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Abstract: An increasing amount of electric energy is consumed by computers as they progress in
function and capabilities. All of it is dissipated in heat during the computing and communicating
operations and we reached the point that further developments are hindered by the unbearable
amount of heat produced. In this paper, we briefly review the fundamental limits in energy
dissipation, as imposed by the laws of physics, with specific reference to computing and memory
storage activities. Different from previous approaches, we will focus on the sole dynamics of the
binary switches, the building blocks of the logic gates and digital memories, without invoking any
direct connection to the notion of information.
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1. Introduction

In the last fifty years, the Information and Communication Technology (ICT) sector has
experienced a huge growth, mainly fostered by the ability of the underlying semiconductor industry to
repeatedly scale down the size of the CMOS-FET (Complementary Metal-Oxide Semiconductor-Field
Effect Transistor) switches, the building block of present computing devices, and to increase computing
capability density up to a point where billions of switches have been assembled in a square centimetre.
Further progress in this direction is thwarted by the amount of energy dissipated during switch
operations: the resulting power density for these switches at maximum packing density would be on the order
of 1 MW/cm2, orders of magnitude higher than the practical air-cooling limit. [1]

There is little doubt that managing efficiently the use of energy, i.e., drastically reducing heat
production, is a key aspect to be considered in designing future computing systems, especially for
applications in smart sensors and Internet of Things devices, where the small dimension and the
mobility characteristics require innovative solutions [2].

The energetic issues of future computers require a clear understanding of their functioning in
terms of efficiency, i.e., the amount of operations performed per second, versus the amount of energy
dissipated [3]. The search for today’s ultimate efficiency in computing is somehow similar to the search
for the maximum efficiency in the functioning of heat engines that gave birth to the thermodynamics
in the 18th and 19th centuries. However, different from the work done on steam engines, aimed at
reaching the ultimate limit set by the Carnot theorem, here the ultimate physical limits in energy
dissipation during computation is still a topic of debate [4]. The controversy is mainly associated with
the role to be assigned to the notion of information, as introduced by Shannon [5] in the early 1940s,
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and applied by Ralph Landauer [6] in the framework of what is nowadays called the Thermodynamics
of information [7]. Different from other approaches, in this paper, we will show that the notion of
information, undoubtedly very useful in dealing with the mathematical aspects of computing tasks,
is not necessarily required when one is interested in the mere dynamics of the machinery of the
computing itself. As we will show in the following, we can carry-on our analysis of the energetic
efficiency, just focusing on the functioning of the very basic physical elements of the digital computer:
the binary switches. We show that the energetic analysis of the two main tasks of the digital computing
process, i.e., logic-arithmetic operations and memory storage, can be performed without any recourse
to the notion of information.

2. Binary Switches

Automatic digital computing is presently performed by manipulating binary logic states encoded
in physical devices. The most relevant devices employed in such a task are logic gates and memories.
In binary logic, where the logic states are just two, often identified with logic state 0 and logic state
1, the state manipulation is performed according to the Boolean logic and arithmetic operations are
realised by the repeated application of basic logic operators called logic gates. All of the logic and
arithmetic operations, and thus all digital computing, can be performed by assembling together sets of
universal logic gates, like the NAND gate.

The NAND gate, whose logic output is 1 when and only when its two logic inputs are 0, and 0
otherwise, can be realised by employing two subsequent binary switches, as illustrated in Figure 1.
The role of binary switch can be played by any practical device capable of assuming two different
physical states (often denominated open and close) as a result of the application of an external force.

FIN1

VOUT

high-V

FIN2

low-V

VIN1

VOUT

high-V

VIN2

low-V

Figure 1. Universal logic gate NAND. (Left) The logic output OUT is here associated with an electric
voltage value across a simple circuit: high-V corresponds to the logic state 1 and low-V corresponds to
the logic state 0. Binary switches are represented here as mechanical switches that can assume the logic
state “0” (physical state open) or the logic state “1” (physical state close). When both the switches are in
the close position, the circuit behaves as a simple conductor and the voltage VOUT position assumes the
value low-V. (Right) Logic gate NAND implemented using transistors as binary switches. In this case,
both the input logic state and the output logic state are physically encoded into electrical voltages.

