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Abstract: Solar magnetism is believed to originate through dynamo action in the tachocline. Statistical
mechanics, in turn, tells us that dynamo action is an inherent property of magnetohydrodynamic
(MHD) turbulence, depending essentially on magnetic helicity. Here, we model the tachocline as a
rotating, thin spherical shell containing MHD turbulence. Using this model, we find an expression
for the entropy and from this develop the thermodynamics of MHD turbulence. This allows us to
introduce the macroscopic parameters that affect magnetic self-organization and dynamo action,
parameters that include magnetic helicity, as well as tachocline thickness and turbulent energy.
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1. Introduction

The interior of the Sun consists of three major parts: the energy-producing core (0–0.25 R�),
the stably-rotating radiative zone (0.25–0.7 R�), and the turbulent convection zone (0.7–1.0 R�) [1].
Separating the radiative and the convective zones is a turbulent transition layer called the tachocline [2],
of a thickness of 0.02–0.04 R� [3], which may be oscillating [4]. The solar dynamo is believed to reside
in the tachocline [5,6], although further shaping and self-organization of the magnetic field occur in
the convection zone [7,8].

Here, we focus on the tachocline, review the equilibrium statistical mechanics of ideal
magnetohydrodynamic (MHD) turbulence [9], and use this to introduce a thermodynamics of MHD
turbulence applicable to the solar tachocline. Compressible MHD, of course, must be used to
understand the whole Sun, (e.g., [10]) used an anelastic spherical harmonics code that models the
radiation and convective layers, while also producing a tachocline of thickness 0.04 R�, commensurate
with [2]; we note that fully-compressible codes are also available [11,12]. However, since the tachocline
is a layer thin enough to be treated, for our purposes, as incompressible, the statistical analysis of [9]
can be applied to this case. Although a tachocline does not seem necessary in all stars that display
global magnetic activity [8], the solar tachocline provides the basic structure for our analysis.

Thus, we assume the tachocline is a thin rotating spherical shell containing incompressible MHD
turbulence and model it as having homogeneous boundary conditions. This approach is similar to
one that had no inner boundary, which [13] and [14] studied computationally at very low resolution.
The model system of [9] used a Galerkin expansion with basis functions consisting of a combination of
spherical Bessel and Neumann functions of radius, along with vector spherical harmonic cofactors
representing angular (colatitude and azimuth) variation. This is a “spectral method” that is useful for
both theoretical analysis and numerical simulation (although a fully-implemented spectral transform
method code still awaits development).

That the statistical mechanics of ideal MHD turbulence is applicable to real systems in
quasi-equilibrium was shown by [15,16]. It should also be applicable to stars such as the Sun
because the kinetic and magnetic Reynolds numbers are so high [17]. Dynamical modes with
lower wavenumbers (corresponding to larger length-scales) have negligible dissipation, while large
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dissipation wavenumbers ensure that there are many larger-scale modes with close to ideal behavior.
Energy loss does occur, and equilibrium requires, of course, that energy must flow into the tachocline,
an energy flow provided by hydrogen fusion in the solar core. In addition, the product of magnetic
helicity and the smallest wavenumber in the spherical shell model must be relatively large to create a
predominantly dipole magnetic field. Magnetic helicity may be created by differential rotation [18],
perhaps at the interface between the radiation zone and the tachocline [19]. The other cofactor, the
fundamental wave number, that influences dynamo action varies as the inverse of the thickness of
the turbulent spherical shell; thinner shells mean larger wavenumbers, though if too thin, increased
dissipation. These two parameters (magnetic helicity and shell thickness), as well as others, will be
considered presently with regard to how their variability affects dynamo action in the tachocline.

