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Abstract: Turbo codes have been widely used in wireless communication systems due to their
good error correction performance. Under time division long term evolution (TD-LTE) of the 3rd
generation partnership project (3GPP) wireless communication standard, a Log maximum a posteriori
(Log-MAP) decoding algorithm with high complexity is usually approximated as a lookup-table
Log-MAP (LUT-Log-MAP) algorithm and Max-Log-MAP algorithm, but these two algorithms have
high complexity and high bit error rate, respectively. In this paper, we propose a normalized Log-MAP
(Nor-Log-MAP) decoding algorithm in which the function max* is approximated by using a fixed
normalized factor multiplied by the max function. Combining a Nor-Log-MAP algorithm with a
LUT-Log-MAP algorithm creates a new kind of LUT-Nor-Log-MAP algorithm. Compared with
the LUT-Log-MAP algorithm, the decoding performance of the LUT-Nor-Log-MAP algorithm is
close to that of the LUT-Log-MAP algorithm. Based on the decoding method of the Nor-Log-MAP
algorithm, we also put forward a normalization functional unit (NFU) for a soft-input soft-output
(SISO) decoder computing unit. The simulation results show that the LUT-Nor-Log-MAP algorithm
can save about 2.1% of logic resources compared with the LUT-Log-MAP algorithm. Compared
with the Max-Log-MAP algorithm, the LUT-Nor-Log-MAP algorithm shows a gain of 0.25~0.5 dB in
decoding performance. Using the Cyclone IV platform, the designed Turbo decoder can achieve a
throughput of 36 Mbit/s under a maximum clock frequency of 44 MHz.

Keywords: turbo decoder; normalized-Log-MAP algorithm; normalization functional unit;
LTE-advanced; cyclone IV

1. Introduction

Turbo codes were proposed in 1993, and have been widely used in 3G and 4G wireless
communication systems due to their good error correction [1]. Yang et al. proposed new, partially
information-coupled (PIC) turbo codes in 2018 [2], which can improve decoding performance without
changing the decoder. The Log-MAP algorithm was often used in decoding turbo codes. In order
to reduce logic resource consumption with the Log-MAP algorithm, Martina et al. proposed a
turbo decoder with low complexity based on an approximated Log-MAP algorithm in 2014 [3].
Compared with the Log-MAP algorithm, the approximate Log-MAP algorithm can save nearly 30%
of logic resources by linear approximation of the function max*. In 2015, Ivanov et al. summarized
the common approximation methods of the max* function [4,5]. In 2018, Liu et al. proposed an
improved turbo decoder that approximates the function max* with a Taylor series [6]. The idea of
normalized approximation mainly comes from the low-density parity check (LDPC) decoder based
on the normalized min-sum (NMS) algorithm, as proposed by Wu et al. in 2010 [7], and we use
this method to approximate the function max*. In 2011, Sun et al. proposed a dynamic interleaving
structure based on a quadratic permutation polynomial (QPP) interleaver that performs real-time
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interleaving address output and reduces storage unit consumption [8,9]. Sun et al. also proposed a
flexible functional unit (FFU) for a soft-input soft-output (SISO) decoder, while a turbo decoder achieves
a throughput of 1280 Mbit/s with a clock frequency of 400 MHz under 3GPP-LTE and LTE-advanced
standards [9,10]. Rohit et al. put forward an idea for a hybrid algorithm in 2013, and its decoding
performance is better than a Log-MAP algorithm after combining a LUT-Log-MAP algorithm and
Linear-Log-MAP algorithm in every state metric calculation [11], although this implementation results
in a large consumption of logic resources. In 2017, Zhen et al. proposed a calculation method of the
function max* that can be applied for reverse calculation in engineering implementation [12].

In this paper, we propose a Nor-Log-MAP algorithm that uses a fixed normalized factor to
approximate the function max*. According to the idea of a hybrid algorithm [11], we also propose a
LUT-Nor-Log-MAP algorithm that uses different algorithms in different metric calculation states so as
to reduce the number of lookup tables and consumption of logical resources. LUT-Nor-Log-MAP is a
new kind of algorithm that combines Nor-Log-MAP with LUT-Log-MAP. The LUT-Log-MAP algorithm
is used to calculate forward-state and backward-state metrics, and the Nor-Log-MAP algorithm is
used to compute external information and posteriori information. Based on the LUT-Nor-Log-MAP
algorithm, we incorporated an FFU and a normalization functional unit (NFU) into the design of the
SISO unit.

