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Abstract

:

We establish lower bounds on the volume and the surface area of a geometric body using the size of its slices along different directions. In the first part of the paper, we derive volume bounds for convex bodies using generalized subadditivity properties of entropy combined with entropy bounds for log-concave random variables. In the second part, we investigate a new notion of Fisher information which we call the L1-Fisher information and show that certain superadditivity properties of the L1-Fisher information lead to lower bounds for the surface areas of polyconvex sets in terms of its slices.
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1. Introduction


Tomography concerns reconstructing a probability density by synthesizing data collected along sections (or slices) of that density and is a problem of great significance in applied mathematics. Some popular applications of tomography in the field of medical imaging are computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). In each of these, sectional data is obtained in a non-invasive manner using penetrating waves and images are generated using tomographic reconstruction algorithms. Geometric tomography is a term coined by Gardner [1] to describe an area of mathematics that deals with the retrieval of information about a geometric object from data about its sections, projections or both. Gardner notes that the term geometric is deliberately vague, since it may be used to study convex sets or polytopes as well as more general shapes such as star-shaped bodies, compact sets or even Borel sets.



An important problem in geometric tomography is estimating the size of a set using lower dimensional sections or projections. Here, projection of a geometric object refers to its shadow or orthogonal projection, as opposed to the marginal of a probability density. As detailed in Campi and Gronchi [2], this problem is relevant in a variety of settings ranging from the microscopic study of biological tissues [3,4], to the study of fluid inclusions in minerals [5,6] and to reconstructing the shapes of celestial bodies [7,8]. Various geometric inequalities provide bounds on the sizes of sets using lower dimensional data pertaining to their projections and slices of sets. The “size” of a set often refers to its volume but it may also refer to other geometric properties such as its surface area or its mean width. A canonical example of an inequality that bounds the volume of set using its orthogonal projections is the Loomis-Whitney inequality [9]. This inequality states that for any Borel measurable set K⊆Rn,


Vn(K)≤∏i=1nVn−1(Pei⊥K)1n−1.



(1)




Equality holds in (1) if and only if K is a box with sides parallel to the coordinate axes. The Loomis-Whitney inequality has been generalized and strengthened in a number of ways. Burago and Zalgaller [10] proved a version of (1) that considers projections of K on to all m-dimensional spaces spanned by {e1,…,en}. Bollobas and Thomason [11] proved the Box Theorem which states that for every Borel set K⊆Rn, there exists a box B such that Vn(B)=Vn(K) and Vm(PSB)≤Vm(PSK) for every m-dimensional coordinate subspace S. Ball [12] showed that the Loomis-Whitney inequality is closely related to the Brascamp-Lieb inequality [13,14] from functional analysis and generalized it to projections along subspaces that satisfy a certain geometric condition. Inequality (1) also has deep connections to additive combinatorics and information theory. Some of these connections have been explored in Balister and Bollobas [15], Gyarmati et al. [16] and Madiman and Tetali [17].



A number of geometric inequalities also provide upper bounds for the surface area of a set using projections. Naturally, it is necessary to make some assumptions for such results, since one can easily conjure sets that have small projections while having a large surface area. Betke and McMullen [2,18] proved that, for compact convex bodies,


Vn−1(∂K)≤2∑i=1nVn−1(Pei⊥K).



(2)




Motivated by inequalities (1) and (2), Campi and Gronchi [2] investigated upper bounds for intrinsic volumes [19] of compact convex sets.



Inequalities (1) and (2) provide upper bounds and a natural question of interest is developing analogous lower bounds. Lower bounds are obtained via reverse Loomis-Whitney inequalities or dual Loomis-Whitney inequalities. The former uses projection information whereas the latter uses slice information, often along the coordinate axes. A canonical example of a dual Loomis-Whitney inequality is Meyer’s inequality [20], which states that for a compact convex set K⊆Rn, the following lower bound holds:


Vn(K)≥n!nn∏i=1nVn−1(K∩ei⊥)1n−1,



(3)




with equality if and only if K is a regular crosspolytope. Generalizations of Meyer’s inequality have also been recently obtained in Li and Huang [21] and Liakopoulos [22]. Betke and McMullen [2,18] established a reverse Loomis-Whitney type inequality for surface areas of compact convex sets:


Vn−1(∂K)2≥4∑i=1nVn−1(Pei⊥K)2.



(4)




Campi et al. [23] extended inequalities (3) and (4) for intrinsic volumes of certain convex sets.



Our goal in this paper is to develop lower bounds on volumes and surface areas of geometric bodies that are most closely related to dual Loomis-Whitney inequalities; that is, inequalities that use slice-based information. The primary mathematical tools we use are entropy and information inequalities; namely, the Brascamp-Lieb inequality, entropy bounds for log-concave random variables and superadditivity properties of a suitable notion of Fisher information. Using information theoretic tools allows our results to be quite general. For example, our volume bounds rely on maximal slices parallel to a set of subspaces and are valid for very general choices of subspaces. Our surface area bounds are valid for polyconvex sets, which are finite unions of compact convex sets. The drawback of using information theoretic strategies is that the resulting bounds are not always tight; that is, equality may not achieved by any geometric body. However, we show that in some cases our bounds are asymptotically tight as the dimension n tends to infinity, thus partly mitigating the drawbacks. Our main contributions are as follows:




	
Volume lower bounds: In Theorem 3, we establish a new lower bound on the volume of a compact convex set in terms of the size of its slices. Just as Ball [12] extended the Loomis-Whitney inequality to projections in more general subspaces, our inequality also allows for slices parallel to subspaces that are not necessarily ei⊥. Another distinguishing feature of this bound is that unlike classical dual Loomis-Whitney inequalities, the lower bound is in terms of maximal slices; that is, the largest slice parallel to a given subspace. The key ideas we use are the Brascamp-Lieb inequality and entropy bounds for log-concave random variables.



	
Surface area lower bounds: Theorem 7 contains our main result that provides lower bounds for surface areas. Unlike the volume bounds, the surface area bounds are valid for the larger class of polyconvex sets, which consists of finite unions of compact, convex sets. Moreover, the surface area lower bound is not simply in terms of the maximal slice; instead, this bound uses all available slices along a particular hyperplane. As in the volume bounds, the slices used may be parallel to general (n−1)-dimensional subspaces and not just ei⊥. The key idea is motivated by a superadditivity property of Fisher information established in Carlen [24]. Instead of classical Fisher information, we develop superadditivity properties for a new notion of Fisher information which we call the L1-Fisher information. This superadditivity property when restricted to uniform distributions over convex bodies yields the lower bound in Theorem 7.








In Section 2 we state and prove our volume lower bound and in Section 3 we state and prove our surface area bound. We conclude with some open problems and discussions in Section 4.



