when r = 0.10, 0.15 and 0.20 but
lower when r = 0.25, implying no consistency existed between NSR and CHF groups. By contrast,
SampEn values from the proposed method in the NSR group were consistently higher than those in
the CHF group. Therefore, the inconsistency of traditional SampEn was solved by the use of our new
proposed physically meaningful threshold method.

Besides the commonly used values N = 300 and N = 1000, similar calculation was performed on
N = 5000 and N = 10,000 to explore the statistical significance. Table 3 also shows the entropy values as
well as p values for NSR and CHF groups when RR segment length was extended dramatically with
different (m, r) combinations. The results prove that reliability of SampEn using rp for time series data
of 5000 and 10,000 samples still exists. Although nearly all of the parameter combinations using rt

have statistical significance, their p values are larger than those using rp. Thus, our proposed threshold
presents better distinctive capacity over time series data of different length.

Figure 11 illustrates the ROC curves with AUC values obtained using different thresholds for
classifier testing. To classify NSR and CHF subjects for each parameter combination, rp = 20 ms,
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rp = 28 ms, rp = 12 ms and rp = 36 ms resulted in the highest to lowest AUCs, in order. For m = 1 and
N = 300, the AUC values were 77.18%, 76.88%, 76.83% and 76.40% respectively for the four thresholds,
and for m = 1 and N = 1000, the AUC values were 77.63%, 77.40%, 77.28% and 76.93% respectively.
Meanwhile, for traditional threshold, rt = 0.10, rt = 0.15, rt = 0.20 and rt = 0.25 resulted in the highest
to lowest AUCs, in order. For m = 1 and N = 300, the AUC values were 72.77%, 64.25%, 53.85% and
46.13% respectively for the four thresholds, and for m = 1 and N = 1000, the AUC values were 69.91%,
56.98%, 45.48% and 39.45% respectively. All AUCs using rp were higher than those using rt. These
results reveal that the entropy calculation with rp is superior to the use of rt. Moreover, the relation
between AUC value and the selection of m and N seems to be obscured.

Table 3. SampEn from the different combinations of embedding dimension m changed from 1 to 2 and
tolerance threshold r when setting segment length N = 300 and N = 1000. The traditional rt changed
from 0.10 to 0.25 with a step of 0.05 and physically meaningful rp changed from 12 ms to 36 ms (i.e., 1.5
times sampling period to 4.5 times sampling period) with a step of one sampling period 8 ms. P-value
indicates the statistical significance between the NSR and CHF groups at each combination of (m, r).
Data are expressed as number or mean ± standard deviation (SD). ‘*’: statistical significance p < 0.05,
‘**’: statistical significance p < 0.01.

Threshold
Value

Group
N = 300 N = 1000 N = 5000 N = 10,000

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 m = 1 m = 2

Traditional

rt = 0.10
NSR 1.95 ± 0.18 1.84 ± 0.17 1.91 ± 0.16 1.80 ± 0.15 1.76 ± 0.45 1.63 ± 0.46 1.66 ± 0.48 1.53 ± 0.49
CHF 1.64 ± 0.30 1.51 ± 0.31 1.66 ± 0.27 1.53 ± 0.29 1.63 ± 0.34 1.49 ± 0.36 1.63 ± 0.33 1.48 ± 0.35

p-value 4 × 10−8 ** 7 × 10−8 ** 7 × 10−7 ** 3 × 10−7 ** 5 × 10−9 ** 1 × 10−11 ** 0.32 0.08

rt = 0.15
NSR 1.73 ± 0.14 1.64 ± 0.13 1.61 ± 0.16 1.50 ± 0.15 1.33 ± 0.46 1.22 ± 0.45 1.18 ± 0.42 1.07 ± 0.42
CHF 1.55 ± 0.23 1.44 ± 0.31 1.53 ± 0.19 1.40 ± 0.20 1.42 ± 0.46 1.28 ± 0.36 1.36 ± 0.35 1.22 ± 0.36

p-value 2 × 10−5 ** 5 × 10−6 ** 0.055 0.013 * 2 × 10−5 ** 6 × 10−3 ** 1 × 10−9 ** 1 × 10−6 **