The rest of this paper is organized as follows. Section 2 reviews turbo decoding principles and
the Log-MAP algorithm. Section 3 presents the Nor-Log-MAP algorithm. Section 4 introduces the
LUT-Nor-Log-MAP algorithm and the structure of the SISO unit. Section 5 analyzes the proposed
algorithm. Section 6 presents the synthesis results and comparisons. Section 7 concludes the paper.

2. Turbo Decoding Principles and Log-MAP Algorithm

2.1. Turbo Decoding Principles

The decoding process of turbo codes involves the exchange of soft information between two
SISO decoders [10]. In turbo encoding and decoding processes, we use the same interleaver, where
de-interleaving is the inverse process of interleaving. The SISO decoder consists of three input ports,
which are system information λc(uk), parity information λc(pk), and a priori information λa(uk) which
is computed by another SISO decoder. Two output ports of the SISO decoder generate external
information λe(uk) and posteriori information λo(uk). The different superscripts represent information
corresponding to different SISO decoders, and subscript k denotes k-th bit information of the current
variable. Π and Π−1 denote interleaving and de-interleaving, respectively. When the iteration
stopping criterion is satisfied, decoding results can be obtained from λe(uk) after the de-interleaved
and hard-decision operations [11,13]. The turbo decoding procedure is shown in Figure 1.
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2.2. Log-MAP Algorithm

A priori information is computed by Equation (1), where the initial value of priori information is
set to zero for the first iteration [8].

λa(uk) = log
P(uk = 1)
P(uk = 0)

(1)

In SISO, branch metric γk and extrinsic branch metric γe
k are computed by Equations (2) and (3),

where n is the number of bits at the output of the component convolutional encoder of the turbo code,
and i denotes the i-th bit of codeword [8].

γk = uk · (λc(uk) + λa(uk)) +
n∑

i=1

p(i)k · λc(p
(i)
k ) (2)

γe
k =

n∑
i=1

p(i)k · λc(p
(i)
k ) (3)

Then, we use Equations (4) and (5) to compute the forward and backward metrics recursively,
sk and sk−1 being the two states on opposite sides of the branch metric.

αk(sk) = max
sk−1

∗
{
αk−1(sk−1) + γk(sk−1, sk)

}
(4)

βk(sk) = max∗
sk+1

{
βk+1(sk+1) + γk(sk, sk+1)

}
(5)

Finally, external information and posteriori information are computed by Equations (6) and (7),
and generated posteriori information is taken as the prior information for another SISO decoder in the
next iteration.

λe(uk) = max∗
uk=1

{
αk−1(sk−1) + γk(sk−1, sk) + βk(sk)

}
−max∗

uk=0

{
αk−1(sk−1) + γk(sk−1, sk) + βk(sk)

}
(6)

λo(uk) = λe(uk) − λa(uk) − λc(uk) (7)

The function max* in Equations (4)–(6) is defined as

max∗(a, b) = max(a, b) + log(1 + e−|a−b|) (8)

The variable Lach is defined as Equation (9).

Lach = λa(uk) + λc(uk) (9)

3. The Normalized Log-MAP Algorithm

The function log(1 + e−|a−b|) is a nonlinear calculation in Equation (8) that will consume lots
of logic resources in decoder design, so we need to simplify the function log(1 + e−|a−b|) in max*.
In [4,5], two commonly used algorithms for approximating the nonlinear function log(1 + e−|a−b|) are
as follows:

(a) The max∗ approximation method of the Max-Log-MAP algorithm is shown in Equation (10).

log(1 + e−|a−b|) ≈ 0 (10)

(b) The max* approximation method of the LUT-Log-MAP algorithm is shown in Table 1 [9].
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Table 1. The max* approximation method for a lookup table.

|a−b| |a−b|=0 0<|a−b|≤0.75 0.75<|a−b|≤2 |a−b|>2

log(1 + e−|a−b|) 0.69 0.5 0.25 0

The Max-Log-MAP algorithm consumes fewer logic resources, but has a poor decoding
performance. The LUT-Log-MAP algorithm has a better decoding performance, but consumes
a large amount of logic resources. The LUT-Log-MAP algorithm reduces the complexity of the
Log-MAP algorithm in hardware implementation with only 0.1 dB decoding performance loss, so it can
be said that the performance of the LUT-Log-MAP algorithm is better. However, the LUT-Log-MAP
algorithm involves a large number of lookup table operations in hardware implementation, as well as
having a large consumption of logical resources. So finding a max* approximation method becomes the
key point in obtaining considerable decoding performance and reducing logic resource consumption.