Notation: For n≥1, let [n] denote the set {1,2,…,n}. For K⊆Rn and any subspace E⊆Rn, the orthogonal projection of K on E is denoted by PEK. The standard basis vectors in Rn are denoted by {e1,e2,…,en}. We use the notation Vr to denote the volume functional in Rr. The boundary of K is denoted by ∂K and its surface area is denoted by Vn−1(∂K). For a random variable X taking values in Rn, the marginal of X along a subspace E is denoted by PEX. In this paper, we shall consider random variables with bounded variances and whose densities lie in the convex set {f|∫Rnf(x)log(1+f(x))<∞}. The differential entropy of such random variables is well-defined and is given by


h(X)=−∫RnpX(x)logpX(x)dx,








where X∼pX is an Rn-valued random variable. The Fisher information of a random variable X with a differentiable density pX is given by


I(X)=∫Rn∥∇logpX(x)∥22pX(x)dx.












2. Volume Bounds


The connection between functional/information theoretic inequalities and geometric inequalities is well-known. In particular, the Brascamp-Lieb inequality has found several applications in geometry as detailed in Ball [13]. In the following section we briefly discuss the Brascamp-Lieb inequality and its relation to volume inequalities.



2.1. Background on the Brascamp-Lieb Inequality


We shall use the information theoretic form of the Brascamp-Lieb inequality, as found in Carlen et al. [25]:



Theorem 1.

[Brascamp-Lieb inequality] Let X be a random variable taking values in Rn. Let E1,E2,…,Em⊆Rn be subspaces with dimensions r1,r2,…,rn respectively and c1,c2,…,cm>0 be constants. Define


M=supXh(X)−∑j=1mcjh(PEiX),



(5)




and


Mg=supX∈Gh(X)−∑j=1mcjh(PEjX),



(6)




where G is the set of all Gaussian random variables taking values in Rn. Then M=Mg and Mg (and therefore M) is finite if and only if ∑i=1mrici=n and for all subspaces V⊆Rn, we have dim(V)≤∑i=1ndim(PEiV)ci.





Throughout this paper, we assume that Ei and ci are such that M<∞. As detailed in Bennett et al. [14], the Brascamp-Lieb inequality generalizes many popular inequalities such as Holder’s inequality, Young’s convolution inequality and the Loomis-Whitney inequality. In particular, Ball [12] showed that the standard Loomis-Whitney inequality in (1) could be extended to settings where projections are obtained on more general subspaces:



Theorem 2

(Ball [12]). Let K be a closed and bounded set in Rn. Let Ei and ci for i∈[m] and Mg be as in Theorem 1. Let PEiK be the projection of K on to the subspace Ei, for i∈[m]. Let the dimension of Ei be ri for i∈[m]. Then the volume of K may be upper-bounded as follows:


Vn(K)≤eMg∏i=1mVri(PEiK)ci.



(7)









Since we shall be using a similar idea in Section 2, we include a proof for completeness.



Proof. 

Consider a random variable X that is uniformly distributed on K; that is X∼pX=Unif(K). Let PEiX denote the random variable obtained by projecting X on Ei or equivalently the marginal of X in subspace Ei. Naturally, supp(PEiX)⊆PEiK and thus


h(PEiX)≤logVri(PEiK),fori∈[m].



(8)




Substituting these inequalities in the Brascamp-Lieb inequality for X, we obtain


h(X)=logVn(K)≤∑i=1mcilogVri(PEiK)+Mg.



(9)




Exponentiating both sides concludes the proof. □





To show that the Loomis-Whitney inequality is implied by Theorem 2, we set Ei=ei⊥, ci=1/(n−1) for i∈[n] and use Szasz’s inequality or other tools from linear algebra [26] to show that the supremum below evaluates to 1:


eMg=supK⪰0detK∏i=1ndetKi1n.








In general, Ball [12] showed that if the Ei and ci satisfy what is called John’s condition; that is ∑i=1mciPEix=x for all x∈Rn, then Mg=0.




2.2. Volume Bounds Using Slices


Providing lower bounds for volumes in terms of projections requires making additional assumptions on the set K. A simple counterexample is the (n−1) dimensional sphere (shell), which can have arbitrarily large projections in lower dimensional subspaces but has 0 volume. Even for convex K, providing lower bounds using a finite number of projections fails. For example, given a finite collection of subspaces, we may consider any convex set supported on a random (n−1) dimensional subspace of Rn which will have (with high probability) non-zero projections on all subspaces in the collection. Clearly, such a set has volume 0. Therefore, it makes sense to obtain lower bounds on volumes using slices instead of projections, as in Meyer’s inequality (3).



Given a subspace Ei, the slice parallel to Ei⊥ is not unambiguously defined as it depends on translations of Ei⊥. For this reason we consider the maximal slice; that is, the largest slice parallel to a given subspace. Note that although Meyer’s inequality (3) is not stated in terms of maximal slices, it remains valid even if the right hand side of inequality (3) is replaced by maximal slices parallel to ei⊥. This is because one can always choose the origin of the coordinate system such that the largest slice parallel to ei⊥ is K∩ei⊥. However, when subspaces are in a more general orientation, it is not always possible to select the origin that simultaneously maximizes the slices along all subspaces. Our main result is the following:



Theorem 3.

Let K be a compact convex body in Rn. For j∈[m], let Ej⊆Rn be subspaces with dimensions rj and cj>0 be constants. Let Smax(j) be the largest slice of K by a subspace orthogonal to Ej; that is,


Smax(j)=supt∈EjVn−rj(K∩(Ej⊥+t)).



(10)




Then the following inequality holds:


Vn(K)≥∏j=1mSmax(j)cjen+Mg1/(C−1),



(11)




where C=∑j=1mcj and Mg is the Brascamp-Lieb constant corresponding to {Ej,cj}j∈[m].





Proof. 

There are two main components in the proof. First, let X be a random variable that is uniformly distributed on K. The Brascamp-Lieb inequality yields the bound


h(X)≤∑j=1mcjh(PEjX)+Mg.








When deriving upper bounds on volume, we employ the upper bound h(PEiX)≤logVri(PEiK). Here, we employ a slightly different strategy. Note that X, being a uniform distribution on a convex set, is a log-concave random variable. Thus, any lower dimensional marginal of X is also log-concave [27]. Furthermore, the entropy of a log-concave random variable is tightly controlled by the maximum value of its density. For a log-concave random variable Z taking values in Rn and distributed as pZ, it was shown in Bobkov and Madiman [28] that


1nlog1∥pZ∥∞≤h(Z)n≤1nlog1∥pZ∥∞+1,








where ∥pZ∥∞ is the largest value of the probability density pZ. Define Zi:=PEiX. The key point to note is that ∥pZi∥∞ is given by the size of the largest slice parallel to Ei⊥, normalized by Vn(K); that is, ∥pZi∥∞=Smax(i)Vn(K). Thus, for i∈[m],


h(Zi)≤ri+log1∥pZi∥∞=ri+logVn(K)Smax(i).