In order to perform logic and arithmetic operations, we need to change the state of a binary
switch. In general, this can be realised by the application of a generalised force F that, by acting from
outside on the switch, induces state changes, i.e., a switch event. We can call F01 (F10) the generalised
force acting to bring the switch from 0 to 1 (1 to 0). Following this approach, we can easily identify
two different classes of devices that can be usefully employed as binary switches. We will call them
combinational and sequential switches.

In a combinational switch, we observe the following behaviour: when no external force is present,
under equilibrium conditions, the switch is found in the logic state 0. When an external force F01

is applied, it switches to the logic state 1 and remains in that state as long as the force is applied.
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Once the force is removed, it goes back to the logic state 0. A common example of a combinational
switch is the electro-mechanical relay, used in many circuits involving lighting. Here, when a magnetic
induction force is applied, the relay changes its state from open to closed and goes back to the initial
state (open) when the force is removed. Another important example of a combinational switch is
the transistor, widely employed in modern computers where the input force is represented by an
externally applied voltage that makes the transistor switch from the high-impedance (non conducting)
to a low-impedance (conducting) condition.

On the other hand, in a sequential switch, we observe a different behaviour: if the switch is in the
logic state 0, it can be changed into the state 1 by applying an external force F01, as before. However,
in this case, when the force is removed, the switch remains in the logic state 1. This is true also for
the switch event from 1 to 0 where the force F10 has to be applied. We can say that, different from
the combinational switch, the sequential switch remembers its state after the removal of the force.
For such reason, they are good candidates for realising storage devices and are widely employed in
computer memories.

2.1. Energy Dissipation in Charge-Based Switch Devices

As we have mentioned earlier, present computers are built using CMOS (Complementary
Metal-Oxide Semiconductor) transistors, employed both as combinational and, in conjunction with
capacitors, as sequential switches. For these devices, we face a number of dissipative effects that are
due to their peculiar functioning and/or to the technology employed (semiconductor based, electric
charge devices). For them, the most relevant source of dissipation during the switching [3] is associated
with the charging and discharging of the electrical capacitances that are used to set the required voltage
for the functioning of the transistor. If C is the capacitance involved, the amount of energy dissipated
per switch event is twice the energy stored in the capacitor and amounts to:

EC = CV2, (1)

where V is the voltage across the capacitor plates. If the frequency of switching is f , we have a resulting
dissipated power equal to

PC = αCV2 f , (2)

where α is a coefficient that ranges from 0 (extremely smooth switching) to 1 (square wave switching).
This quantity is usually referred to as dynamic dissipation.

An additional source of dissipation arises from the so-called static leakage due to the presence of
a subthreshold leakage phenomenon, i.e., small electric currents that occur between the source and
drain of a transistor when it is in the subthreshold region and no conduction is expected. With the
progressive reduction of the voltage V, operated with the aim of decreasing the dynamic dissipation
due to the switching, the subthreshold leakage has increased its importance and with voltages as low
as 0.2V, leakage can exceed 50% of total power consumption [8]. In absolute values, the amount of
energy dissipated during a single switch event has been continuously reduced over the last forty years
and has presently reached the value of approximately 10−17 J [3].

From the present description of the dissipation sources in charge-based switch devices, it appears
clear that such phenomena are necessarily associated with the physical nature of the devices employed
as binary switches. Perhaps it should be expected that, once we change the physical device, for example
substituting the electronic transistor with a nano mechanical cantilever, the dissipative mechanisms
change as well. Thus, in order to inspect the fundamental limits in energy dissipation for computing
devices, we should proceed with identifying a general physical model of the binary switch and look
for some dissipative mechanism that does not depend on the physical realisation of the switch itself
and on the functioning principles being mechanical, optical, electro-mechanical or purely electronic.
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2.2. The Physics of Binary Switches

