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Abstract: The analytically solvable chaotic system (ASCS) is a promising chaotic system in chaos
communication and radar fields. In this paper, we propose a maximum likelihood estimator (MLE)
to estimate the frequency of ASCS, then a difference-integral (DI) detector is designed with the
estimated frequency, and the symbols encoded in the signal are recovered. In the proposed method,
the frequency parameter is estimated by an MLE based on the square power of the received signal.
The Cramer-Rao lower bound in blind frequency estimation and the bit error performance in symbol
detection are analyzed to assess the performance of the proposed method. Numerical results validate
the analysis and demonstrate that the proposed symbol detector achieves the error performance
with a little cost of 1 dB compared to the coherent detector. The robustness of the proposed method
towards parameters is also verified through simulations.

Keywords: analytically solvable chaotic system; frequency estimation; performance evaluation

1. Introduction

The characteristics of a chaotic signal—such as noise-like obscurity, aperiodicity, thumbtack-like
correlation, sensitivity to initial conditions and system parameters—enable a chaotic signal to be
widely investigated in engineering applications. Specifically, the noise-like property that determines
the chaotic signal involves a low probability of interception (LPI), which is essential for secure
communication and radar applications.

In the last decade, a class of analytically solvable chaotic system (ASCS) was introduced [1–3].
ASCS is defined by a second-order differential equation and a discrete switching condition controlled
by binary symbols. The ASCS can be expressed analytically with an exact solution by solving the
differential equation. It can also be described by a linear convolution with a fixed basis function and
binary symbols. Due to the fixed shape of the basis function, a matched filter was then proposed
to recover the binary symbols from the received signal [4]. Experiment and analysis proved that
its bit error rate (BER) performance is comparable to that of the binary phase-shift keying (BPSK).
Moreover, the circuit implementation of ASCS and the corresponding matched-filter based detector
were provided [2]. For its excellent performance against noise and its simplicity in circuit realization,
ASCS has been used in chaos communication [5–11], chaos radar [12,13], and underwater ranging
and navigation [14]. Reference [6] proved that the information encoded in the chaotic signal is
kept after being transmitted through a wireless channel with multipath effects. In Reference [8],
an easy coding method was proposed to encode the information bits into the initial value of the
ASCS oscillator. The application of ASCS to the wireless channel was analyzed and tested through
a circuit implementation. In Reference [9], a high-frequency reverse-time ASCS was successfully
generated in an optical carrier, which is promising for optical secure communication. In Reference [11],
a resisting-multipath technique was proposed to tackle the inter-symbol interference caused by
multipath. In Reference [10], an underwater spread spectrum scheme based on ASCS was proposed
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to provide superior reliability and security compared with the conventional chaos direct spread
spectrum system.

Although ASCS shows superior performance in communication and radar applications, the ASCS
signal can be considered as simply a BPSK communication waveform with an unconventional basis
function so that it has no inherent security. The dynamical characteristics and the exact solution of
such a class of ASCS signal make it possible to incoherently recover the symbols conveyed in the
chaotic signal even if it is severely contaminated by noise. In this paper, we propose an efficient
method for estimating the frequency of ASCS, and for detecting the symbols encoded in the waveform.
The system parameters of ASCS and the binary symbols encoded in the continuous chaotic waveform
can be estimated directly from the received signal via a difference-integral (DI) detector. For a potential
attacker, this method process requires only the knowledge of the form of ASCS, which is practical
in implementation.

Based on the square power spectrum of the received signal, we first proposed a maximum
likelihood estimator (MLE) to obtain the frequency parameter of the ASCS. For the symbol detection,
we proposed a DI detector in which the binary symbols are retrieved by cumulatively summing
the difference between the received signal and its time-delayed version. This detector requires no
parameters of the transmitter other than the basis frequency, which can be estimated. The advantages
of the proposed method are two-fold: first, it does not require prior knowledge at the transmitter other
than the form of ASCS; second, although the error performance of the proposed symbol detector is
around 1 dB worse than that of the coherent detector for ASCS, it provides a new tool for a potential
adversary hoping to incoherently detect an ASCS signal.

The rest of this paper is organized as follows: In Section 2, we provide a brief review of the
system description and exact solution of ASCS. In Section 3, the MLE based on the square power
spectrum is proposed to estimate the basis frequency of ASCS. The performance of the estimator is also
evaluated. In Section 4, a DI detector is proposed with detailed theoretical derivations. In Section 5,
a closed-form expression for error probability in symbol detection is derived and verified through
simulations. The robustness of the detector is also discussed. Finally, some conclusions are made in
Section 6.