Substituting this in the Brascamp-Lieb bound, we obtain


logVn(K)≤∑j=1mcjrj+cjlogVn(K)Smax(j)+Mg=n+ClogVn(K)−∑j=1mcjlogSmax(j)+Mg.








Note that ∑j=1mcj>∑j=1mcj(rj/n)=1, and thus we may rearrange and exponentiate to obtain


Vn(K)≥∏j=1mSmax(j)cjen+Mg1C−1.








 □





It is instructive to compare Meyer’s inequality to the bound obtained using Theorem 3 for the same choice of parameters. Substituting Mg=0, Ei=ei and ci=1, Theorem 3 gives the bound


Vn(K)≥∏j=1nSmax(j)en1n−1.








To compare with Meyer’s inequality (3), first assume that the origin of the coordinate planes is selected such that the intersection with ei⊥ corresponds to the maximal slice along ei⊥. With such a choice, we may simply compare the constants in the two inequalities. Observe that


n!nn1n−1≤1en1n−1,








and thus Meyer’s inequality (3) yields a tighter bound. However, Sterling’s approximation implies that for large enough n the two constants are approximately the same. Thus, Theorem 3 yields an asymptotically tight result.



Note that if the slices are not aligned along the coordinate axes or if the slices are in larger dimensions, then Meyer’s inequality (3) is not applicable but Theorem 3 continues to yield valid inequalities. An important special case is when there are more than n directions along which slices are available. If u1,u2,…,um are unit vectors and constants c1,c2,…,cm satisfy John’s condition [12]; that is, ∑j=1mcjPuj(x)=x for all x∈Rn, then Theorem 3 yields the bound


Vn(K)≥∏j=1mSmax(j)cjen1n−1,



(12)




where Smax(j) is the size of the largest slice by a hyperplane perpendicular to uj. Note that if {uj,cj} satisfy John’s condition, then so do {uj⊥,cj/(n−1)}. Applying the bound from Theorem 2 in this case yields


Vn(K)≤∏j=1mVn−1(Puj⊥K)cj/(n−1),








which may be compared with inequality (12) by observing Smax(j)≤Vn−1(Puj⊥K).





3. Surface Area Bounds


The information theoretic quantities of entropy and Fisher information are closely connected to the geometric quantities of volume and surface area, respectively. Surface area of K⊆Rn is defined as


Vn−1(∂K)=limϵ→0+Vn(K⊕ϵBn)−Vn(K)ϵ,



(13)




where Bn is the Euclidean ball in Rn with unit radius and ⊕ refers to the Minkowski sum. The Fisher information of a random variable X satisfies a similar relation,


I(X)2=limϵ→0h(X+ϵZ)−h(Z)ϵ,



(14)




where Z is a standard Gaussian random variable that is independent of X. Other well-known connections include the relation between the entropy of a random variable and the volume of its typical set [29,30], isoperimetric inequalities concerning Euclidean balls and Gaussian distributions and the observed similarity between the Brunn-Minkowski inequality and the entropy power inequality [31]. In Section 2, we used subadditivity of entropy as given by the Brascamp-Lieb inequality to develop volume bounds. To develop surface area bounds, it seems natural to use Fisher information inequalities and adapt them to geometric problems. In the following subsection, we discuss relevant Fisher-information inequalities.



3.1. Superadditivity of Fisher Information


The Brascamp-Lieb subadditivity of entropy has a direct analog noted in Reference [25]. We focus on the case when {uj} and constants {cj} for j∈[m] satisfy John’s condition. The authors of Reference [25] provide an alternate proof to the Brascamp-Lieb inequality in this case by first showing a superadditive property of Fisher information, which states that


I(X)≥∑j=1mcjI(PujX).



(15)




The Brascamp-Lieb inequality follows by integrating inequality (15) using the following identity that holds for all random variables X taking values in Rn [32]:


h(X)=n2log2πe−∫t=0∞I(Xt)−n1+tdt,



(16)




where Xt=X+tZ for a standard normal random variable Z that is independent of X. In particular, using this formula for inequality (15) yields the geometric Brascamp-Lieb inequality of Ball [33]:


h(X)≤∑j=1mcjh(PujX).








If ui=ei and ci=1 for i∈[n], then inequality (15) reduces to the standard superadditivity of Fisher information:


I(X)≥∑i=1nI(Xi),



(17)




where X=(X1,…,Xn).



In Section 2, we directly used the entropic Brascamp-Lieb inequality on random variables uniformly distributed over suitable sets K⊆Rn. It is tempting to use inequality (15) to derive surface area bounds for geometric bodies. Unfortunately, directly substituting X to be uniform over K⊆Rn in inequality (15) does not lead to any useful bounds. This is because the left hand side, namely I(X), is +∞ since the density of X is not differentiable. Thus, it is necessary to modify inequality (15) before we can apply it to geometric problems. A classical result concerning superadditivity of Fisher information-like quantities is provided in Carlen [24]:



Theorem 4

(Theorem 2, [24]). For p∈[1,∞), let f:Rm×Rn→R be a function in Lp(Rm)⊗W1,p(Rn). Define the marginal map M as


G(y)=∫Rm|f(x,y)|pdx1/p,



(18)




denoted by Mf=G. Then the following inequality holds:


∫Rn|∇yG(y)|pdy≤∫Rm∫Rn|∇yf(x,y)|pdxdy.



(19)









Carlen [24] also established the (weak) differentiability of G and the continuity of M prior to proving Theorem 4, so the derivatives in its statement are well-defined. The notion of Fisher information we wish to use is essentially identical to the case of p=1 in Theorem 4. However, since our goal is to use this result for uniform densities over compact sets, we cannot directly use Theorem 4, since such densities do not satisfy the required assumptions. In particular, the (weak) partial derivatives of conditional densities are defined in terms of Dirac delta distributions and so the densities do not lie in the Sobolev space W1,1(Rn). To get around this, we redefine the p=1 case as follows:



Definition 1.

Let X=(X1,…,Xn) be a random vector on Rn and fX(·) be its density function. For any unit vector u∈Rn, define


I1(X)u:=limϵ→0+∫R|fX(x)−fX(x−ϵu)|ϵdx,








given that the limit exists. Define the L1-Fisher information of X as


I1(X):=∑i=1nI1(X)ei,








given that the right hand side is well-defined. In particular, when X is a real-valued random variable,


I1(X)=limϵ→0+∫R|fX(x)−fX(x−ϵ)|ϵdx.