Let’s consider the general description of a binary switch, as previously introduced. This can be
represented in terms of a one degree-of-freedom dynamic system, subjected to a confining potential
energy and external forces. If we assume x(t) as the relevant variable, we can define two identifiable
states, e.g., x < xTH (logic state 0), x > xTH (logic state 1), where xTH is an arbitrary threshold value.
The variable x(t) can represent an electric voltage (as in a transistor) or a position (as in a mechanical
cantilever) or a value of the magnetisation (as in magnetic memories), just to mention a few relevant
examples. Here, we are interested in those features of the variable x(t) that are general enough to be
common to all the cited cases. The time evolution of x(t) can be described in terms of a second order
differential equation, Langevin type:

ẍ = −dU(x)
dx

− γẋ + F(t) + σξ(t), (3)

where U(x) is the confining potential, F(t) is the generalised force that produces the switch event,
γ is the dissipative constant, assumed to be a viscous damping-like friction, and ξ(t) is a stochastic
function with Gaussian distribution, zero mean and unitary standard deviation. The presence of a non
negligible stochastic force is required due to the fact that present binary switches have reached small
physical dimensions at the point that the presence of fluctuations cannot be neglected. At thermal
equilibrium and in the presence of thermal noise as a dominant noise source, the spectral properties of
ξ(t) are set by the corresponding fluctuation-dissipation relation.

The dynamics represented in (3) can accommodate both the combinational and the sequential
switches, depending on the specific choice of the potential function U(x). Without loss of generality,
here we will consider

U(x) = a
1
2

x2 (4)

for the combinational switch and
U(x) = −a

1
2

x2 + b
1
4

x4 (5)

for the sequential switch—with a and b being properly chosen constant parameters.
Due to the presence of the stochastic force, the system dynamics can be conveniently represented

through the time evolution of the corresponding probability density p(x, t) that can be statistically
computed from (3) or obtained as the solution of the associated Fokker–Planck equation [9]. The two
states, 0 and 1, are realised with probability, respectively, with p0 and p1 (p0 + p1 = 1) given by:

p0 =
∫ xTH

−∞
p(x, t)dx, p1 =

∫ +∞

xTH

p(x, t)dx, (6)

with xTH a properly chosen threshold value. In Figure 2, we illustrate the two potentials U(x) with the
associated probability densities p(x, t) corresponding to the logic states 0 (left) and 1 (right).

We note that, due to the presence of the fluctuating force, the stochastic process x(t) will oscillate
around the minima of the potential U(x). For the sequential potential in (5), this implies that x(t)
performs occasional random crossings between the two wells and, at equilibrium, with a symmetric
potential and zero average fluctuating force, it requires that p0 = p1.



Entropy 2019, 21, 822 5 of 10

"0" "1"

"0" "1"

"0" "1"

U
(x
)

P
(x
)

Combinational Sequential

xHT xHT

xHT xHT

P
(x
)"0" "1"

U
(x
)

P
(x
)

P
(x
)

U
(x
)

U
(x
)

Figure 2. Potential functions U(x) with the associated probability densities p(x, t). (Left column)
potential function U(x) for the combinational switch. Here, the threshold xTH = 1.2. Upper graph:
p(x, t) associated with the logic state 0. Here, p0 ' 1 and p1 ' 0. Lower graph: p(x, t) associated with
the logic state 1. Here, p0 ' 0 and p1 ' 1. (Right column) potential function U(x) for the sequential
switch. Here, the threshold xTH = 0. Upper graph: p(x, t) associated with the logic state 0. Here,
p0 ' 1 and p1 ' 0. Lower graph: p(x, t) associated with the logic state 1. Here, p0 ' 0 and p1 ' 1.

3. Fundamental Energy Limits in Binary Switches

We are now interested in understanding what the minimum energy required is for operating
binary switches.