2. The Analytically Solvable Chaotic System

The standard form of ASCS is described with a differential equation as [1]

ü− 2βu̇ + (ω2 + β2)(u− s) = 0 (1)

where ω determines the symbol period as T = 2π/ω and β ∈ (0, T−1 ln 2) is the damping coefficient
of the linear part of ASCS system. The waveform u(t) ∈ R is continuous and state s ∈ {±1} is
discrete. The state can be controlled by a binary symbol sequence s(t) which is set as the sign of current
u(t) once the switching condition meets and is held constant until the next time when the switching
condition triggers. The switching condition and state change process are described as

u̇ = 0⇒ s(t) = sgn{u(t)}. (2)

The chaotic signal u(t) can be obtained by the numerical solution of the Equation (1) with an
adjustable step size Runge-Kutta integrator. Suppose the initial conditions are |u(0)| < 1 and u̇(0) = 0,
the exact analytic local solution of Equation (1) for the segment of nT ≤ t < (n + 1)T is derived as

u(t) = sn + (un − sn)eβ(t−nT)(cos ωt− β

ω
sin ωt) (3)

with the iteration relation un+1 = e2βπ/ωun − (e2βπ/ω − 1)sn, where n is an integer. Figure 1 shows the
corresponding phase-space projection and the return map of the iterated shift relation at regular return
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times nT where n is an integer. The system parameters are T = 1 and β = ln 2. As Figure 1a suggests,
ASCS has an attractor topologically similar to the well-known Lorenz attractor. As Figure 1b shows,
the sampled values at nT are divided into two groups by the binary symbol sequence s(t) and follow
the standard iteration relation lines with the fixed slope of e2βπ/ω. Hence, the piecewise linear return
map implies the dynamical system generated from Equation (1) is chaotic with Lyapunov exponent
λ = β.

Figure 1. The chaos feature of ASCS. (a) The phase-space projection. (b)The successive return map
with the standard iteration relation lines.

Based on the iteration relation of ASCS, the Nth return point uN and its former symbols determine
the initial value u0, which is given by

u0 = e−NβTuN + (1− e−βT)
N−1

∑
m=0

sme−mβT . (4)

From the analytic solution Equation (3), u(t) can be derived as a linear convolution of a basis
function and a binary symbol sequence when N approaches to infinity:

u(t) =
N

∑
m=−∞

smP(t−mT) (5)

where m is an integer and the basis function P(t) is defined as

P(t) =


(1− e−βT)eβt(cos ωt− β

ω sin ωt), t < 0
1− eβ(t−T)(cos ωt− β

ω sin ωt), 0 ≤ t < T
0, T ≤ t.

(6)

Figure 2 shows the shape of the basis function P(t) for T = 1 and β = ln 2. As Equation (5)
implies, the continuous waveform of u(t) can be generated by the sum of binary symbols and the
time delayed basis function P(t). Thus, binary symbols can be encoded into the continuous chaotic
waveform u(t).
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Figure 2. The basis function of the analytically solvable chaotic system (ASCS) for T = 1 s and β = ln 2.

3. Frequency Estimation for Chaotic Signal

In ASCS, the frequency parameter ω determines the symbol rate, which is significantly important
in symbol detection. In the following, we derive the amplitude spectrum of the square power of u(t)
and then propose a frequency estimator based on it.

3.1. Amplitude Spectrum of the Square Power of the Chaotic Signal

Assume the basis radian frequency of ASCS is ω0. Based on the analytical solution Equation (3),
the local waveform of u(t) for mT ≤ t ≤ (m + 1)T is

u(t) = sm + Dmeβ(t−mT)A cos(ω0t + ϕ) (7)

where Dm = um − sm; A =
√

1 + β2/ω0; ϕ = arctan β/ω0. The feature of the amplitude spectrum
of the ASCS has been calculated and analyzed in References [4,15]. The spectrum of the chaotic
waveform u(t) shows zeros at the fundamental frequency and its harmonics. Although this conclusion
is determined, the frequency component with zero amplitude is difficult to locate accurately as the
zero zones are often too vague to detect, especially when the signal-to-noise-ratio (SNR) is low. In the
following, we derive the amplitude spectrum of the square power of u(t) and then propose a frequency
estimator based on it.