Our new definition is motivated by observing that Theorem 4 is essentially a data processing result for ϕ-divergences and specializing it to the total variation divergence yields our definition. To see this, consider real-valued random variables X and Y with a joint density f˜(x,y). Let the marginal of Y on R be G˜(·). For ϵ>0, consider the perturbed random variable (Xϵ,Yϵ)=(X,Y+ϵ). Let the joint density of this perturbed random variable be f˜ϵ and the marginal of Yϵ by G˜ϵ. Recall that for every convex function ϕ satisfying ϕ(1)=0, it is possible to define the divergence Dϕ(p||q)=∫ϕp(x)q(x)q(x)dx for two probability densities p and q. It is well-known that such divergences satisfy the data-processing inequality [34]; that is, if X′→X→Y→Y′ is a Markov chain, then Dϕ(X||Y)≥Dϕ(X′||Y′). Using this fact, we obtain


Dϕ(f˜ϵ||f˜)≥Dϕ(G˜ϵ||G˜).



(20)




Choosing ϕ(t)=(t−1)p and using Taylor’s expansion, it is easy to see that


Dϕ(f˜ϵ||f˜)=∫R2|f˜(x,y)−f˜(x,y−ϵ)|pf˜(x,y)p−1dxdy=ϵp∫R2|∂f˜(x,y)/∂y|pf˜(x,y)p−1dxdy+o(ϵp).








And similarly,


Dϕ(G˜ϵ||G˜)=∫R|G˜(y)−G˜(y−ϵ)|pG˜(y)p−1dy=ϵp∫R|dG˜(y)/dy|pG˜(y)p−1dy+o(ϵp).








Substituting in inequality (20), dividing by ϵp and taking the limit as ϵ→0 yields


∫R2|∂f˜(x,y)/∂y|pf˜(x,y)p−1dxdy≥∫R|dG˜/dy|pG˜(y)p−1dy.



(21)




The above inequality is exactly equivalent to that in Theorem 4 using the substitution G˜=Gp and f˜=fp. Although we focused on joint densities over R×R, the same argument also goes through for random variables on Rm×Rn.



Recall that Definition 1 redefines the case of p=1 in Theorem 4. Such redefinitions could indeed be done for p>1 as well. However, the perturbation argument presented above makes it clear that if p>1, the ϕ-divergence between a random variable (taking uniform values on some compact set) and its perturbation will be +∞, since their respective supports are mismatched. Thus, analogous definitions for p>1 will not yield useful bounds for such distributions. Using Definition 1, we now establish superadditivity results for the L1-Fisher information.



Lemma 1.

Let X be an Rn-valued random variable with a smooth density fX(·). Let u∈Rn be any unit vector. Define X·u to be the projection of X along u. Then the following inequality holds when both sides are well-defined:


I1(X·u)≤I1(X)u.



(22)









Proof. 

Define the random variable Xϵ:=X+ϵu. Then the distribution of Xϵ satisfies


fXϵ(x)=fX(x−ϵu),



(23)




and is therefore a translation of fX along the direction u by a distance ϵ. Using the data-processing inequality for total-variation distance, we obtain


dTV(X·u,Xϵ·u)≤dTV(Xϵ,X),



(24)




where dTV is the total variation divergence. Notice that Xϵ·u=X·u+ϵ and thus fXϵ·u(x)=fX·u(x−ϵ). Dividing the left hand side of inequality (24) by ϵ and taking the limit as ϵ→0, we obtain


limϵ→0+dTV(X·u,Xϵ·u)ϵ=12limϵ→0+∫R|fX·u(x)−fX·u(x−ϵ)|ϵdx=(a)12I1(X·u).








Here, equality (a) follows by the definition of I1(X·u) and the assumption that it is well-defined. Doing a similar calculation for the right hand side of inequality (24) leads to


limϵ→0+dTV(X,Xϵ)ϵ=12limϵ→0+∫Rn|fX(x)−fX(x−ϵu)|ϵdx=(a)12I1(X)u.








The equality in (a) follows from the definition of I1(X)u and the assumption that it is well-defined. □





Our next result is a counterpart to the superadditivity property of Fisher information as in inequality (17).



Theorem 5.

Let X=(X1,…,Xn) be an Rn-valued random variable. Then the following superadditivity property holds:


∑i=1nI1(Xi)≤I1(X).













Proof. 

Applying Lemma 1 for the unit vectors e1,…,en, we obtain


∑i=1nI1(Xi)≤∑i=1nI1(X)ei=I1(X).








 □






3.2. Surface Integral Form of the L1-Fisher Information


If we consider a random variable X that takes values uniformly over a set K⊆Rn, then the L1-Fisher information superaddivity from Theorem 5 allows us to derive surface area inequalities once we observe two facts:




	(a)

	
The L1-Fisher information I1(X) is well-defined for X and is given by a surface integral over ∂K and




	(b)

	
The quantity I1(X)ei may be calculated exactly given the sizes of all slices parallel to ei⊥ or may be lower-bounded by using any finite number of slices parallel to ei⊥.









Establishing the surface integral result in part (a) requires making some assumptions on the shape of the geometric body. We focus on the class of polyconvex sets [19,35], which are defined as follows:



Definition 2.

A set K⊆Rn is called a polyconvex set if it can be written as K=∪i=1mCi, where m<∞ and each Ci is a compact, convex set in Rn that has positive volume. Denote the set of polyconvex sets in Rn by K.





In order to make our analysis tractable and rigorous, we first focus on polytopes and prove the polyconvex case by taking a limiting sequence of polytopes. Recall that convex polytope is the convex hull of a set of points. A precise definition of a polytope is as follows:



Definition 3.

Define the set of polytopes, denoted by P to be all subsets of Rn such that every K∈P admits a representation K=∪j=1mPj, where m>0 and Pj is a compact, convex polytope in Rn with positive volume for each 1≤j≤m.





In what follows, we make observations (a) and (b) precise.



Theorem 6.

Let X be uniformly distributed over a polytope K. Then the following equality holds:


I1(X)=1Vn(K)∫∂K∥n(x)∥1dS.



(25)




where n(x) is a unit normal vector at x on ∂K.





Proof of Theorem 6.

The equality in (25) is not hard to see intuitively. Consider the set K and its perturbed version Kϵ that is obtained by translating K in the direction of ei by ϵ. The L1 distance between the uniform distributions on K and Kϵ is easily seen to be


1Vn(K)Vn(K∪Kϵ)−Vn(K∩Kϵ).