2. Spherical Shell Models

The Sun, like the Earth, contains a turbulent magnetofluid where dynamo action occurs. For the
Earth, this magnetofluid can be modeled as being incompressible and contained in a spherical shell
with homogeneous boundary conditions (b.c.s) [9]. Homogeneous b.c.s reflect the entrainment of the
magnetic field by fluid velocity and connect the inner magnetic field to the exterior potential field
through the continuity of transverse poloidal components. In this model, spherical coordinates (r, θ, φ)

are used with the radius r measured in terms of the inner radius of the tachocline, RI = 0.7R�, so
that r = 1 is the inner boundary, r = ro = 1 + h is the outer boundary and h is the nondimensional
thickness, where 0.03 ≤ h ≤ 0.06 is an approximate range for the tachocline. The velocity and magnetic
fields are expanded in terms of spherical Bessel and Neumann functions coupled with vector spherical
harmonics; as an example, the magnetic field is, in terms of toroidal coefficients blmn and poloidal
coefficients almn,

b(x, t) = ∑
l,m,n

[blmn(t)Tlmn(x)(r, θ, φ) + almn(t)Plmn(x)(r, θ, φ)] . (1)

The summation indices in (1) have the ranges 1 ≤ l ≤ L, −l ≤ m ≤ l, and 1 ≤ n ≤ N. When
expansion (1) and a similar expansion (with toroidal vlmn and poloidal wlmn coefficients) for the velocity
field are put into the MHD equations, the result is a dynamical system whose phase space is defined
by the set of all coefficients. The total number of combination of indices l, m, n is K = NL(L + 2), so
the phase space dimension isM = 4K.

In (1), the poloidal basis functions are Plmn(x) = ∇×Tlmn(x), and the toroidal basis functions are:

Tlmn(x)(r, θ, φ) = Flngl(klnr)r×∇Ylm(θ, φ). (2)

Fln is a normalizing constant, Ylm(θ, φ) a spherical harmonic, and gl(klnr), 1 ≤ r ≤ ro, is:

gl(klnr) = nl(klnro)jl(klnr)− jl(klnro)nl(klnr). (3)

Here, jl(z) and nl(z) are spherical Bessel and Neumann functions, respectively. Since gl(klnro) ≡ 0,
homogeneous b.c.s are fully satisfied if gl(kln) = 0, which gives us the wavenumbers kln. When the
wavenumbers become large, asymptotic forms of jl(z) and nl(z) given by [20] tell us that:

lim
kln→∞

gl(klnr) =
1

k2
lnror

sin [kln (ro − r)] . (4)

Thus, for large wavenumbers,

kln
∼= nπ/h, h = ro − 1, n = 1, 2, . . . . (5)
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In other words, wavenumbers tend to become large and seemingly independent of l as ro → 1
or as n → ∞. For a tachocline of thickness 0.04 R�, h = 0.057, and the exact k11

∼= 55.133, while
π/h ∼= 55.116; for the Earth’s outer core, h = 1.85 and the exact k11

∼= 1.864, while π/h ∼= 1.698.
However, as Figure 1 shows, the independence of kln from l is not achieved until ro = 1, and at that
limit, the flow is not 2D, but is, in fact, no longer representable by the expansion because all of the
gl(klnr) → sin(nπ) = 0. The closest one can come to a 2D spherical model is to use, for example,
only the wave numbers kl1, or perhaps kll , or some similar reduction. This preserves the essential
relationship Plmn(x) = ∇× Tlmn(x), while reducing the phase space dimension from NL(L + 2) to
L(L + 2). This is “as simple as possible, but no simpler.”

The Sun, of course, is compressible, so that an incompressible model is perhaps a better
approximation for thinner spherical shells rather than thicker. Nevertheless, turbulence is due to
nonlinearity with compressibility being important for motions that generate and are affected by sound
waves. In considering the tachocline as the seat of the solar dynamo and long-term magnetic variability,
we may expect that compressibility plays a secondary role compared to the dynamics of incompressible
MHD turbulence. In addition, an incompressible model allows us to apply statistical mechanics to
ideal MHD turbulence in a straightforward manner. This application produces some novel results
concerning the solar dynamo, and it is to these that we now turn.
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Figure 1. Ratio of wave vectors kl1/k11, l = 2, . . . , 5, with respect to ro. (a) For the thin tachocline,
ro = 1.057. (b) For the Earth’s outer core geodynamo, ro = 2.85. Notice that kl1 < kl+1,1 for ro > 1.