The square power of u(t) is

v(t) = s2
m + 2smDmeβ(t−mT)A cos(ω0t + ϕ) +

1
2

D2
m A2e2β(t−mT)(cos(2ω0t + 2ϕ) + 1). (8)

Since s2
m = 1 is constant and contributes to the spike in the zero frequency component, we subtract

it from v(t) and have w(t) = v(t)− 1 as

w(t) = w1(t) + w2(t) (9)

where w1(t) = 2smDmeβ(t−mT)A cos(ω0t + ϕ); w2(t) = 1
2 D2

m A2e2β(t−mT)(cos(2ω0t + 2ϕ) + 1). Then
we derive the Fourier transform of each part. The Fourier transform for w1(t) is

W1(ω) =
∫ ∞

−∞
w1(t)e−jωtdt

= 2A
∞

∑
m=−∞

smDm

∫ (m+1)T

mT
eβ(t−mT) cos(ω0t + ϕ)e−jωtdt

(10)

Since the integral is difficult to derive, we calculate the Fourier coefficients as

a(ω) = 2A
∞

∑
m=−∞

smDm

∫ (m+1)T

mT
eβ(t−mT) cos(ω0t + ϕ) cos ωtdt (11)
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and

b(ω) = 2A
∞

∑
m=−∞

smDm

∫ (m+1)T

mT
eβ(t−mT) cos(ω0t + ϕ) sin ωtdt. (12)

By computing the integral, we have a(ω) as

a(ω) =A
∞

∑
m=−∞

smDm

(−β cos θm − (ω0 −ω) sin θm

β2 + (ω0 −ω)2 − β cos λm + (ω0 + ω) sin λm

β2 + (ω0 + ω)2

+ eβT
( β cos δm + (ω0 −ω) sin δm

β2 + (ω0 −ω)2 +
β cos ηm + (ω0 + ω) sin ηm

β2 + (ω0 + ω)2

))
where ϕ−mTω = θm; ϕ + mTω = λm; ϕ− (1 + m)Tω = δm; ϕ + (1 + m)Tω = ηm. As m changes,
the variables θm, λm, δm, and ηm change gradually. Take the cos θm as an example. Since θm is ergodic
in −∞ to ∞ when ω 6= nω0 (n = 0, 1, . . . , ), then ∑∞

m=−∞ θm → 0. Hence, we have a(ω) ≈ 0. When
ω = nω0, however, the variables θm, λm, δm, and ηm keep constant since mTω = 2mnπ. The analysis
of b(ω) is similar to that of a(ω) (see Equation (A1) in Appendix A). After obtaining the Fourier
transform coefficients, the amplitude spectrum is then calculated by |W1(ω)| =

√
a2(ω) + b2(ω) and

the approximate result for ω = nω0 is

|W1(ω)| = 2AI1(n)

∣∣∣∣∣ ∞

∑
m=−∞

smDm

∣∣∣∣∣ (13)

where

I1(n) =

√√√√ (eβT − 1)2n2ω4
0

(β2 + ω2
0)(β2 + (n− 1)2ω2

0)(β2 + (1 + n)2ω2
0)

. (14)

Since smDm is uniformly distributed in [−1, 0], the average of |W1(ω)| for ω = nω0 is fixed at
AI1(n). The expression of I1(n) implies the existence of spikes at the integer multiplies of the basis
frequency ω0 and the amplitude of the spikes shrinks as n increases. Hence, the single-side amplitude
spectrum |W1(ω)| shows the maximum spike at n = 1.

The analysis of the amplitude spectrum of w2(t) is similar to the above and the exact analytic
expression of |W2(ω)| for ω = nω0 is given by

|W2(ω)| =
2A2(e2βT − 1

2 )

β2 + ω2
0

I2(n)
∞

∑
m=−∞

D2
m (15)

where

I2(n) =

√√√√√ 100β4ω4
0 + 8 (5 + 2n2) β2ω6

0 + (n2 − 2)2
ω8

0(
4β2 + (n− 2)2ω2

0

) (
4β2 + n2ω2

0
) (

4β2 + (2 + n)2ω2
0

) . (16)

The detailed derivation is provided in Appendix A. Note that the random variable D2
m follows

a uniform distribution in [0, 1], hence the average of |W2(ω)| is fixed at A2(e2βT− 1
2 )

β2+ω2
0

I2(n). As the

expression of I2(n) implies, the spikes exist at the integer multiplies of the basis frequency. When
n = 0, the partial spectrum sees a maximum spike which is caused by the direct current component in
w2(t). When n = 1, the spectrum sees a second maximum spike.

By summing the |W1(ω)| and |W2(ω)| together, we have the final amplitude spectrum of w(t).
Figure 3a,b show a typical amplitude spectrum and the theoretical amplitude spectrum of the chaotic
signal respectively, with the basis frequency f0 as 100 Hz. From the comparison, the amplitude
spectrum obtained by fast Fourier transform (FFT) matches the theoretical one well, proving the
derivations above are reasonable and valid. The spikes occur at n f0 (n = 1, 2, . . . ), that is, the inter
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multiplies the basis frequency and shows a damping amplitude as n increases. Despite the zero
frequency part, the maximum spike occurs exactly at 100 Hz and the second highest shows at 200 Hz.
Obviously, the basis frequency can be estimated from the maximum spike in the amplitude spectrum
of the square power of the chaotic signal.