As shown in Figure 1, each small patch dS contributes |n(x)·ei|dS volume to (K∪Kϵ)\(K∩Kϵ), where n(x) is the normal to the surface at dS. Summing up over all such patches dS yields the desired conclusion. We make this proof rigorous with the aid of two lemmas:



Lemma 2

(Proof in Appendix A). Let X be uniformly distributed over a compact measurable set K⊆Rn. If there exists an integer L such that the intersection between K and any straight line can be divided into at most L disjoint closed intervals, then


I1(X)ei=∫Rn−12Ni(…,xi^,…)Vn(K)dx1…dxi^…dxn.



(26)




Here xi^ stands for removing xi from the expression. The function Ni(…,xi^,…) is the number of disjoint closed invervals of the intersection of K and line {Xj=xj,1≤j≤n,j≠i}.





The above lemma does not require K to be a polytope. However, the surface integral Lemma 3 below uses this assumption.



Lemma 3

(Proof in Appendix B). Let X be uniform over a polytope K∈P. Then


∫Rn−12Ni(…,xi^,…)Vn(K)dx1…dxi^…dxn=1Vn(K)∫∂K|n(x)·ei|dS.








Here n(x) is the normal vector at point x∈∂K and dS is the element for surface area.





Lemmas 2 and 3 immediately yield the desired conclusion, since I1(X)=∑i=1nI1(X)ei and ∥n(x)∥1=∑i=1n|n(x)·ei|. □





Our goal now is to connect I1(Xi) to the size of the slices of K along ei⊥.




3.3. L1-Fisher Information via Slices


Consider the marginal density of X1, which we denote by fX1. It is easy to see that for each x1∈suppfX1, we have


fX1(x1)=Vn−1(K∩(e1⊥+x1))Vn(K).



(27)




Thus, the distribution of X1 is determined by the slices of K by hyperplanes parallel to e1⊥. Since Theorem 5 is expressed in terms of I1(Xi), where each Xi is a real-valued random variable, we establish a closed form expression for real-valued random variables in terms of their densities as follows:



Lemma 4

(Proof in Appendix C). Let X be a continuous real-valued random variable with density fX. If we can find −∞=a0<a1<…<aM+1=∞ such that (a) fX is continuous and monotonic on each open interval (ai,ai+1); (b) For i=0,…,M, the limits


f(ai+)=limx→ai+fX(x)fori=1,…,M,andf(ai−)=limx→ai−fX(x)fori=1,…,M








exist and are finite. Then


I1(X)=∑i=0M|f(ai+1−)−f(ai+)|+∑i=1M|f(ai+)−f(ai−)|.



(28)









We can see that the first sum in (28) captures the change of function values on each monotonic interval and the second term captures the difference of the one-sided limits at end points. The following two corollaries are immediate.



Corollary 1.

Let X be uniformly distributed on finitely many disjoint closed intervals; that is, there exist disjoint intervals [ai,bi]⊆R for i∈[N] and τ∈R such that


fX(x)=τx∈∪i=1N[ai,bi],and0otherwise,








then I1(X)=2Nτ.





Corollary 2.

Let X be a real-valued random variable with unimodal piecewise continuous density function fX. Then the following equality holds:


I1(X)=2∥f∥∞.



(29)









Lemma 4 gives an explicit expression to compute I1 when we know the whole profile of fX. When fX is only known for certain values x, we are able to establish a lower bound for I1(X). Note that knowing fX for only certain values corresponds to knowing the sizes of slices along a certain directions.



Corollary 3.

Let X∼fX where fX is as in Lemma 4. If there exists a set


S={−∞=θ0<θ1<…<θN<θN+1=∞}








such that fX is continuous at each θi for i∈[N], then


I1(X)≥∑i=0N|f(θi+1)−f(θi)|.













Proof. 

We can find T={ai|i=0,…,M+1} where a0=θ0=−∞, aM+1=θN+1=+∞ such that they satisfy the conditions in Lemma 4 and


I1(X)=∑i=0M|fX(ai+1−)−fX(ai+)|+∑i=1M|fX(ai+)−fX(ai−)|.



(30)




Consider the set S∪T={c0,…,cL+1}, which divides R into subintervals


(ci,ci+1)for0≤i≤L+1.








We claim that


I1(X)=∑i=0L|fX(ci+1−)−fX(ci+)|+∑i=1L|fX(ci+)−fX(ci−)|.



(31)




For the second term, note that


∑i=1L|fX(ci+)−fX(ci−)|=∑i=1M|fX(ai+)−fX(ai−)|,



(32)




since fX is assumed to be continuous at θi for i∈[N]. The points in S\T subdivide each of the intervals (ai,ai+1); that is, for each interval (ai,ai+1) we can find an index j0 such that ai=cj0<cj0+1<⋯<cj0+r<cj0+r+1=ai+1 and the monotonicity of the function over (ai,ai+1) gives


|fX(ai+)−fX(ai+1−)|=∑j=0r|fX(cj0+j+1−)−fX(cj0+j+)|.



(33)




Summing up over all intervals yields equality (31). To conclude the proof, note that fX is not necessarily monotonic in the interval (θi,θi+1). Thus, if we have indices θi=ck0<⋯<ck0+s+1=θi+1, the triangle inequality yields


|fX(θi+1)−fX(θi)|=(a)|fX(θi+1−)−fX(θi+)|=|∑u=0sfX(ck0+u+)−fX(ck0+u+1−)+∑u=1sfX(ck0+u−)−fX(ck0+u+)|≤∑u=0s|fX(ck0+u+)−fX(ck0+u+1−)|+∑u=1s|fX(ck0+u−)−fX(ck0+u+)|.








Here, equality (a) follows from the continuity of fX at the points in S. Performing the above summation over all intervals (θi,θi+1) for 0≤i≤N and using equality (31), we may conclude the inequality


I1(X)≥∑i=0N|f(θi)−f(θi+1)|.








 □





Remark 1.

Suppose K is the union of two squares joined at the corner as shown in Figure 2. Let X be uniformly distributed on K. Suppose also that the slice of K is known only at θ1. By direct calculation, we have I1(X·e1)=2, since X·e1 is uniform over [0,1]. Notice that fX·e1(θ1)=2 and thus the bound from Corollary 3 is 4, which is larger than I1(X·e1). This reversal is due to the discontinuity of fX·e1 at the sampled location θ1—fX·e1(θ1) equals neither the left limit or the right limit at θ1. To avoid such scenarios, we require continuity of the density at sampled points.



Corollary 3 shows that under mild conditions, we can estimate I1(X) when only limited information is known about its density function.






3.4. Procedure to Obtain Lower Bounds on the Surface Area


We first verify that the assumptions required by Lemma 4 are satisfied by the marginals of uniform densities over polytopes.



Lemma 5

(Proof in Appendix D). Suppose X=(X1,…,Xn) is uniformly distributed over a polytope K∈P. Let u be any unit vector and let fX·u be the marginal density of X·u. Then fX·u(·) satisfies the conditions in Lemma 4.