3. Statistical Mechanics of MHD Turbulence

The statistical mechanics of ideal, rotating MHD turbulence is based on a probability density
function of the form:

D = Z−1 exp(−αE− γHM), . (6)

This probability density function for rotating MHD turbulence depends on energy E (where
E = EK + EM) and magnetic helicity HM because these are ideal invariants [21]. Expressions for kinetic
energy EK, magnetic energy EM, and magnetic helicity HM are given in [9]. Here, we will write these
in terms of helical variables:

b±lmn =
1√
2
[blmn ± klnalmn] , w±lmn =

1√
2
[wlmn ± klnvlmn] . (7)

The b±lmn have ± magnetic helicity, and the w±lmn have ± kinetic helicity. Using these, EK, EM, and
HM are:
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EK = 1
2 ∑

l,m,n

(
|w+

lmn|
2 + |w−lmn|

2
)

, (8)

EM = 1
2 ∑

l,m,n

(
|b+lmn|

2 + |b−lmn|
2
)

, (9)

HM = 1
2 ∑

l,m,n

(
|b+lmn|

2 − |b−lmn|
2
)

. (10)

Again, the total number of terms in these summations is K = NL(L + 2), and the dimension of
the associated phase space isM = 4K (K represents the effective number of dynamically-active modes
with wavenumbers less than the dissipation wavenumber of the turbulent MHD dynamo layer in
the Sun). Further details concerning the statistical mechanics of ideal MHD turbulence can be found
elsewhere [9,22]. Here, we will examine a few features that are pertinent to solar dynamism.

If the expressions for E and HM are placed into (6), it is straightforward to determine the partition
function and from this the expectation values of the means and variances for the variables b±lmn and w±lmn.
The means are expected to be zero, but in numerical simulations of both ideal and real MHD turbulence
in a periodic box, it has been found that the dynamical time-averages of the magnetic field coefficients
with the smallest wavenumber can be very large compared to their standard deviations [15,16,22–25].
This is an example of broken ergodicity [26]. Since the statistical mechanics of ideal MHD turbulence
is essentially the same for the spherical shell [9] as for the periodic box [22], numerical simulations
should yield similar results in the spherical case, once the necessary spectral transform method codes
are developed (this is a “computational grand challenge” for those who wish to attempt it).

The expectation values of energy and magnetic helicity must match their initial values E andHM
when these are conserved, i.e., 〈E〉 ≡ E and | 〈HM〉 | ≡ HM. This, in turn, tells us that α and γ in (6)
can be expressed as:

α =
2K
E − ϕ

, γ = −2ϕ− E
HM

α. (11)

Again, K = NL(L + 2) is the number of modes. The quantity ϕ = 〈EM〉 is the expectation value
of the magnetic energy, which is not an ideal invariant like E and HM. Initially, ϕ is unknown, but can
be determined by minimizing the entropy functional σ(ϕ) = − 〈ln D〉. The result of doing so leads to
the minimizing value ϕ = ϕo, where:

ϕo ∼= 1
2 (E + k11HM)− 1

4 ε (E − k11HM) . (12)

Here, ε = m/2K where m is the number of modes that have wavenumbers kln equal to the
smallest wavenumber k11.

The expected energies of the dynamical variables with respect to helicity are:

1
2

〈
|w±lmn|

2
〉

=
E − k11HM

4K
, kln ≥ k11, (13)

1
2

〈
|b−lmn|

2
〉

=
kln

kln + k11

E − k11HM
4K

, kln ≥ k11, (14)

1
2

〈
|b+lmn|

2
〉

=
kln

kln − k11

E − k11HM
4K

, kln > k11, (15)

1
2

〈
|b+1m1|

2
〉

=
k11HM

m
, kln = k11. (16)
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The sum of these over independent modes kln is E plus a term of O(K−1), as it should be. For
a spherically-symmetric model, the three variables b+1m1 m = −1, 0,+1 of ((16) are real and supply
the three components of the quasi-steady magnetic dipole moment vector. The sum of their energies
energies is Ed, the energy of the magnetic dipole field, while the remainder with respect to E is the
turbulent energy Eturb:

Ed = k11HM, Eturb = E − Ed. (17)

The turbulent energy Eturb has essentially equal kinetic and magnetic parts, as can be seen by
summing the two terms given in (13) and comparing this with the sum of (14) and (15). Clearly, the
dipole energy Ed becomes large as the product k11HM becomes large.