(a)

(b)

Figure 3. (a) The normalized amplitude spectrum obtained by FFT for the chaotic signal with the
basis frequency of 100 Hz. (b) The normalized amplitude spectrum obtained by the theoretical Fourier
transform for the same chaotic signal.

3.2. Maximum Likelihood Estimator and Performance Analysis

Based on the analysis of the square power of the chaotic signal, we proposed a maximum
likelihood estimator (MLE). Suppose the observed signal with a time length of MT is r =

(r0, r1, . . . , rN), with
rk = uk + nk (17)

for k = 0, 1, 2, . . . , N. The sample is uk = u(k fst) and fs is the sampling frequency; N = MT fs is the
number of samples; nk is the additive Gaussian noise with zero mean and variance of σ2. We calculate
the square power of the observed signal and subtract its direct current component as

xk = u2
k + 2uknk + n2

k − E(r2
k) (18)

where the first term contains signal part while the second and the third term are noise-related. The last
term E(r2

k) is the average value of the square power of the received signal. Since the term 2uknk has
zero mean, we have E(r2

k) = E(u2
k) + σ2. The basis frequency of the chaotic signal is estimated by an

MLE as

ω̂MLE = arg max
ω

∣∣∣∣∣N−1

∑
k=0

xke−jωk

∣∣∣∣∣
2

. (19)

According to the Fourier transform of x(t), we have E(ω̂0_MLE) = ω0. Hence, the estimator is
unbiased. To assess whether the proposed unbiased estimator is asymptotically efficient or not, we
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continue to derive the Cramer-Rao lower bound (CRLB) in the following. Note that the segment of the
first term vk = u2

k in xk for mT fs ≤ k < (m + 1)T fs is

vk =1 + 2smDmeβ( k
fs
−mT)A cos

(
2π f0

k
fs
+ ϕ

)
+

1
2

D2
m A2e2β( k

fs
−mT)

(
cos(4π f0

k
fs
+ 2ϕ) + 1

)
(20)

where Dm = um − sm. For simplicity in derivation, we assume the noise term distributes normally
with zero mean and variance of σ2

x = 2σ4 + 2σ2
un, where σ2

un is the variance of the term 2uknk. Like the
similar process in parameter estimation with white Gaussian noise, we have the Fisher information of
the estimated frequency as

I( f̂0) = −
1
σ2

x

N−1

∑
k=0

(
∂vk( f0)

∂ f0

)2

(21)

where the cumulative sum part is derived as

N−1

∑
k=0

(
∂vk( f0)

∂ f0

)2

=
M−1

∑
m=0

(m+1)T fs−1

∑
k=mT fs

(
− 4π

k
fs

smDmeβ( k
fs
−mT)A sin(2π f0

k
fs
+ ϕ)

− 2π
k
fs

D2
m A2e2β( k

fs
−mT) sin(4π f0

k
fs
+ 2ϕ)

)2
. (22)

Then the CRLB is expressed as CRLB( f̂0) = I−1( f̂0). Note that sm and Dm are random variables
in the expression of CRLB( f̂0), where smDm is uniformly distributed in [−1, 0], and D2

m is uniformly
distributed in [0, 1]. Hence, the average of CRLB is determined despite of the existence of the random
variables. Figure 4 shows the comparison of the minimum square error (MSE) of the proposed MLE
with a different number of FFT points (NFFT). The CRLB is depicted as the reference. The basis
frequency f0 is set as 1.12 Hz and the sampling frequency fs is set as 100 Hz. The time length of the test
signal is M/ f0, where M is set as 100. As NFFT increases, the estimation error gradually approaches
the theoretical lower bound.

-20 -15 -10 -5 0 5 10 15 20

SNR (dB)

10
-10

10
-5

10
0

10
5

M
S

E

NFFT = 2
14

NFFT = 2
16

NFFT = 2
18

NFFT = 2
20

CRLB

Figure 4. The MSE and the CRLB of frequency estimation with the proposed MLE for different NFFT.
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4. Symbol Detection with a Difference-Integral Detector

At the friendly receiver of ASCS, the symbols are recovered with a coherent matched-filter-based
detector which requires precise knowledge of the frequency parameter f and the damping coefficient
β. However, the parameter β, which is related to the linear part of the ASCS system, is difficult to
estimate since the received signal is severely contaminated by noise. In this section, we propose a
DI detector to incoherently retrieve the binary symbols that the chaotic signal is conveying, which
requires only the frequency parameter estimation.