It can be seen from Figure 2 that function log(1+ e−|a−b|) has a small range of 0 < log(1+ e−|a−b|) <
0.7 with arbitrary real numbers a and b. Therefore, we try to establish Equation (11) by finding a fixed
normalization factor η (η > 1).

max(a, b) + log(1 + e−|a−b|) ≈ η ·max(a, b) (11)
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Figure 2. The curve of function log(1 + e−|a−b|).

From the approximation method of the LUT-Log-MAP algorithm [6], when |a− b| > 2, the value
of function log(1 + e−|a−b|) approaches zero and becomes the Max-Log-MAP algorithm [7]. A lookup
table is used to facilitate the algorithm in hardware implementation. Combining this idea, the proposed
Nor-Log-MAP algorithm will determine the value of η under condition |a− b| ≤ 2, and the value of
η in |a− b| > 2 will be equal to 1. Then, the optimal range |a− b| can be verified under this fixed η.
The Nor-Log-MAP algorithm based on the above concept is shown in Equation (12).

max∗(a, b) ≈
{
η ·max(a, b)
max(a, b)

, i f
∣∣∣a− b

∣∣∣< range
, otherwise

(12)

Turbo codes with a 1/2 code rate and 192 code length are used in a MATLAB simulation. As the
final result needs to support hardware implementation, all the variables’ values in the algorithm will
go through Q2 quantization (Q total bits with 2 fractional bits) [8]. The Q2 quantization involves a
decimal number with two fractional bits going through binary conversion, followed by the removal
of the fractional bits and converting into a decimal number. Therefore, in the process of simulation,
|a− b| ≤ 2 will be |a− b| ≤ 8 by Q2 quantization. We can achieve the lookup table method based on Q2
quantization, as shown in Table 2 [8], and this method is also used in normalized quantization.
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Table 2. The lookup-table method based on Q2 quantization.

|a−b| |a−b|=0 0<|a−b|≤3 3<|a−b|≤8 |a−b|>8

log(1 + e−|a−b|) 3 2 1 0

In order to make Figures 3–5 clearer, we omit other poor performance curves. Figure 3 shows
the effect of decoding performance with different normalization factors η(1 ≤ η ≤ 1.25) under the
range of |a− b| ≤ 8 with a step size of η = 0.05. Figure 3 shows that we can achieve the best decoding
performance when η = 1.1, and the decoding performance was low when η was between 1 and 1.25.
We set η = 1.1 as the center to find a more accurate η. In Figure 4, we achieved the best decoding
performance when η was between 1.11 and 1.14. Considering that addition will reduce more logic
resource consumption than multiplication in a hardware simulation, we can change the multiplication
of η and the function max* into an addition of the max and its shift value. But addition can only be
performed when the fractional part of the normalization factor η is 2−n (n ∈ N∗). Since the fractional
part of the normalization factor η is constrained as the form of 2−n (n ∈ N∗) (e.g., 1.5, 1.25, 1.125, etc.),
there are not many legal options for this factor. In our work, the value of normalization factor η is
taken as 1.125.
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In addition, our experiments illustrate that these legal options result in very slight performance
differences, as shown in Figures 3 and 4. The optimal factor can be discovered from the experiments
that used a 192 code length, as described in this study. However, the greatest advantage of the proposed
normalization factor lies in greatly reducing the logic resources in the hardware implementation, while
maintaining a similar performance or having a negligible loss of performance. In this view, the factor
is independent of code length or code rate to some extent.

Figure 5 shows the effect of decoding performance under the normalization factor η = 1.125 with
different |a− b| ranges, where we define |a− b| < range. In Figure 5, the decoding performance is better
when range < 9 and range < 10, and the decoding performance with range < 9 is better than that
range < 10 with a signal noise ratio (SNR) from 1.5 to 2.8 dB. Considering decoding performance with
a medium to high SNR, the range |a− b| can be determined as |a− b| < 9. Therefore, the Nor-Log-MAP
algorithm can be rewritten as Equation (13). In the hardware simulation, Equation (13) can be realized
by Equation (14) after binary conversion, where max (a, b) × 0.001 can be computed by intercepting
the corresponding data based on selected bit width and the number of decimal digits. During the
hardware simulation, 7-bit channel information is used, where 5 bits are integers and 2 bits are decimals.
When computing, the data part that exceeds two decimal places is removed, however this results in
performance loss. As can be seen from Figure 6, there is a little gap between the removed extra decimal
places and the complete data in decoding performance. We also know that hard decision in turbo
decoding relates to the sign bit of information directly rather than the absolute value of the data. In
this way, the algorithm can replace multiplication with an addition operation, and will reduce some
logic resource consumption compared with the lookup table method.