Now suppose X=(X1,…,Xn) is uniformly distributed over a polytope K. Since K is a polytope, we may write K=∪i=1mPi where each Pi is a compact, convex polytope. Theorem 5 provides the lower bound:


1Vn(K)∫∂K∥n(x)∥1dS≥∑i=1nI1(Xi).








To derive surface area bounds, notice that


n=n∥n(x)∥2≥∥n(x)∥1,








and thus


Vn−1(∂K)Vn(K)≥1n∑i=1nI1(Xi).



(34)







Suppose we know the sizes of some finite number of slices by hyperplanes parallel to ei⊥ for i∈[n]. We may use Corollary 3 to obtain lower bounds BiVn(K) on I1(Xi) for each i∈[n] using the available slice information. This leads to the lower bound


Vn−1(∂K)Vn(K)≥1n∑i=1nBiVn(K),








and thereby we may conclude the lower bound


Vn−1(∂K)≥1n∑i=1nBi.








This is made rigorous in the following result, which may be considered to be our main result concerning surface areas.



Theorem 7.

Let K be a polyconvex set. For i∈[n], suppose that we have Mi≥0 slices of K obtained by hyperplanes ei⊥+t1i,…,ei⊥+tMii(t1i<⋯<tMii), with sizes α1i,…,αMii. Then the surface area of K is lower-bounded by


Vn−1(∂K)≥1n∑i=1n∑j=0Mi|αji−αj+1i|,



(35)




where α0i,αMi+1i=0 for all i∈[n].





Proof. 

Let K be a polyconvex set with a representation K=∪i=1mCi where Ci are compact, convex sets. For each Ci, we construct a sequence of convex polytopes {Pik} which approximate Ci from the outside. This means that Ci⊆Pik for all k≥1 and limk→∞d(Pik,Ci)→0, where d is the Hausdorff metric. (This is easily achieved, for instance by sampling the support function of Ci uniformly at random and constructing the corresponding polytope.) Consider the sequence of polytopes Pk=∪i=1mPik. For each k, we would like to assert that inequality (35) holds for the polytope Pk; that is, we would like to lower bound Vn−1(∂Pk) using the slices of Pk at (ei⊥+tij) for i∈[n] and j∈[Mi]. The only difficulty in applying Corollary 3 to obtain such a lower bound on Vn−1(∂Pk) is the continuity assumption, which states that the marginal of the uniform density of Pk on ei, denoted by fPk·ei, should be continuous at tij for all i∈[n] and all j∈[Mi]. However, this is easily ensured by choosing an outer approximating polytope for Ci that has no face parallel to ei⊥ for all i∈[n].



To complete the proof for K, we need to show that limk→∞Vn−1(∂Pk)=Vn−1(∂K) and limk→∞Vn−1((ei⊥+tij)∩Pk)=Vn−1((ei⊥+tij)∩K) for any i∈[n] and any j∈[Mi]. To show this, we use the following lemma [36]:



Lemma 6

(Lemma 1 [36]). Let K1,…Km⊆Rn be compact sets. Let {Kik}, k≥1 be a sequence of compact approximations converging to Ki in Hausdorff distance, such that Ki⊆Kin for all n≥1 and for i∈[m]. Then it holds that


limk→∞d∩i=1mKi,∩i=1mKik=0.



(36)









Using Lemma 6, we observe that for any collection of indices 1≤i1<⋯<il≤m, we must have d(Pi1k∩⋯∩Pilk,Ci1∩⋯∩Cil)→0 as k→∞. Since surface area is convex continuous with respect to the Hausdorff measure [19,35], we have the limit


limn→∞Vn−1(∂(Pi1k∩⋯∩Pilk))=Vn−1(∂(Ci1∩⋯∩Cil)).



(37)




Moreover, surface area is a valuation on polyconvex sets [19,35] and thus the surface area of a union of convex sets is obtained using the inclusion exclusion principle. In particular, the surface area of K is


Vn−1(∂K)=∑i=1nVn−1(∂Ci)−∑i1<i2Vn−1(∂(Ci1∩Ci2))+⋯+(−1)m+1Vn−1(∂(∩i=1mCi)),



(38)




and the surface area of Pk is given by


Vn−1(∂Pk)=∑i=1nVn−1(∂Pik)−∑i1<i2Vn−1(∂(Pi1k∩Pi2k))+⋯+(−1)m+1Vn−1(∂(∩i=1mPik)).



(39)




Using the limit in equation (37), we may conclude that every single term in (39) converges to the corresponding term in (38) and so


limk→∞Vn−1(∂Pk)=Vn−1(∂K).



(40)







We now show that each slice of Pk converges in size to the corresponding slice of K. Let H be some fixed hyperplane that is orthogonal to one of the coordinate axes. Since each Ci can be replaced by a polytope ∩k=1nPik, we can assume without loss of generality that for each i∈[m], the sequence of polytopes that approximate Ci from outside is monotonically decreasing; that is, Pik⊇Pik+1 for all k≥1. For any fixed compact convex set L⊆H, Lemma 6 yields


d(L∩Pik,L∩Ci)→0,



(41)




and thus the (n−1)-dimensional volume of the two sets also converges. Picking L to be Pi1∩H, we see that L∩Pik=H∩Pik and L∩Ci is H∩Ci and thus equation (41) yields


d(H∩Pik,H∩Ci)→0.



(42)




The sequence of set H∩Pik for k≥1 is an outer approximation to H∩Ci that converges in the Hausdorff metric. Therefore, using Lemma 6,


d((H∩Pi1k)∩⋯∩(H∩Pilk),(H∩Ci1)∩⋯∩(H∩Cil))→0.



(43)




Using the continuity of the volume functional,


Vn−1((H∩Pi1k)∩⋯∩(H∩Pilk))→Vn−1((H∩Ci1)∩⋯∩(H∩Cil)).



(44)




Now an identical argument as above says that the (n−1)-dimensional volume of H∩K is obtained via an inclusion exclusion principle applied to the convex sets H∩Ci for i∈[m]. Applying Equation (44) to all the terms in the inclusion exclusion expression, we conclude that


Vn−1(H∩Pk)→Vn−1(H∩K).



(45)




This concludes the proof. □





Note that there is nothing restricting us to hyperplanes parallel to ei⊥. For example, suppose we have slice information available via hyperplanes parallel to {u1⊥,…,um⊥} for some unit vectors ui for i∈[m]. In this case, we have the inequality


1Vn(K)∫∂K∑j=1m|n(x)·uj|dS≥∑j=1mI1(X·uj).