The whole process of the frequency estimation and symbol detection is described in Figure 5.
The chaotic signal is generated by the ASCS oscillator with the initial value u0 and the basis frequency
f0. After transmitting in the channel, the chaotic signal is contaminated by the noise. Then we conduct
a blind frequency estimation from the received signal and obtain the estimated basis frequency f̂0.
With the estimated frequency f̂0, the binary symbols that the chaotic signal conveying can be retrieved
by a DI detector.

ChannelHybrid chaos
generator

Symbol
detection

u0 u(t) r(t )

f0 0f̂F r e que nc y
estimation

{ˆk}s

Figure 5. The block diagram of the frequency estimation and symbol detection.

As mentioned above, the main characteristic of ASCS is that this class of chaotic signal can be
described by a weighted sum of basis functions. Note that continuous waveform u(t) contains the
relations among binary symbols. Hence, the symbols conveyed in the ASCS waveform can be retrieved
directly from the received signal by utilizing this feature.

The block diagram of the DI detector scheme is shown in Figure 6. Assume a segment of
continuous chaotic signal u(t) carries a sequence of binary symbols {sk}. The intermediate state d(t)
is obtained by differencing the received signal v(t) and the delayed one v(t− T). Then d(t) is sent
to the integrator. The integral output η(t − T) is computed numerically by

∫ t
−∞ d(t + τ)dτ. Note

that the practical signal generated from the chaotic oscillator is not infinite in length. Suppose the
received signal transmit N symbols and thus the time duration is NT. Then the whole integral region
is from 0 to NT. By extracting the integral output at sampling time tk = kT(k = 0, 1, . . . , N − 1), we
compare the samples ηk with a flexible threshold θk, calculated with the previously recovered symbols
to detect the polarity, which is given by θk = −λAB ∑k−1

m=0 sme−mβT . If the ηk is larger than θk, then
the estimated symbol is 1. Otherwise, the estimated symbol is −1. Hence, the estimated symbol
sequence is expressed as ŝk = sgn{ηk − θk}. In the following, we provide detailed derivations of the
proposed detector.

Integrator

Delay T

Sampling

-

Threshold

+( ) ( ) ( )v t u t n t  ( )t
k {ˆ }ks( )d t

Figure 6. The block diagram of the DI -based detector.

The received signal in the AWGN channel is modeled as

r(t) = u(t) + n(t) (23)
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where the white Gaussian noise term n(t) has zero mean and power density N0/2. The difference
between the received signal and its time-shift version can be expressed in a convolution form as

d(t) =v(T)− v(t− T) (24)

=
∞

∑
m=0

sm(P(t−mT)− P(t− T −mT)) + n(t)− n(t− T). (25)

Define an integral from 0 to t as

η(t) =
∫ t

0
d(τ + T)dτ (26)

=
∫ t

0

∞

∑
m=0

sm(P(t + T −mT)− P(t−mT))dτ +
∫ t

0
(n(τ + T)− n(τ))dτ (27)

= ε(t) + χ(t) (28)

where χ(t) is noise term; ε(t) is computed as

ε(t) =− λAB
k−2

∑
m=0

sme−mβT + sk−1(−AB + kT − t +
1
ω

eβ(t−kT) sin(ωt + ϕ)− λABe−(k−1)βT)

+ sk(AB + t− (k− 1)T − λABe−kβT +
1
ω
(e−βT − 2)eβ(t−kT) sin(ωt + ϕ))

+ λ
∞

∑
m=k+1

sm(
1
ω

eβ(t−mT) sin(ωt + ϕ)− e−mβT AB)

(29)

where λ = eβT + e−βT − 2; A = β2

ω2+β2 ; B = 2
β ; ϕ = arctan 2βω

ω2−β2 . To guarantee the accuracy of the
integral, the integral step should be small and thus the sampling rate of the received signal v(t) is
supposed to be high. The sample of ε(t) at t = kT is derived as

εk =− λAB
k−1

∑
m=0

sme−mβT

+ sk(−λABe−kβT + (e−βT − 1)AB + T)

+ λAB(ekβT − 1)
∞

∑
m=k+1

sme−mβT . (30)

where the upper term is the cumulative interference caused by the previous symbols; the bottom term
is the interference caused by the future symbols. Hence, we can rewrite the samples as

ηk = sk(−λABe−kβT + (e−βT − 1)AB + T) + Σ + ξ (31)

where ξ is the sampled noise term χ(t) in Equation (28) and it follows a Gaussian distribution with
zero mean and σ2

ξ variance; Σ is the inter-symbol interference defined as

Σ = Ip + If (32)

where Ip = −λAB ∑k−1
m=0 sme−mβT represents the intersymbol interference of the past symbols;

If = λAB(ekβT − 1)∑∞
m=k+1 sme−mβT represents the intersymbol interference of the future symbols.