max∗(a, b) ≈
{

1.125 ·max(a, b)
max(a, b)

, i f
∣∣∣a− b

∣∣∣< 9
, otherwise

(13)

max∗(a, b) ≈
{

max(a, b) + max(a, b) ∗ 0.001
max(a, b)

, i f
∣∣∣a− b

∣∣∣< 9
, otherwise

(14)

The comparison between the proposed Nor-Log-MAP algorithm and other approximate algorithms
in decoding performance is shown in Figure 7. As can be seen, the decoding performance of the
proposed Nor-Log-MAP algorithm is superior to the Max-Log-MAP algorithm, and has a maximum
gain of 0.25 dB in decoding performance. Compared with the Log-MAP algorithm and LUT-Log-MAP
algorithm, the Nor-Log-MAP algorithm has some disadvantages, but the decoding performance of
the Nor-Log-MAP algorithm is close to (or even surpasses) the LUT-Log-MAP algorithm with a high
SNR. Considering that the logic complexity of the Nor-Log-MAP algorithm is close to that of the
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Max-Log-MAP algorithm theoretically, it can be concluded that the Nor-Log-MAP algorithm has a
considerable decoding performance and less logic complexity.
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4. The SISO Design of the Turbo Decoder

The decoding process of turbo codes in SISO is shown in Figure 8 [14,15]. Firstly, received system
information λc(uk), check information λc(pk), and priori information λa(uk) are used to compute γk,
γe

k, and Lach in the branch unit. Then, we use a generated branch metric and initialized value α and to
compute the new α and β through a forward and backward recursive (FBR) unit. Finally, add compare
select 1 (ACS1) and ACS2 are used to compute posteriori information λo(uk) and external information
λe(uk) [16,17].
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In Figure 7, the LUT-Log-MAP algorithm is demonstrated to be superior to the Nor-Log-MAP
algorithm in decoding performance, so we tried to employ these two algorithms using a turbo
decoder for better decoding performance. In the simulation, the LUT-Log-MAP algorithm is adopted
in computing forward-state and backward-state metrics, while posteriori information and external
information are computed by the Nor-Log-MAP algorithm. The decoding performance of this hybrid
algorithm is shown in Figure 9. As can be seen, the LUT-Nor-Log-MAP algorithm not only compensates
for the decoding performance of the Nor-Log-MAP algorithm with a low SNR, but also maintains
the advantages of the Nor-Log-MAP algorithm with a high SNR. Furthermore, compared to the
Max-Log-MAP algorithm, it has maximum of a 0.5 dB increase in decoding performance.
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At the same time, we also propose the Nor-LUT-Log-MAP algorithm, which uses the Nor-Log-MAP
algorithm to calculate forward-state and backward-state metrics as well as the LUT-Log-MAP algorithm
to compute external information and posteriori information. As shown in Figure 9, the decoding
performance of the Nor-LUT-Log-MAP algorithm is less than that of the LUT-Nor-Log-MAP algorithm,
and it can be concluded that the forward-state and backward-state metric computation requires a better
algorithm in the turbo decoding process [18].