Using the slice information, we may lower bound I1(X·ui) via Corollary 3. Suppose this bound is 1Vn(K)∑j=1mBj. To arrive at a lower bound for the surface area, all we need is the best possible constant Cn such that


Cn≥∑j=1m|n(x)·uj|








for all unit vectors n(x). (This constant happened to be n when uj’s were the coordinate vectors.) With such a constant, we may conclude


Vn−1(∂K)≥∑j=1mBjCn.








In Appendix E, we work out the surface area lower bound from Theorem 7 for a particular example of a nonconvex (yet polyconvex) set.





4. Conclusions


In this paper, we provided two different families of geometric inequalities to provide (a) Lower bounds on the volumes of convex sets using their slices and (b) Lower bounds on the surface areas of polyconvex sets using their slices. These inequalities were derived using information theoretic tools. The volume bounds were obtained by using the Brascamp-Lieb subadditivity of entropy in conjunction with entropy bounds for log-concave random variables. Our main innovation in the surface area bounds is interpreting superadditivity of Fisher information as a consequence of the data-processing inequality applied to perturbed random variables. With this interpretation, we show that using the total variation distance for data-processing allows us to derive superadditivity results for the L1-Fisher information. Crucially, the L1-Fisher information is well-defined even for non-smooth densities and thus we are able to calculate it for uniform distributions over compact sets.



There are a number of future directions worth pursuing. One interesting question is whether the volume bounds can be tightened further using entropy bounds for log-concave random variables that depend not just on the maximum value of the density but also on the size of the support. Note that this means knowing the largest slices as well as the sizes of the projections of a convex set. Another interesting question is characterizing the equality cases of the superadditivity of Fisher information in Theorem 5 and thereby get a better understanding of when the resulting bounds provide meaningful estimates on the surface area of geometric body.
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Appendix A. Proof of Lemma 2


If K∈P, the assumption in Lemma 2 may be verified. Clearly, K has finitely many faces F1,F2,…,FM. For a line ℓ intersecting K in some closed intervals, one of two events can happen. Either ℓ∩Fj is one of the intervals or the interval has endpoints that are marked by ℓ∩Fi1 and ℓ∩Fi2 for some i1,i2∈[M]. The maximum number of intervals may be loosely bounded by L:=M+M2, which is finite.



We show (26) for i=1 and the others can be proved in the same way. Since X is uniformly distributed over K,


fX(x)=1Vn(K)∀x∈K,0otherwise.








Let


F(x2,…,xn,ϵ)=∫R|fX(x1,…,xn)−fX(x1−ϵ,…,xn)|ϵdx1.








We claim that there exists g(x2,…,xn)∈L1, such that


F(x2,…,xn,ϵ)≤g(x2,…,xn).








This would allow us to use the dominated convergence theorem to conclude


limϵ→0∫Rn−1F(x2,…,xn,ϵ)dx2…dxn=∫Rn−1limϵ→0F(x2,…,xn,ϵ)dx2…dxn








Fix the coordinates x2,…,xn. If (x2,…,xn)∉Pe1⊥(K), we clearly have F(x2,…,xn,ϵ)=0. Let (x2,…,xn)∈Pe1⊥(K). Since K intersects any straight line at most L times, fX(x1,…,xn) is a constant function on at most L line segments and 0 else where. We can write it as ∑ifi(x1) where each fi is a constant function with value 1Vn(K) on a small interval of x1 and 0 elsewhere. Let fk be a function in this sum. We consider F(x2,…,xn,ϵ) in the following situations.




	1.

	
Support of fk is larger than or equal to ϵ, then


∫R|fk(x1)−fk(x1−ϵ)|ϵdx=2·1Vn(K)ϵ/ϵ=2Vn(K).








See Figure A1.
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Figure A1. Support >ϵ. 






Figure A1. Support >ϵ.



[image: Entropy 21 00809 g0a1]





	2.

	
Support of fk is ϵ′<ϵ, then


∫R|fk(x1)−fk(x1−ϵ)|ϵdx1=2·1Vn(K)ϵ′/ϵ≤2Vn(K).








See Figure A2.
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Figure A2. Support <ϵ. 






Figure A2. Support <ϵ.
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In both cases, we have


∫R|fk(x1)−fk(x1−ϵ)|ϵdx1≤2Vn(K).








Therefore


∫R|fX(x1,…,xn)−fX(x1−ϵ,…,xn)|ϵdx1=∫R|∑ifi(x1)−∑ifi(x1−ϵ)|ϵdx1≤∫R∑i|fi(x1)−fi(x1−ϵ)|ϵdx1≤∑i2Vn(K)≤2LVn(K).








Let


g(x2,…,xn)=2LVn(K)(x2,…,xn)∈Pe1⊥(K),0otherwise.








Then F(x2,…,xn,ϵ)≤g(x2,…,xn) and


∫Rn−1g(x2,…,xn)dx2…dxn=∫Pe1⊥(K)2LVn(K)dx2…dxn=2LVn−1(Pe1⊥(K))Vn(K),








which shows that g is integrable. Using the dominated convergence theorem, we know that


limϵ→0+∫Rn|fX(x1,…,xn)−fX(x1−ϵ,…,xn)|ϵdx1dx2…dxn=limϵ→0+∫Rn−1F(x2,…,xn,ϵ)dx2…dxn=∫Rn−1limϵ→0+F(x2,…,xn,ϵ)dx2…dxn=∫Rn−1dx2…dxnlimϵ→0+∫R|fX(x1,…,xn)−fX(x1−ϵ,…,xn)|ϵdx1.








Lastly, by Corollary 1,


limϵ→0+∫R|fX(x1,…,xn)−fX(x1−ϵ,…,xn)|ϵdx1=2N(x2,…,xn)Vn(K).








This concludes the proof.




Appendix B. Proof of Lemma 3


Recall that we need to show


1Vn(K)∫∂K|n(x)·ei|dS=∫Rn−12Ni(…,xi^,…)Vn(K)dx1…dxi^…dxn



(A1)




Without loss of generality, let i=1. Denote ∂K as ∪j=1MFj where Fj are the faces of K. Let nj be the outward normal to Fj for j∈[m]. We have the equality


Vn−1(Pe1⊥(Fj))=∫Pe1⊥(Fj)dx2dx3…dxn=|nj·e1|Vn−1(Fj).








Summing up for all Fj, the left hand side of (A1) is given by


1Vn(K)∫∂K|n(x)·e1|dS=1Vn(K)∑i=1M|nj·e1|Vn−1(Fj)=∑i=1M1Vn(K)∫Pe1⊥(Fj)dx2dx3…dxn.








If for some nj, the equality nj·e1=0 holds, then Vn−1(Pe1⊥(Fj))=0. Clearly,


∫Pe1⊥(Fj)dx2dx3…dxn=∫Pe1⊥(Fj)2N(x2,…,xn)=0.