In order to fix our ideas, let’s consider the switch dynamics defined by (3). For what we have seen
so far, the logic switch event consists of the transformation of the probability density, such that, for the
switch 0 to 1, the initial p0 ' 1 and p1 ' 0 become p0 ' 0 and p1 ' 1, while, vice versa, for the switch
1 to 0, the initial p0 ' 0 and p1 ' 1 become p0 ' 1 and p1 ' 0. It is clear that, in order to understand
what the minimum energy involved is, we have to take into account all the possible energy processes
associated with such a transformation [10]. Thus, in addition to taking into account the potential
energy change and the role of friction, we also have to consider the change in the system entropy. Here,
the system entropy associated with the stochastic process x(t), can be computed according to Gibbs as:

S = −kB

∫ +∞

−∞
p(x, t) ln p(x, t), (7)

with kB being the Boltzmann constant. In order to understand what the minimum energy involved is,
we will consider the two switch families separately.

3.1. Combinational Switches and Logic Gates

As we have anticipated above, combinational switches are the building blocks of logic gates that
are realised by assembling together one or more combinational switches. Specifically, we need two
switches to make a NAND gate that, being a universal gate, can be used in all the logic and arithmetic
operations. Accordingly, the minimum energy required to operate a logic gate is identified once we
define what the minimum energy required is to operate the combinational switch.

We note that logic states 0 and 1 do not have the same energy due to the shape of the potential
in (4). If we indicate with ∆E = E1 − E0 the potential energy difference, it is clear that, in order
to perform the switch, the deterministic force F(x, t) has to perform a work at least equal to ∆E,
against the potential energy. What about the other forces? The stochastic force ξ(t) has zero mean;
thus, on average, the work performed is zero. Finally, the dissipative force γẋ performs a dissipative
work that is proportional to the speed of the switch. In the adiabatic limit, i.e., when the switch event
is produced with ẋ → 0, the dissipated energy tends to zero. Due to the presence of the fluctuations,



Entropy 2019, 21, 822 6 of 10

we have to consider the existence of a thermal bath that exchanges a certain amount of heat equal to
T∆S. However, due to the linearity of the potential, it is always possible to choose a F(x, t) such that
the system entropy at the beginning and at the end of the switch is the same. Thus, we have ∆S = 0
and no minimum net contribution from heat is required. Based on this analysis, it is clear that the
work done by the deterministic force F(x, t) during the 0 towards 1 switch is the opposite of the work
done during the 1 towards 0 switch.

In summary, if we are capable of performing the switch event with arbitrarily small velocity,
the amount of work done during the 0 to 1 switch being equal to the 1 to 0 switch, and, these events
being on average equally likely in a long computation task, we can conclude that it is possible,
at least in principle, to perform such a task by spending zero energy. In order to better illustrate this
point, we performed an experiment whose results have been discussed in Ref. [11], where a micro
electro-mechanical cantilever has been employed as a combinational switch. In Figure 3, we show
the amount of energy dissipated during a cycle of two subsequent switches 0 to 1 to 0, performed
at different velocities. It is apparent that, increasing the protocol time, the produced heat decreases
following a power law (τ−3

p ), in good agreement with a friction model used to account for the velocity
dependent dissipation [11].

τp (ms)

0.5

0.3

0.1

0 5.0 10.0

Q
/k

B
T

Figure 3. Average heat production during the cycled combinational switch operation as a function
of protocol time τp. By increasing the protocol time, the produced heat decreases following a power
law. The average heat Q is shown here in kBT units, where kB is the Boltzmann constant and T is the
room temperature.

3.2. Sequential Switches and Memory Devices

If combinational switches are the building blocks of logic gates, sequential switches are the basic
components of digital memories.

In this case, two different operations have to be considered in order to account for the energy
dissipation during their functioning. The first operation is called reset and takes place when the
sequential switch is at equilibrium. In this case, in order to write a memory bit, we need to break
the equilibrium condition and to re-set the binary switch in one of the two logic states. The second
operation is the switch and it is carried out when the initial state is known and one needs to change it.