Since Ip can be calculated but If is unavailable, we use Ip as the detection threshold and the detection
process is described as

ŝk = sgn{ηk − θk} (33)

with θk = Ip as the threshold.
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To illustrate the detection process above, we generate a segment of chaotic signal with m truncated
at 50 and the period T is set as 1 s, where the chaotic signal is not contaminated by noise. The continuous
waveform and symbol sequence are depicted in Figure 7a. Both the numerical η(t) and theoretical
ηth(t) integrals are calculated and compared in Figure 7b, where the sampling rate is 0.01 s. From the
comparison of the waveforms, we find that the theoretical integral computed by Equation (29) is quite
close to the numerical integral result, proving that the previous calculation and approximation are
reasonable. The samples ηk of the numerical integral result η(t) stay around ±1 which are depicted
with two horizontal dash lines. Hence, the symbol sequence can be easily retrieved by Equation (33).
Compared with the original symbol sequence provided in Figure 7a, the extracted one is exactly
the same.

(a)

(b)

Figure 7. (a) The continuous waveform u(t) of ASCS and the corresponding binary symbol sequence
s(t). (b) Numerical integral η(t) and the theoretical integral ηth(t) computed by Equation (29). The dots
are ηk obtained by sampling the continuous integral result η(t) with a fixed sampling period of T.

5. Performance Evaluation and Simulation

In this section, we first evaluated the symbol error performance theoretically and derived an exact
closed-form expression of error probability in the symbol detection. Then the robustness of the DI
detector was verified by numerical simulations with various errors in parameter estimation.

Under the noise background, errors in symbol detection occur with rising probability as the
variance of noise increases. Hence, it is necessary to evaluate the error performance for symbol
detection with different SNR levels. In this paper, we define the BER as the ratio of the number of
errors to the total number of detected symbols. As implied in Equation (33), the detection is a classical
hypothesis test. Then the probability of detecting an incorrect bit is

Pe = P(ηk > θk|sk = −1)P(sk = −1) + P(ηk < θk|sk = 1)P(sk = 1). (34)

Note that the source symbols {sk} are sent with equal probability, that is, P(sk = −1) = P(sk = 1) =
1/2. Assume that “+1” and “−1” in the future symbols distribute with the equal probability of 1/2, then

If follows a uniform distribution in the range given by [−λAB(1−e−kβT)

eβT−1
, λAB(1−e−kβT)

eβT−1
]. Note that the term

e−kβT decreases rapidly as k increases, then we have the approximate upper bound as − λAB
eβT−1

and the

upper bound as λAB
eβT−1

. Thus, the error probability for sk = 1 can be expressed as

Pe =
∫ λAB

eβT−1

− λAB
eβT−1

1
2

erfc

(
Φ + If√

2σξ

)
f (If)dIf. (35)
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where erfc(·) denotes the complementary error function; Φ = −λABe−kβT + (e−βT − 1)AB + T.
Consider that e−kβT decreases rapidly as k increases, we have the approximate Φ = (e−βT − 1)AB + T.
The integral is computed as

Pe =
√

2σ2
ξ

eβT − 1
4λAB

(
z1erfc(z1)− z2erfc(z2)−

1√
π

e−z2
1 +

1√
π

e−z2
2

)
. (36)

where z1 = 1√
2σξ

(Φ + λAB
eβT−1

); z2 = 1√
2σξ

(Φ− λAB
eβT−1

).

We implement our symbol detecting method in different frequency settings and illustrate the
BER curves in Figure 8. The theoretical BER curves of the symbol detecting method with optimal and
suboptimal matched filter introduced in References [4,16] are also depicted as a reference. The SNR is
defined as the ratio of the power of the ASCS signal to the noise power, where the sample rate is 100
times faster than the symbol rate. In fact, the relative SNR calculated with in-band noise should be the
actual SNR added to 10 log10 50 dB. As can be noticed, the simulated curve for the proposed DI detector
matches the theoretical one well. Compared with the theoretical error performance of the suboptimal
matched-filter-based detector, our method performs a degradation around 1 dB. Nevertheless, it is
acceptable for an attacker or an eavesdropper to obtain enough information.