Without loss of generality, we assume nj·e1≠0. Let δPe1⊥(Fj)(x2,…,xn) be the indicator function on Pe1⊥(Fj); that is,


δPe1⊥(Fj)(x2,…,xn)=1(x2,…,xn)∈Pe1⊥(Fj),0otherwise.








Then


∑i=1M∫Pe1⊥(Fj)dx2…dxn=∑i=1M∫Rn−1δPe1⊥(Fj)(x2,…,xn)dx2…dxn=∫Rn−1∑i=1MδPe1⊥(Fj)(x2,…,xn)dx2…dxn.








For every (x2,…,xn), there will be 2N(x2,…,xn) many Fj’s such that (x2,…,xn)∈Fj. Therefore


∫Rn−1∑i=1kδPe1⊥(Ui)(x2,…,xn)dx2…dxn=∫Rn−12N(x2,…,xn)dx2…dxn,








which completes the proof.




Appendix C. Proof of Lemma 4


We claim that


limϵ→0+∫ai+ϵai+1|fX(x)−fX(x−ϵ)|ϵdx=|fX(ai+1−)−fX(ai+)|,(i=0,…,M),and



(A2)






limϵ→0+∫aiai+ϵ|fX(x)−fX(x−ϵ)|ϵdx=|fX(ai+)−fX(ai−)|,(i=1,…,M).



(A3)




If fX is increasing on (ai,ai+1), then


limϵ→0+∫ai+ϵai+1|fX(x)−fX(x−ϵ)|ϵdx=limϵ→0+∫ai+ϵai+1fX(x)−fX(x−ϵ)ϵdx=limϵ→0+∫ai+ϵai+1fX(x)ϵdx−∫ai+ϵai+1fX(x−ϵ)ϵdx=limϵ→0+∫ai+ϵai+1fX(x)ϵdx−∫aiai+1−ϵfX(x)ϵdx=limϵ→0+−∫aiai+ϵfX(x)ϵdx+∫ai+1−ϵai+1fX(x)ϵdx=−fX(ai+)+fX(ai+1−).








The last equality is true since ∫aiai+ϵfX(x)ϵ=fX(θ) for ai<θ<ai+ϵ due to mean value theorem. This value approaches fX(ai+) when ϵ→0+. Using the same argument, we can show limϵ→0+∫ai+1−ϵai+1fX(x)ϵdx=fX(ai+1−). Similarly, when fX is decreasing on (ai,ai+1), we have


limϵ→0+∫ai+ϵai+1|fX(x)−fX(x−ϵ)|ϵdx=|fX(ai+)−fX(ai+1−)|








Therefore we have established (A2). Similarly, ∫aiai+ϵ|fX(x)−fX(x−ϵ)|ϵ=|fX(θ′)−fX(θ′−ϵ)| for ai<θ′<ai+ϵ. Since ai−ϵ<θ′−ϵ<ai, this approaches |fX(ai−)−fX(ai+)| as ϵ→0+. So we have also established (A3). Lastly,


I1(X)=limϵ→0+∫R|fX(x)−fX(x−ϵ)|ϵdx=limϵ→0+∑i=0M∫ai+ϵai+1|fX(x)−fX(x−ϵ)|ϵdx+∑i=1M∫aiai+ϵ|fX(x)−fX(x−ϵ)|ϵdx=∑i=0M|fX(ai+1−)−fX(ai+)|+∑i=1M|fX(ai+)−fX(ai−)|.












Appendix D. Proof of Lemma 5


Without loss of generality, assume u=e1. Let K=∪i=1mPi where Pi are compact, convex polytopes. Denote the projection of fX(·) restricted to some set C⊆K on the e1 axis by fC·e1(·). If C is a convex polytope, we may verify that fC·e1 is log concave and therefore a continuous function on some closed interval. Furthermore, if C is a convex and compact polytope, then we may triangulate C; i.e., express C=∪i=1rTi where Ti are n-dimensional compact simplices for i∈[r] such that their interiors partition the interior of C. Then fC·e1=∑i=1rfTi·e1. Each function in the summation is a degree (n−1) polynomial with a compact interval as its support in R [37]. Thus, fC·e1 is a continuous function consisting of finitely many pieces such that fC·e1 restricted to each piece is a polynomial of degree (n−1). Note that the overall density fK·e1:=fX·e1(·) is given via the inclusion exclusion principle by


fK·e1=∑i=1mfPi−∑i1<i2fPi1∩Pi2+∑i1<i2<i3fPi1∩Pi2∩Pi3+…








For each collection of indices i1,…,ik, we have that ∩j=1kPij is a compact, convex polytope, possibly with 0 volume but such sets do not contribute to the above sum so we only consider cases where the intersection has a positive volume. The sum (or difference) of finitely many bounded continuous functions on closed intervals is easily seen to satisfy the following property: We may find finitely many points −∞=γ0<γ1<…<γR<γR+1=+∞ such that the function is continuous on each open interval (γi,γi+1) and the left and right limits at the endpoints in each interval are finite. To verify the assumptions in Lemma 4, we simply check that on each interval (γi,γi+1), the function does not have infinitely many local optima. This is clearly true since restricted to (γi,γi+1), the function is a piecewise polynomial of degree (n−1). This proves the claim.



Remark A1.

Note that in general, it is possible for the difference of log concave functions to have infinitely many local optima. For example, if f1,f2:[−1,1]→R such that f1(x)=2−x2 and f2(x)=(2−x2)+e−1/x2sin(1/x)2, then both functions are concave and positive and therefore log-concave. However, f2−f1=e−1/x2sin(1/x)2 has infinitely many local optima close to 0. The observation that the marginals in our case are piecewise polynomials is therefore necessary in the above argument.






Appendix E. Example


To illustrate (34), we consider the example of a cube with a hole in it as in Figure A3. Note that this is a nonconvex set but is easily seen to be polyconvex. The density fX1(x1) can be computed using area of slices along x1-axis and


I1(X1)=|fX1(0)−fX1(−∞)|+|fX1(1)−fX1(0)|+|fX1(3)−fX1(2)|+|fX1(∞)−fX1(3)|=|926−0|+|826−926|+|926−826|+|0−926|=2026.








By symmetry,


13(I1(X1)+I1(X2)+I1(X3))=60263≈1.33,








By direct calculation,


Vn−1(∂K)Vn(K)=4826≈1.85.
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Figure A3. Cube with a hole. 






Figure A3. Cube with a hole.
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Figure 1. Perturbing a set by ϵ. 






Figure 1. Perturbing a set by ϵ.
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Figure 2. Uniform distribution over a union of squares. 






Figure 2. Uniform distribution over a union of squares.
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