In [10], Sun et al. proposed FFU to compute the metrics of every state. The structure of the FFU is
shown in Figure 10, where the input signals of the module are α and γ during the forward-state metric
computation. In order to satisfy the proposed LUT-Nor-Log-MAP algorithm, we designed an NFU
based on the FFU, which is applicable to all state metric calculation at the same time. The structure of
the NFU is shown in Figure 11. The operation of the lookup table unit and the normalization unit
are controlled by control signals (CSs). LUT-s and Nor represent lookup table approximation and the
normalized approximation for function log(1 + e−|a−b|), respectively. Hence, it is possible to adopt
different approximation methods for satisfying the forward-state and backward-state metrics, as well
as posteriori information and external information computation.
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Figure 12 shows the rule of the state trellis transition of the turbo decoder under the time division
long term evolution (TD-LTE) standard. In order to satisfy the eight-state transition rule of the turbo
trellis network in the decoding process [19,20], the FBR unit calls eight NFUs, and the ACS1 and
ACS2 units call eight and six NFUs, respectively. The structure of the modified SISO unit is shown
in Figure 13. Each NFU will complete the calculation of max* one at a time. As can be seen from
Figures 11 and 13, for the eight-state turbo code with TD-LTE standard, a codeword for each turbo
code needs at least 16 LUTs for the calculation of forward-state and backward-state metrics [21], and an
external or posteriori information bit requires 14 LUTs for max* operation. As the degree of parallelism
increases, the number of LUTs increase with the same multiple. Therefore, in hardware implementation,
the proposed LUT-Nor-Log-MAP algorithm can transform the required 14 LUTs operation per bit into
addition operations during turbo code decoding, and thus reduce logic resource consumption.Entropy 2019, 21, x FOR PEER REVIEW 9 of 13 
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Table 3 shows the logic resource consumption of the turbo decoder and its SISO under
different algorithms. Simulation results show that decoder logic resource consumption based on the
LUT-Nor-Log-MAP algorithm is 74.5 K. Compared with the Max-Log-MAP algorithm, our design
consumes more about 8.4% logic resources, but our design has advantages in decoding performance.
Compared with the LUT-Log-MAP algorithm, our design saves about 2.1% of logic resources with a
similar decoding performance.
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Table 3. Simulation results of logic resource consumption.

Algorithm LUT-Log-MAP Max-Log-MAP Nor-Log-MAP LUT-Nor-Log-MAP

Decoder Gate Count(K) 76.1 K 68.7 K 71.8 K 74.5 K
SISO Gate Count(K) 4.44 K 3.65 K 4.02 K 4.32 K

5. Complexity Analysis of the Proposed Algorithm

In the improved Log-MAP algorithm, the main part of improvement is the log(1 + e−|a−b|) of
the function max*, so that different algorithms have different complexities of the max* function.
The complexity analysis of this section starts with one decoded bit (or a trellis transition), then we
calculate the complexity of the Log-MAP algorithm and the complexity of the function max* using
different approximation algorithms [22,23].

First of all, for the rule of an eight-state trellis transition of the TD-LTE turbo codes, there are 16
branch metrics, which means that there are 16 message transmission paths. The complexity calculation
of the Log-MAP algorithm is as follows:

Step 1: The calculation of the branch metric by Equation (2) requires a total of 8 × 2 × n addition
operations and 8 × 2 × n multiplication operations.

Step 2: In Equation (4), the calculation of forward-state metrics requires a total of eight additions,
which correspond to the forward-state metrics of the eight sides in Figure 12, and this requires eight
max* calculations.

Step 3: Calculation of backward-state metrics using Equation (5) is the same as in Step 2.
Step 4: In Equation (6), the calculation of external information needs 8 × 4 additions and one

subtraction operation; it also requires a total of 8 + 4 + 2 max* calculations in hardware implementation.
The logic addition is same as subtraction.

Step 5: The calculation of posteriori information only requires 8 × 2 additions in Equation (7).
The complexity analysis of the Log-MAP algorithm is summarized in Table 4. As can be seen, the

total complexity of the Log-MAP algorithm is 95 + 32 × n, which consists of 65 + 16 × n additions or
subtractions, 16 × n multiplications, and 30 max* operations.

Table 4. Complexity analysis of the Log-MAP algorithm.

Algorithm ADD/SUB Multiplication Max *

Step1 (γk) 8 × 2 × n 8*2*n 0
Step2 (αk(sk)) 8 0 8
Step3 (βk(sk)) 8 0 8
Step4 (λe(uk)) 8 × 2 × 2 + 1 0 8 + 4 + 2
Step5 (λo(uk)) 8*2 0 0

all 65 + 16 *n 16 *n 30

Next, the different complexities of approximation algorithms of the function max* are analyzed
as follows. As can be seen in Figure 10, only two additions and one comparison are performed for
Max-Log-MAP algorithm, due to the omission of the log(1 + e−|a−b|) of the function max*. For the
LUT-Log-MAP algorithm, two additions are made at first, followed by a comparison and a subtraction,
then the LUT equivalent to four comparators. Finally, the results of the lookup table make an addition
with the comparison results of the function max. As can be seen in Figure 11, for the Nor-Log-MAP
algorithm, two additions are performed at first, then the results go through a normalization operation
after the function max comparison; for the selected normalized factor in Equation (14), every datum
needs to be shifted three times. Finally, an addition operation is used to sum. In addition to considering
the complexity of the LUT-Log-MAP and Nor-Log-MAP algorithms, the LUT-Nor-Log-MAP algorithm
requires a mode comparison to choose between LUT-Log-MAP decoding and Nor-Log-MAP decoding.
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The synthesis results of the complexity for different Log-MAP approximation algorithms are shown in
Table 5.