rt = 0.20
NSR 1.49 ± 0.15 1.40 ± 0.14 1.33 ± 0.16 1.23 ± 0.15 1.05 ± 0.38 0.95 ± 0.38 0.95 ± 0.33 0.85 ± 0.33
CHF 1.45 ± 0.18 1.34 ± 0.18 1.39 ± 0.17 1.27 ± 0.17 1.24 ± 0.38 1.10 ± 0.38 1.18 ± 0.37 1.04 ± 0.36

p-value 0.26 0.10 0.091 0.31 8 × 10−21 ** 7 × 10−14 ** 3 × 10−19 ** 2 × 10−13 **

rt = 0.25
NSR 1.28 ± 0.15 1.19 ± 0.14 1.11 ± 0.15 1.02 ± 0.13 0.87 ± 0.32 0.78 ± 0.32 0.78 ± 0.29 0.69 ± 0.29
CHF 1.33 ± 0.17 1.23 ± 0.17 1.25 ± 0.19 1.13 ± 0.18 1.06 ± 0.39 0.93 ± 0.39 0.98 ± 0.39 0.85 ± 0.38

p-value 0.14 0.35 3 × 10−4 ** 0.003 ** 2 × 10−26 ** 1 × 10−17 ** 2 × 10−16 ** 3 × 10−11 **

Physically Meaningful

rp = 12 ms
NSR 1.06 ± 0.22 0.97 ± 0.21 1.08 ± 0.22 0.99 ± 0.20 1.10 ± 0.33 0.99 ± 0.32 1.11 ± 0.32 0.99 ± 0.31
CHF 0.72 ± 0.28 0.63 ± 0.28 0.75 ± 0.28 0.65 ± 0.28 0.77 ± 0.31 0.66 ± 0.32 0.79 ± 0.31 0.66 ± 0.31

p-value 7 × 10−8 ** 2 × 10−8 ** 1 × 10−7 ** 2 × 10−8 ** 1 × 10−76 ** 4 × 10−84 ** 2 × 10−38 ** 7 × 10−42 **

rp = 20 ms
NSR 0.67 ± 0.19 0.60 ± 0.17 0.69 ± 0.19 0.62 ± 0.18 0.71 ± 0.28 0.62 ± 0.27 0.72 ± 0.27 0.63 ± 0.26
CHF 0.40 ± 0.22 0.34 ± 0.21 0.43 ± 0.22 0.36 ± 0.21 0.45 ± 0.25 0.36 ± 0.24 0.46 ± 0.24 0.37 ± 0.24

p-value 1 × 10−7 ** 7 × 10−8 ** 7 × 10−7 ** 8 × 10−8 ** 7 × 10−72 ** 1 × 10−76 ** 2 × 10−36 ** 1 × 10−38 **

rp = 28 ms
NSR 0.46 ± 0.16 0.41 ± 0.15 0.48 ± 0.16 0.42 ± 0.15 0.50 ± 0.23 0.43 ± 0.22 0.51 ± 0.23 0.43 ± 0.22
CHF 0.25 ± 0.17 0.21 ± 0.16 0.28 ± 0.17 0.23 ± 0.16 0.30 ± 0.20 0.23 ± 0.19 0.31 ± 0.19 0.24 ± 0.19

p-value 5 × 10−7 ** 4 × 10−7 ** 2 × 10−6 ** 4 × 10−7 ** 4 × 10−65 ** 6 × 10−67 ** 4 × 10−33 ** 4 × 10−34 **

rp = 36 ms
NSR 0.33 ± 0.13 0.30 ± 0.12 0.35 ± 0.14 0.31 ± 0.13 0.37 ± 0.20 0.32 ± 0.19 0.38 ± 0.19 0.32 ± 0.18
CHF 0.17 ± 0.13 0.15 ± 0.12 0.19 ± 0.13 0.16 ± 0.12 0.21 ± 0.16 0.17 ± 0.15 0.22 ± 0.16 0.17 ± 0.15

p-value 2 × 10−6 ** 2 × 10−6 ** 5 × 10−6 ** 2 × 10−6 ** 1 × 10−59 ** 3 × 10−60 ** 1 × 10−30 ** 5 × 10−31 **