3.2.1. The Reset Operation

As we have previously mentioned, the equilibrium condition of x(t) according to (3) and (5)
is represented by a symmetric probability density p(x, t), where p0 = p1 = 0.5 (see Figure 4, left).
In order to store a binary digit, we need to set our memory in a given state, 0 or 1. This operation
requires a change in the probability density that becomes entirely confined within one well of the
potential. In Figure 4, we show the change in p(x, t) for the reset to 0 operation. Here, we have to
deal with the heat exchanged with the thermal bath because the system entropy at the beginning
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and at the end of the switch is not the same. It is easy to show that the required change in entropy
is ∆S = −kB log 2 and thus a minimum net contribution of Q = kBT log 2 is required. Such a work is
realised by the deterministic force. Finally, the dissipative work done by the frictional force can be
reduced to zero if a proper adiabatic protocol is followed.

"0" "1""0" "1"

U
(x
)

P
(x
)

Reset

Figure 4. Reset to 0 operation. (Left) probability density p(x, t) at equilibrium. In this condition,
p0 = p1 = 0.5. (Right) probability density p(x, t) after the reset operation. In this condition, p0 ' 1
and p1 ' 0. During the reset operation, the system entropy decreases by an amount ∆S = −kB log 2.
The same amount of entropy change is required for the reset to 1 operation.

3.2.2. The Switch Operation

The switch event is pictorially represented in the right column of Figure 2, where p(x, t) associated
with the logic state 0 is shown in the upper graph. Here, p0 ' 1 and p1 ' 0. The switch event consists
of changing the p(x, t) into that one represented in the lower graph, associated with the logic state 1
where p0 ' 0 and p1 ' 1. Different from the previous case of the combinational switch, here, the logic
states 0 and 1 have the same energy thanks to the potential symmetry in Equation (5) and no net work
is required by the deterministic force F(x, t). Once again, particular care has to be devoted in selecting
a switch protocol that keeps the system as close to equilibrium as possible (adiabatic transformation)
in order to minimise the action of the dissipative force γẋ. We observe that this requirement can be
difficult to satisfy. As a matter of fact, there are two conflicting requirements: on one side, we want to
perform a switch that is slow enough to dissipate little or no energy at all and, on the other hand, we
want to perform the switch in a time that is shorter than the relaxation time that brings the p(x, t) to its
relaxed state with p0 = p1 = 0.5. In the paper by Gammaitoni et al. [12], a possible protocol capable of
satisfying such a requirement is illustrated together with some experiment performed by using nano
magnets. In summary, also in this case, the minimum heat exchanged with the thermal bath can be
zero, by the moment that the change in entropy is zero.

3.2.3. Memory Preservation

Fundamental for the functioning of the memory is that the potential barrier allows for statistically
confining x(t) for a given time within one of the two wells (Figure 2, right), hence ensuring that one
given bit is effectively stored. As we have anticipated, this confined state represents a non-equilibrium
condition that evolves, within the system relaxation time τk, to statistical equilibrium (Figure 5).
This process is described via the time evolution of the probability density function p(x, t) as follows.
Let us assume we have a memory where bit 1 is stored. The initial probability density p(x, 0) shows
a sharp peak centred in the right well (Figure 5, leftmost panel). According to the dynamics of the
system, p(x, t) will first relax inside the right well and then it will diffuse into the left well, thus
developing a second peak. At any given time t, the probability that the system encodes the wrong
logic state is represented by p0(t) that grows towards the equilibrium condition p0 = 0.5 when the
memory is statistically lost (Figure 5, rightmost panel).

In order to avoid memory loss, a periodic refresh procedure is performed on any binary switch.
This procedure consists of reading and then writing back the content of the memory, and it is performed
at intervals tR [13]. The refresh operation restores a non-equilibrium condition by shrinking the width
of each peak of p(x, t) back to its original state and requires some energy to be dissipated. This is due
to the fact that, during this transformation, external work is done by the deterministic force in order
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to reduce the entropy associated with the increased width of the distribution. Such a work can be
estimated by measuring the entropy change. In addition, we have to consider the losses associated
with the friction if the transformation speed is not kept small enough.