If one considers the dynamical equations for the variables w±lmn and b±lmn, it is found the their
mean square fluctuations are of order K−1 [9]. This is the same order of magnitude as their expected
variances (13)–(15). The result of this is that the dynamical mean values of w±lmn and b±lmn for all
except b+1m1 match their expected values, i.e., they are zero-mean random variables. In the case of b+1m1,
the mean square fluctuations are also of order K−1, but the expectation value (16) is of order one. Thus,
the three components b+1m1, m = −1, 0,+1, define a dipole moment vector that has constant magnitude
and direction up to order K−1/2, and so, it does not match its expectation value of zero: we have the
phenomenon of broken ergodicity [26]. Notice that the dipole part plays a preeminent role and that
the quadrupole and higher order modes are “just part of the noise”.

In periodic box models, this dipole moment vector tends to align itself with a rotation axis, if one is
present in ideal MHD turbulence [22]. However, in dissipative, driven MHD turbulence, this alignment
can be affected by the manner in which the system is forced [15,16]. If the angular rotation vector is in
the z-direction, alignment in the spherical shell model occurs because the component b+101 becomes
large dynamically, while the components b+1,±1,1 become much smaller, i.e., we have broken symmetry.
When b+101 is large, the toroidal and poloidal parts have equal energy; when either the toroidal or
poloidal part is negligible, the dipole component of the magnetic field is of the same size as the other
multipole components, i.e., the dynamo has shut off. Thus, the purely-toroidal to purely-poloidal cycle
of mean-field dynamo theory [4] does not appear to be a viable process (further comments on the
non-viability of mean-field dynamos will be given in Section 5).

4. Thermodynamics of MHD Turbulence

Using the previous results, the entropy S = σ(ϕo) can be written as:

S =M ln
[

πe
(
Eturb
M

)]
. (18)

In the above expression, the total number of interacting variables isM = 4K, and again, Eturb =

E − Ed is the turbulent energy, where Ed = k11HM is the energy of the quasi-stationary dipole
magnetic field.

Defining the shell thickness as h = ro − 1 and using (5) give k11
∼= π/h for a thin shell.

Furthermore, the volume of the thin shell is V = 4πR2
I h and fundamental wavenumber is κ ≡ k11, for

brevity. Thus, the fundamental equation for the thermodynamics of MHD turbulence is:

S =M ln
[πe
M (E − Ed)

]
, Ed = κHM. (19)

The first law of MHD turbulence thermodynamics is then:

dS =
1
T

dE + p
T

dV − µ

T
dM− κ

T
dHM. (20)
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The MHD turbulent temperature T, pressure p, chemical potential µ, and fundamental
wavenumber κ are:

T =
Eturb
M , p =

Ed
V

, µ = −T ln(πT), κ =
Ed
HM

. (21)

The extensive thermodynamic parameters are S, E , V = 4πR2
I h, andHM, while the intensive ones

T, p, κ, and µ.
Let us consider a thermodynamic cycle in which a thermal engine, using tachocline volume

oscillations takes in magnetic helicity and heat from a higher-temperature reservoir, creates a dipole
magnetic field, and passes this on to a lower temperature reservoir. In Figure 2, we show a hypothetical
thermal cycle; as indicated there, the four parts of the cycle are: (1) A → B, expansion; (2) B → C,
constant volume pressure decrease; (3) C → D, compression; and (4) D → A, constant volume pressure
increase. During isentropic expansion and compression in this cycle, E andHM are conserved; during
(1) expansion, dipole energy Ed decreases, while T and S decrease; during (3) compression, Ed increases,
while T and S increase. Of course, reversibility requires that ∆S = 0 around the cycle.