4.2. Results of AF & Non-AF

To further examine the efficiency of rp on AF detection, analogous calculation was performed.
Figure 12 shows the percentage of invalid RR segments for classifying AF and non-AF subjects when rt

was applied. When m = 1 and BWL = 30, for four different threshold values, the percentages of invalid
values for non-AF group were around 22%, while those for AF group were about 93%. As embedding
dimension m increased to 2 with the same BWL, the proportions of invalid values for non-AF group
increased dramatically, which even exceeded 70%. Meanwhile, the corresponding percentages for AF
group reached almost 100%. Moreover, when BWL was set as 60, the results were pretty much the
same. Since there are too many invalid values, SampEn with traditional threshold would be improper
in AF detection.
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Figure 11. ROC curve plots with AUC values for the four values of rt and rp in the RR Interval Databases
for classifying NSR and CHF subjects. The top two sub-figures (A1–A2) show SampEn results using rt,
while bottom sub-figures (B1–B2) show SampEn results using rp. Different combinations of m and N
were used: (A1) and (B1) for m = 1 and N = 300, and (A2) and (B2) for m = 1 and N = 1000.
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Figure 12. Percentage of invalid RR segments for the four values of rt in the RR Interval Databases
for classifying AF and non-AF subjects. Different combinations of m and BWL were used: (A1) For
m = 1 and BWL = 30, (A2) m = 1 and BWL = 60, (A3) for m = 2 and BWL = 30, and (A4) for m = 2 and
BWL = 60.

On the contrary, the calculation with rp turned out to be relative desirable. When setting m = 1, for
both 30-beat and 60-beat data, no invalid entropy value existed. As m increased to 2, for both BWL = 30
and 60, the first two thresholds presented invalid values merely for AF group. The percentage of
invalid RR segments was 10% for rp = 12 ms, and 0.5% for rp = 20 ms. Thus, the increase of embedding
dimension caused mild influence to the SampEn calculation with rp.

Table 4 shows the analysis results of these non-AF and AF data. When using rt, the SampEn values
of AF group were lower than those of non-AF group. Meanwhile, several parameter combinations did
not have statistical significance. Since even rp = 12 ms was larger than rt = 0.25 when converted to
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time domain, the use of rt was actually not stable. Considering the various RR interval lengths of AF
subjects, the corresponding SampEn values would be higher than the non-AF subjects. However, such
trait was not presented when rt was applied. In contrast, when using rp, the SampEn values of AF
group were significantly higher than non-AF group, which was in accordance with the characteristic of
AF subjects. The corresponding p values also implied that all parameter combinations have statistical
significance at p < 0.01. Therefore, the superiority of rp over rt has been proved again.

Table 4. Entropy values and statistical significance of SampEn from the different combinations of
embedding dimension m changed from 1 to 2 and tolerance threshold r when setting BWL = 30 and
BWL = 60. The traditional rt changed from 0.10 to 0.25 with a step of 0.05 and physically meaningful
rp changed from 12 ms to 36 ms (i.e., 1.5 to 4.5 times sampling period) with a step of one sampling
period 8 ms. P-value indicates the statistical significance between the AF and non-AF groups at each
combination of (m, r). Data are expressed as number or mean ± standard deviation (SD). ‘*’: statistical
significance p < 0.05, ‘**’: statistical significance p < 0.01.

Threshold Value Group
BWL30 BWL60

m = 1 m = 2 m = 1 m = 2

Traditional

rt = 0.10
AF 2.01 ± 0.50 1.19 ± 0.48 2.03 ± 0.50 1.13 ± 0.50

non-AF 2.24 ± 0.57 1.38 ± 0.48 2.24 ± 0.57 1.40 ± 0.49
p-value 4 × 10−8 ** 4 × 10−8 ** 5 × 10−9 ** 0.32

rt = 0.15
AF 2.01 ± 0.50 1.19 ± 0.49 2.03 ± 0.50 1.13 ± 0.49

non-AF 2.24 ± 0.58 1.38 ± 0.48 2.23 ± 0.57 1.40 ± 0.49
p-value 2 × 10−5 ** 2 × 10−5 ** 2 × 10−5 ** 1 × 10−9 **