"0" "1" "0" "1" "0" "1" "0" "1"

U
(x
)

P
(x
)

Figure 5. Panels from left to right show the memory-loss mechanism when the bit 1 is initially
stored. The curves give a qualitative time evolution of p(x, t) as the relaxation to equilibrium process
takes place.

The entropy change can be computed [14] by assuming that the dynamics of x(t) is confined
within one well and it can be approximately described by the dynamics of a harmonic oscillator,
characterised by a Gaussian probability density function. Such an approximation is valid if tR is
much smaller that the global relaxation time τk. In this perspective, the change in entropy can be
computed as:

∆S = kB ln

(
σi
σf

)
, (8)

where σi is the target standard deviation of the Gaussian peak to be achieved with the refresh and σf
is the standard deviation of the Gaussian peak before the refresh. While σi can be arbitrarily chosen,
σf depends on tR [14]. Hence, the minimum required energy to operate a single refresh is Q = T∆S.

In order to test the practical attainability of this result, we performed an experiment [14] by
employing a micro electro-mechanical cantilever. A tiny NdFeB magnet is attached to the cantilever
tip and an external electromagnet is placed in front of the cantilever in order to change the potential
stiffness by changing the distance between the two magnets. The probability density change associated
with the refresh operation is obtained by changing the stiffness of the potential.

In Figure 6, we show the measured values of Q required to perform a single refresh operation as a
function of the protocol time tp, for fixed σi and σf . We can see that Q approaches the minimum value
given by Equation (8) when tp increases towards the quasi-static protocol condition. In a practical
memory, such a condition is clearly attainable only if the required protocol time satisfies the given
condition tp � tR � τk.

Figure 6. Experimental results of produced heat for a single refresh operation as a function of the
protocol time tp. By increasing tp, the produced heat tends to the lower bound Q = −T∆S represented
here by the dashed line. The solid squares represent the heat from the experiment, while the solid line
is the fit with the Zener dissipative model.
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Provided that we want to keep the memory, i.e., preserving the stored bit with a probability of
memory failure smaller than a given PE, for a general time t, we computed [14] the minimum energy
dissipation required as:

Qm = −NT∆S =
t

tR
kBT ln


√

σ2
w+e−

tR
τw (σ2

i −σ2
w)

σi

 , (9)

where N is the number of subsequent refresh operations performed, σw and τw are, respectively,
the equilibrium standard deviation and the relaxation time inside one well. As it is well apparent, such
an amount of energy dissipated can be, in principle, reduced to zero, provided that the probability
distribution is kept constantly close to the equilibrium distribution and/or if the refresh time tR is
arbitrarily small.

4. Conclusions

In conclusion, we have briefly reviewed the fundamental limits in energy dissipation, as imposed
by the law of physics, when basic computing tasks are performed. We have shown that logic gate
operations, made by operating sets of combinational switches, can be, at least in principle, performed
without any spending of energy, provided an optimal protocol is followed [15–18]. The same conclusion
can be applied when sequential switches are operated as one-bit memory devices. The only exception
is represented by the reset operation, necessarily required when a memory device is written for the
first time. We have also shown that, once a one-bit memory has been written, its content can be kept
for a given (finite) time t without spending any energy, provided the refresh operation is performed
often enough so that the system does not change its entropy significantly.

Although the focus of this work is on fundamental limits, one might wonder what help it could be
to know that, in principle, a computer can be operated by spending zero energy but, in practice, this is
obtained only under the condition that all the operations are performed adiabatically, i.e., extremely
slowly. In our opinion, the zero-energy limit, once established without any controversy, is a prospective
goal that can lead the future research for novel, more energy-efficient technologies, compared to the
present CMOS. In order to fix the ideas, we notice that the most performant present commercial
switches take approximately 10−12 s to switch with a dissipated power of 10−4 W. In comparison,
a micro-mechanical logic switch, built according to [11] would take approximately 10−3 s to switch
with a dissipated power of 10−19 W. For an analogy, a biological neuron takes approximately 10−2 s to
switch with a dissipated power of 10−14 W [19].
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