Table 5. Simulation results and comparison.

Algorithm ADD SUB Comparison Shift

Max 2 0 1 0
LUT 2 1 (4 + 1) 0
Nor 2 0 1 3

LUT-Nor 2 1 or 0 (4 + 1 + 1) or 2 0 or 3

We can see from Table 5 that the Max-Log-MAP algorithm only needs two additions and one
comparison in the max* function, but its decoding performance is the worst. Compared with the
LUT-Log-MAP algorithm, the Nor-Log-MAP algorithm reduces a subtraction and four comparisons in
the max* function, but increases three shifts. According to Table 3, it can be seen that Nor approximation
reduces consumption of logic resources compared with LUT approximation. By adding a mode
comparison, the LUT-Nor-Log-MAP algorithm can be switched between LUT and Nor approximation
in function max* processing. The simulation results of Table 3 show that the LUT-Nor-Log-MAP
algorithm consumes more logic resources than the Nor-Log-MAP algorithm, which is in line with
expectations. However, compared to the LUT-Log-MAP algorithm, the proposed algorithm still
reduces logic resource consumption considerably.

6. Synthesis Results and Comparisons

In this paper, a turbo decoder was designed using the Cyclone IV series FPGA EP4CE115F29C7
chip as the target device, and the QPP interleaver was used for interleaving and de-interleaving.
In simulation, we adopted turbo codes with a 3072 information block size and 1/2 code rate, and allocated
12 SISO decoders to work in parallel with a maximum clock frequency M of 44 MHz. Through Equation
(15), we can see that the throughput of the proposed decoder is 36 Mbit/s when the clock cycle of each
iteration is 1502 and the maximum number N of iterations is 5.

Throughput =
Code Length×M
Clock Cycle×N

(15)

The comparisons with other literatures are presented in Table 6. As can be seen, the
LUT-Nor-Log-MAP algorithm achieved a decoding throughput of 36 Mbit/s in five iterations. Compared
with [24], we had advantages in decoding performance and logic resource consumption, and under
the same clock frequency our design was able to achieve a higher throughput. Compared with [25],
our algorithm had obvious advantages in throughput. Although the throughput of our design was close
to [26] and less than [27], the proposed LUT-Nor-Log-MAP algorithm had better decoding performance
than the Max-Log-MAP algorithm [26]. Compared with [27], the logic resource consumption in our
design was greatly reduced.

Table 6. Simulation results and comparison.

This Work [24] [26] [27] [25]

Code Standard 3GPP-LTE 3GPP-LTE DVB-SH 3GPP-LTE 3GPP-LTE
Implementation Cyclone IV TTA ASIC CMOS ASIP

Algorithm (Log-MAP) LUT-Nor Max Max LUT Max
Code Length 6144 6144 6144 4096 6144

Iterations 5 6 NA 6 5
Gate Count (K) 74.5 85.7 50 900 NA

Clock Frequency (MHz) 44 210 346 252 200
Throughput (Mbit/s) 36 65.1 346 535 22
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7. Conclusions

Future wireless communication standards will require a turbo decoder with higher throughput
and better decoding performance. In this paper, we proposed a turbo decoder based on the
LUT-Nor-Log-MAP algorithm applied to all kind of turbo codes under the TD-LTE wireless
communication standard. For turbo codes under other standards, we could follow the same
improvement idea to optimize the performance of the decoder. The proposed decoder was based on
the Cyclone platform, in which clock frequency is low, so we could not get a higher throughput directly.
Based on the proposed Nor-Log-MAP algorithm, we tried to achieve a better decoding performance
with the medium and low SNR. Compared with the Max-Log-MAP and LUT-Log-MAP algorithms,
the proposed LUT-Nor-Log-MAP algorithm not only guaranteed considerable decoding performance
but also reduced logic resource consumption. Considering that the SISO decoder based on the NFU in
actual design can save about 15% of logic resources compared with the FFU, the LUT-Nor-Log-MAP
algorithm could reduce more consumption of logic resources than the LUT-Log-MAP algorithm in
turbo decoder design.
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