rt = 0.20
AF 2.01 ± 0.50 1.21 ± 0.49 2.03 ± 0.50 1.16 ± 0.49

non-AF 2.24 ± 0.58 1.38 ± 0.48 2.23 ± 0.57 1.40 ± 0.49
p-value 0.26 0.26 8 × 10−21 ** 3 × 10−19 **

rt = 0.25
AF 2.02 ± 0.50 1.23 ± 0.50 2.04 ± 0.50 1.16 ± 0.50

non-AF 2.23 ± 0.58 1.38 ± 0.48 2.23 ± 0.57 1.39 ± 0.49
p-value 0.14 0.14 2 × 10−26 ** 2 × 10−16 **

Physically Meaningful

rp = 12 ms
AF 1.41 ± 0.49 1.34 ± 0.54 1.41 ± 0.33 1.34 ± 0.32

non-AF 0.18 ± 0.25 0.72 ± 0.23 0.18 ± 0.31 0.16 ± 0.31
p-value 7 × 10−8 ** 7 × 10−8 ** 1 × 10−76 ** 2 × 10−38 **

rp = 20 ms
AF 0.98 ± 0.38 1.00 ± 0.45 0.98 ± 0.28 1.00 ± 0.27

non-AF 0.11 ± 0.20 0.40 ± 0.18 0.11 ± 0.25 0.10 ± 0.24
p-value 1 × 10−7 ** 1 × 10−7 ** 7 × 10−72 ** 2 × 10−36 **

rp = 28 ms
AF 0.72 ± 0.32 0.46 ± 0.36 0.73 ± 0.23 0.73 ± 0.23

non-AF 0.09 ± 0.17 0.25 ± 0.16 0.09 ± 0.20 0.08 ± 0.19
p-value 5 × 10−7 ** 5 × 10−7 ** 4 × 10−65 ** 4 × 10−33 **

rp = 36 ms
AF 0.55 ± 0.28 0.33 ± 0.30 0.55 ± 0.20 0.55 ± 0.19

non-AF 0.08 ± 0.15 0.17 ± 0.15 0.07 ± 0.16 0.07 ± 0.16
p-value 2 × 10−6 ** 2 × 10−6 ** 1 × 10−59 ** 1 × 10−30 **

4.3. Stability Analysis

In account of any unexpected artefacts in original ECG signals, we also compared the robustness
between the usage of rt and rp. According to the statistical significance pointed out by Figures 7–10,
the first four values (12, 20, 28 and 36 ms) taken as physically meaningful threshold had relative better
statistical significance, thus we used these four thresholds to analyze the stability of rp. Meanwhile,
due to the widely use of r = 0.10, 0.15, 0.20 and 0.25 in clinical applications, we also took them as



Entropy 2019, 21, 830 16 of 20

traditional thresholds to check their stability. The stability test was performed on both N = 300 and
N = 1000 when m = 1.

To simulate artefacts introduced in the original signals [33], we chose 20 consecutive heart beats
out of each RR segment (N = 300 or 1000 respectively) randomly, and added them with an extra time
period of 200 ms by introducing a DC drift, as shown in Figure 13. Then we calculated all RR segments
from both 54 NSR subjects and 29 CHF subjects to obtain new SampEn values. The relative errors were
then calculated according to the SampEn results without artefacts. Since four different values under rt

and rp were analyzed, we compared the robustness when using two thresholds in form of bar plot.
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In order to further explain the simulative artefacts added to ECG signals, we considered the signal
from the first RR segment of the CHF subject numbered 201 as an example and calculated its SampEn
at N = 300 and m = 1 using rt and rp, respectively. In account of the ability to detect CHF in operation,
rt was set as 0.15 and rp as 36 ms. Then we added 200 ms to its heart beats from number 121 to 140,
and the whole RR segment containing 300 heart beats was showed in Figure 10. As the figure indicates,
a DC drift was applied to the signal, thus the change in SampEn result of this RR segment might
influence the average value of the subject. Under this situation, we calculated the SampEn values
again and compared their variation. When using rt, the original SampEn result was 0.0388 and the
impacted one was 0.0517, which was a 33% increase of the previous value. Meanwhile, when rp was
applied, the original SampEn result was 0.4719 and the drifted one was 0.4635, indicating the latter
decreased only 2% when compared to the former. When more subjects from the database were tested,
the same outcome that rp changed at a lower rate still appeared.