-16 -14 -12 -10 -8 -6

SNR (dB)

10
-4

10
-3

10
-2

10
-1

B
E

R

DI simulated

DI theoretical

Optimal MF theoretical

Suboptimal MF theoretical

Figure 8. BER comparison of the proposed DI detector scheme to the optimal matched filter, suboptimal
matched filter for f = 1 Hz, β = ln 2 and sampling frequency as Ts = 0.01 s.

As implied in the theoretical BER expression Equation (36), the BER is related to the damping
coefficient β. To evaluate the BER performance under different damping coefficients, we set the
damping coefficient as β = a f ln 2 where the coefficient a ∈ {0.6, 0.8, 1}. The simulated BER curves
of the proposed DI-HCC over different damping coefficients are shown in Figure 9. The theoretical
BER for a = 1 is depicted as a reference. From the comparisons of BER curves over different settings,
the BER performance of the DI detector slightly degrades as the damping coefficient β decreases.
However, the deterioration is not significant since β has a limited impact on the constant values in
Equation (36). Hence, the proposed DI detector is robust to the damping coefficient of the ASCS. Since
the samples are extracted at the integer multiplies of T, the imprecise sampling time is supposed
to have effects on the BER performance. Assume that the integral η(t) are sampled at t = kT + ∆T,
where ∆T is the sampling lag. Figure 10 shows the BER curves over different sampling lags with
∆T ∈ {0.10, 0.15, 0.20, 0.25} ms where the basis frequency of the ASCS is set as 1 kHz. From the
comparison of the curves, the performance deteriorates gradually as the lag increases. However,
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the deterioration is slight when the lag is less than 0.15 ms, meaning the proposed detector keeps valid
within a limited range of sampling lag.

-16 -14 -12 -10 -8 -6

SNR (dB)

10
-4

10
-3

10
-2

10
-1

B
E

R

 = ln2 theoretical

 = ln2 simulated

 = 0.8 ln2 simulated

 = 0.6 ln2 simulated

Figure 9. BER comparison of the proposed DI detector over different damping coefficients β = a f ln 2.
The basis frequency is set as 1 Hz. The coefficient a is in {0.6, 0.8, 1}.
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B
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DI T=0.10 ms simulated

DI T=0.15 ms simulated

DI T=0.20 ms simulated

DI T=0.25 ms simulated

Figure 10. BER comparison of the proposed DI detector over different sampling lag ∆T.

The key parameter in symbol detection is the symbol period T, which is defined as T = 1/ f0

and the basis frequency f0 is estimated by the FFT-based MLE. Unavoidably, the frequency estimation
error has a negative impact on the symbol detection. Figure 11 illustrates BERs for various estimation
error ∆ f with different numbers of symbols in the received signal with a fixed SNR as −5 dB, where
the basis frequency is set as f0 = 10 Hz and the estimated frequency is f0 + ∆ f . As the absolute value
of the frequency estimation error increases, the symbol detection error probability is larger when N
is 200 while almost no error is seen for N = 50 and N = 100 in the tested estimation error range.
It can be explained that the DI detection is a process with error accumulation over time. As time
passes, the sampling time will gradually deviate from the original exact sampling positions, which
brings deterioration to the symbol detection. Assume the difference between the estimated symbol
period T′ = 1/( f0 + ∆ f ) and the exact period T is ∆T = T′ − T. Suppose the error of sampling time



Entropy 2019, 21, 791 13 of 15

increases to the half of T after N symbols, then we have N∆T = T/2 and the estimation error of
the frequency is correspondingly ∆ f = f /(2N − 1). Hence, the maximum of the absolute value of
the frequency estimation error should be less than ∆ f . In the simulation in Figure 11, as derived
theoretically, the absolute value of ∆ f should be controlled within 0.025, 0.05, and 0.1 for N is set as
200, 100, 50 respectively, to avoid the accumulated error. The obtained BERs show that the theoretical
bounds of the frequency estimation error for different N match the simulated results well. In the
practical implementation of the proposed method, the frequency estimation error can be evaluated by
CRLB with the known SNR level. With the theoretical frequency estimation error, we can compute the
upper bound of N. Then the received signal is divided into segments with the limited time length of
NT to avoid error caused by the accumulation effect.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

 f  (Hz)

0

0.1

0.2

0.3

0.4

0.5

B
E

R

N = 50 N = 100 N = 200

Figure 11. BER comparison for different number of symbols conveying in chaotic signal.