This hypothetical model of MHD turbulence in the tachocline is a thermodynamic system that
is embedded in the much larger thermodynamic system of the solar interior. Please note that this is
a “thermodynamics of MHD turbulence” as opposed to the “magnetothermodynamics” of a plasma
treated as a magnetized, ionized gas [27]. If the tachocline is a thermal engine that undergoes a
cycle of some sort from one equilibrium state to another and back again, we see that Ed oscillates
between maximum and minimum values. However, there remain many questions to be answered:
How strongly or weakly is the MHD turbulence coupled to rest of the solar interior? What is the
mechanism that drives the thermal engine? How does tangential shear inject energy and magnetic
helicity into the tachocline? How is the temperature of MHD turbulence related to the temperature of
the surrounding plasma? How do the degrees-of-freedomM depend on temperature and volume?
Answering these, or attempting to do so, is beyond the scope of the present work. Our hope is that the
introductory and novel results presented here will inspire others to move the subject forward.
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Figure 2. Example of a thermal cycle for a thin tachocline of height h, where the volume of the shell is
V = 4πR2

I h.

5. Discussion

Here, the statistical mechanics of MHD turbulence in a thin spherical shell was presented, and
from these results, the thermodynamics of MHD turbulence was developed. The general statistical
result was that MHD turbulence, per se, generates a large, quasi-stationary dipole magnetic field if
the product of fundamental wavenumber and absolute value of magnetic helicity is relatively large
compared to the turbulent energy. The dynamical system, to reiterate, is the collection of modes that are
revealed through the spherical Bessel–Neumann function, vector spherical harmonic representation of
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the velocity, and magnetic fields. However, once the thermodynamics was formulated, we moved from
the very large phase space of coefficients back into the physical system described by a few intensive
and a few extensive macroscopic variables.

The development here is based on equilibrium states, but as [28] wrote, “it must be conceded
that our primary interest is frequently in processes rather than in states.” Treating processes, such as
solar activity, requires perhaps that these results be extended into irreversible thermodynamics [29].
This includes relating the thermodynamics of MHD turbulence to the thermodynamics of the plasma
that serves as a host for MHD turbulence. This is a long-term effort, far beyond the scope of the present
work, though hopefully a challenge that researchers will take up.

This approach is “physics-based” and, we believe, a door opening into a viable alternative to
mean-field electrodynamics (MFE) [30]. MFE assumes that the Reynolds-averaged electromotive force,
modeling turbulent action at smaller length scales, is a function of an assumed mean magnetic field;
this Reynolds-averaged electromotive force is represented by a series of increasing derivatives of
the mean magnetic field (Equation (2.8) of [30]), whereby the magnetic induction equation gains a
term linear in this mean magnetic field, guaranteeing its subsequent growth. First, such a linear term
appears nowhere in the general Ohm’s law [31]. Second, when long-time mean-squared averages of
the nonlinear and dissipative terms in the magnetic induction equation are compared by numerical
simulation, they are found to be equal in magnitude, i.e., in equilibrium, they cancel each other on
average, as seen in Figure 2 of [15]. In the symmetric case, the MFE coefficients α and β discussed
following Equation (2.9) of [30] must be α = 0 and β = −η (as opposed to β � η [30]). Thus, in an
equilibrium state, MFE is trivially correct. In nonequilibrium, where α > 0 presumably explains the
growth of the mean field, it is not needed because it is the inverse cascade and broken ergodicity of
MHD turbulence that create the large, quasi-stationary mean magnetic field without any need for an
imposed “α-effect”. MHD contains all that is necessary.

6. Conclusions

Here, we presented a novel and viable approach to understanding solar dynamism. We assumed
that the solar tachocline contains MHD turbulence, which can be treated as incompressible because of
the thinness of the tachocline and which satisfies homogeneous boundary conditions. In this model
system, the velocity and magnetic fields are expressed in terms of spherical Bessel function, spherical
harmonic expansions, allowing a transformation of the partial differential equations of MHD into
a very large set of coupled, nonlinear ordinary differential equations where the primary variables
are helical, time-dependent expansion coefficients. This dynamical system has two ideal invariant
integrals for a rotating spherical shell, energy and magnetic helicity, and on these, an equilibrium
statistical mechanics can be based. Developing the statistical mechanics leads to a new and more
precise expression for the entropy of the model system and, from this, a novel formulation of the
thermodynamics of MHD turbulence. The general importance of these results is that the statistical
mechanics of MHD turbulence explains how a dominant, quasi-stationary dipole magnetic field
arises, while the associated thermodynamics identifies macroscopic parameters that affect magnetic
self-organization and dynamo action.
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