Change percentage when DC drifts were enforced on ECG signals from the different combinations
of m, r and N was presented in Table 5. When N = 300, for all four threshold values, rp presented smaller
change percentage than rt, which implied our proposed physically meaningful threshold was more
stable when facing sudden drifts. The growth of m also showed the increase of change percentages for
both NSR and CHF groups. The same result appeared at N = 1000. When threshold increased, the
change percentage increased as well, but rp increased at a lower rate than rt. The analysis under both
circumstances confirmed rp had better robustness than rt. Moreover, when an extra period of time was
subtracted from one heartbeat interval, the same conclusion still applied.
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Table 5. Change percentage when impulses were enforced on ECG signals from the different
combinations of embedding dimension m changed from 1 to 2 and tolerance threshold r when
setting segment length N = 300 and N = 1000. The traditional rt changed from 0.10 to 0.25 with a step
of 0.05 and physically meaningful rp changed from 12 ms to 36 ms with a step of one sampling period
8 ms.

Threshold Value Group
N = 300 N = 1000

m = 1 m = 2 m = 1 m = 2

Traditional

rt = 0.10
NSR 8.01% ± 3.11% 9.40% ± 3.23% 2.74% ± 1.22% 3.09% ± 1.36%
CHF 4.19% ± 3.37% 4.88% ± 3.44% 1.38% ± 1.41% 1.49% ± 1.35%

rt = 0.15
NSR 34.16% ± 7.58% 35.34% ± 7.85% 9.15% ± 2.64% 9.46% ± 2.64%
CHF 39.57% ± 9.13% 40.50% ± 11.72% 5.09% ± 3.89% 5.45% ± 4.06%

rt= 0.20
NSR 32.62% ± 10.38% 33.79% ± 11.12% 14.10% ± 5.53% 14.80% ± 6.03%
CHF 51.67% ± 15.50% 53.81% ± 16.09% 13.93% ± 8.00% 15.37% ± 8.57%

rt = 0.25
NSR 33.44% ± 10.25% 35.38% ± 11.92% 14.76% ± 6.97% 15.34% ± 7.07%
CHF 52.84% ± 15.79% 54.81% ± 16.13% 28.79% ± 16.71% 30.29% ± 17.13%

Physically Meaningful

rp = 12 ms NSR 1.66% ± 0.19% 2.04% ± 0.25% 0.52% ± 0.07% 0.61% ± 0.09%
CHF 2.46% ± 0.93% 2.73% ± 0.91% 0.72% ± 0.22% 0.83% ± 0.25%

rp = 20 ms NSR 2.41% ± 0.49% 2.82% ± 0.55% 0.71% ± 0.11% 0.84% ± 0.16%
CHF 5.78% ± 7.85% 6.31% ± 7.94% 1.33% ± 0.89% 1.55% ± 1.00%

rp = 28 ms NSR 5.23% ± 9.20% 5.82% ± 9.70% 0.97% ± 0.20% 1.14% ± 0.25%
CHF 17.69% ± 24.66% 18.77% ± 24.69% 1.88% ± 2.02% 2.11% ± 2.18%

rp= 36 ms NSR 8.68% ± 11.05% 9.64% ± 11.90% 1.57% ± 1.94% 1.81% ± 2.01%
CHF 31.62% ± 28.61% 33.48% ± 29.46% 9.53% ± 16.70% 12.83% ± 22.59%

5. Discussion

As the change of tolerance threshold sometimes generated the same result in traditional SampEn
calculation, this study turned to the ECG signal itself and explored the relation between tolerance
threshold and sampling resolution. Aiming at the shortcoming of SampEn in AF detection, researchers
have changed the selection method for threshold parameters [14]. One process in their study involved
comparison between variable threshold and constant threshold, then the threshold was determined to
obtain a minimum numerator count of 5. Later examination with short-time AF episodes proved that
the use of 30 ms as a constant threshold would be more stable than the traditional threshold r = 0.20.
Our conception of adjusting SampEn in CHF detection partly came from this research. To avoid the
inconsistency and invalid values in previous method [8], we proposed a new tolerance threshold
with physical meaning, and verified its superiority over the traditional threshold, rt. Actually, the
examinations on both heart failure and AF data verified that constant threshold with physical meaning
would be more effective.