6. Conclusions

In this paper, an efficient method of blind frequency estimation and symbol recovery for ASCS
is proposed. To obtain the frequency parameter of the chaotic signal, we first proposed a blind
frequency estimator based on the square power of the received signal. Then we designed a DI detector
by integrating the difference between the received signal and its time-delayed version. The binary
symbols conveyed in the chaotic signal can be retrieved directly from the sampled integral results.
The theoretical analysis of the proposed scheme is provided with detailed derivations and performance
evaluation. For the frequency estimation, the CRLB is derived to assess the lower bound on the error
variance. For the symbol detection, the close-form BER expression is derived to evaluate the error in
symbol detection. Moreover, the robustness of our proposed method in various parameter settings is
verified through numerical experiments. Both the theoretical derivation and simulations prove that
the proposed method performs well against strong noise.
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Appendix A. Derivation of the Amplitude Spectrum of the Chaotic Signal

The integral of the Equation (12) is computed as

b(ω) = A
∞

∑
m=−∞

smDm

×
( β sin θm − (ω0 −ω) cos θm

β2 + (ω0 −ω)2 +
−β sin λm + (ω0 + ω) cos λm

β2 + (ω0 + ω)2

+ eβT
(−β sin δm + (ω0 −ω) cos δm

β2 + (ω0 −ω)2 +
β sin ηm − (ω0 + ω) cos ηm

β2 + (ω0 + ω)2

))
. (A1)

When ω 6= nω0, ∑∞
m=−∞ θm → 0 since θm is ergodic in −∞ to ∞. When ω = nω0, the variables

θm, λm, δm, and ηm keep constant since mTω = 2mnπ.
The Fourier transform for w2(t) is computed as

W2(ω) =
∫ ∞

−∞
w2(t)e−jωtdt

=
A2

2

∞

∑
m=−∞

D2
m

∫ (m+1)T

mT
e2β(t−mT)(cos(2ω0t + 2ϕ) + 1)e−jωtdt.

(A2)

We have the coefficients of Fourier transform as

p(ω) =
A2

2

∞

∑
m=−∞

D2
m

∫ (m+1)T

mT
e2β(t−mT)(cos(2ω0t + 2ϕ) + 1) cos ωtdt (A3)

and

q(ω) =
A2

2

∞

∑
m=−∞

D2
m

∫ (m+1)T

mT
e2β(t−mT)(cos(2ω0t + 2ϕ) + 1) sin ωtdt. (A4)

By caculating the integrals above, we have

p(ω) =
A2

4

∞

∑
m=−∞

D2
m

×
(−4β cos νm − 2ω sin νm

4β2 + ω2 +
−2β cos γm + (−2ω0 + ω) sin γm

4β2 + (−2ω0 + ω)2

− 2β cos ςm + (2ω0 + ω) sin ςm

4β2 + (2ω0 + ω)2 + e2βT
(4β cos υm + 2ω sin υm

4β2 + ω2

+
2β cos κm + (2ω0 −ω) sin κm

4β2 + (2ω0 −ω)2 +
2β cos ιm + (2ω0 + ω) sin ιm

4β2 + (2ω0 + ω)2

))
(A5)

and

q(ω) =
A2

4

∞

∑
m=−∞

D2
m

×
(−4β sin νm + 2ω cos νm

4β2 + ω2 +
2β sin γm + (−2ω0 + ω) cos γm

4β2 + (−2ω0 + ω)2

+
−2β sin ςm + (2ω0 + ω) cos ςm

4β2 + (2ω0 + ω)2 + e2βT
(4β sin υm − 2ω cos υm

4β2 + ω2

− 2β sin κm − (2ω0 −ω) cos κm

4β2 + (2ω0 −ω)2 +
2β sin ιm − (2ω0 + ω) cos ιm

4β2 + (2ω0 + ω)2

))
(A6)
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where νm = mTω; γm = 2ϕ − mTω; ςm = 2ϕ + mTω; υm = (1 + m)Tω; κm = 2ϕ − (1 + m)Tω;
ιm = 2ϕ + (1 + m)Tω. With the ergodicity of these variables for ω 6= nω0, the cumulative sums of
p(ω) and q(ω) over m ∈ (−∞, ∞) are close to zero. For ω = nω0, the variables are constant and we
obtain the amplitude spectrum of W2(ω) as

|W2(nω0)| =
2A2(e2βT− 1

2 )

β2+ω2
0

∞
∑

m=−∞
D2

m

√
100β4ω4

0+8(5+2n2)β2ω6
0+(n2−2)2

ω8
0

(4β2+(−2+n)2ω2
0)(4β2+n2ω2

0)(4β2+(2+n)2ω2
0)

(A7)

For ω 6= nω0, we have

|W2(ω)| =
√

p2(ω) + q2(ω). (A8)
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