To test the clinical validity of the novel threshold rp, 83 subjects were enrolled (54 normal subjects
and 29 heart failure patients). SampEn with various combinations of (N, m) and statistical differences
for both rt and rp were analyzed. The consistency of SampEn results and statistical significance for rp

revealed it had a better performance in detecting CHF subjects compared to rt. The advantages of the
proposed rp are: (1) It avoided the invalid entropy values in each RR segment, (2) the selection of rp was
determined by the sampling resolution of physiological signals, thus more stable when applied to real
clinical applications, and (3) the flexible rp presented better robustness when dealing with fluctuation
in signals.

As mentioned above, when using rt, the increase of embedding dimension m led to the increase of
invalid entropy values for RR segments, thus the mean SampEn for one subject might not exist [34].
Moreover, the decrease of RR segment length N made the situation even worse. In contrast, our
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proposed rp was taken sampling resolution into account, and subsequently avoided the invalid entropy
values in calculation. Its adaptability to shorter time series made it more proper for clinical applications.

In this study, the original ECG signals for NSR and CHF groups were digitized at 128 Hz, but the
product of rt multiplying standard deviation might be smaller than one sampling period. Although
raising sampling resolution would solve the problem, it is expensive and not practical. Since different
physiological signals have their own sampling resolution and rp was represented in the form of
sampling period multiples, the variation of tested signals has no effect on the final outcome. The
stability of rp overcame the defects in using traditional threshold when facing various ECG signals.
Considering the fluctuation in original ECG signals caused by unexpected reasons, we also compared
the robustness between the usage of rt and rp. The results proved that rp was less vulnerable to the
sudden fluctuation of ECG signals than rt, therefore it has better robustness. When encountering
turbulence in practical applications, the proposed threshold rp showed a lower change rate, thus the
discrimination for CHF subjects would remain stable.

Some error factors, such as the magnitude of signals and the amount of noise when collecting
signals, would alter analysis process, thus lead to different results. The outcomes of our experiments
point out that these factors probably cause the performance issues of traditional SampEn method.
Since the selection of traditional threshold is prone to be affected by the noise, the higher entropy
values of NSR groups turn into the opposite results as threshold increases, which demonstrates such
instability. However, the instability is improved by the proposed physically meaningful threshold, and
noise analysis in our study has proved this.

There are limitations in this study. First, although we considered traditional threshold from 0.05 to
0.30 with a step of 0.01, and physically meaningful threshold from 1.5 to 26.5 times of sampling period
with a step of a whole sampling period for our general analysis, the calculation of statistical significance
and robustness was only performed on some threshold values. Those in-between values still remained
uncertain. Second, larger embedding dimension m was not considered in the current study, and in
account of clinical applications, it would be more favorable to test the proposed rp under shorter RR
segment length N. Third, to further explore the advantage of rp over the traditional threshold, more
analysis such as sensitivity and specialty should also be estimated. Moreover, the superiority of rp over
the traditional threshold should be tested across multiple databases.

In conclusion, the current study has put forward a new physically meaningful threshold based on
the sampling resolution of ECG signals for SampEn in detecting cardiovascular diseases. The better
performance of the proposed threshold rp over traditional threshold rt was proved in the analysis of
statistical significance and stability. Our proposed threshold also avoided the invalid entropy results
during the traditional SampEn calculation and could be applied according to the sampling period or
sampling resolution of ECG signals. Therefore, the proposed rp would be more adaptive and stable in
clinical applications and has better performance in cardiovascular diseases detection.
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