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Abstract: In order to improve the security and efficiency of image encryption systems comprehensively,
a novel chaotic S-box based image encryption scheme is proposed. Firstly, a new compound chaotic
system, Sine-Tent map, is proposed to widen the chaotic range and improve the chaotic performance
of 1D discrete chaotic maps. As a result, the new compound chaotic system is more suitable for
cryptosystem. Secondly, an efficient and simple method for generating S-boxes is proposed, which
can greatly improve the efficiency of S-box production. Thirdly, a novel double S-box based image
encryption algorithm is proposed. By introducing equivalent key sequences {r, t} related with image
ciphertext, the proposed cryptosystem can resist the four classical types of attacks, which is an
advantage over other S-box based encryption schemes. Furthermore, it enhanced the resistance of the
system to differential analysis attack by two rounds of forward and backward confusion-diffusion
operation with double S-boxes. The simulation results and security analysis verify the effectiveness
of the proposed scheme. The new scheme has obvious efficiency advantages, which means that it has
better application potential in real-time image encryption.
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1. Introduction

With the rapid development of network communication, image encryption has become a research
hotspot in the field of image processing and information security. Since image information has the
characteristics of large amounts of data, strong redundancy and high correlation between adjacent
pixels, image encryption algorithms need not only high security, but also fast encryption speed. If
the speed of encryption is low, the time consumed will be too long because of the large amount of
image data. To encrypt multimedia information with large amounts of data, security and efficiency
should be considered comprehensively [1–5]. Chaos-based cryptosystem just meets the need of
image encryption, which leads to the research of chaos-based image encryption technology has
been widely concerned by scholars. As for chaotic cryptography, a new chaotic system with better
cryptographic performance deserves to be established. Some representative studies have contributed
to this aspect [6–9]. How to generate key stream or encryption component with good performance is
very important to the security of the image Cryptosystem [10–12]. How to design encryption algorithm
is the core research content of the image Cryptosystem [13]. Cryptanalysis [14–16] is another important
research direction of cryptography, which can help cryptographic designers improve the security of
cryptographic algorithms.

Among many chaos-based image encryption algorithms, the permutation and diffusion (PD)
pattern encryption algorithm proposed by Fridrich [17] is the most popular one. This image encryption
algorithm structure consists of shuffling pixel positions and changing pixel values. The permutation
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(or shuffling, scrambling) process plays a role in confusing the relationship between the cipher image
and plain image. The function of the diffusion process is to spread the change of one pixel value
in the plain image to the whole range of the cipher image. Based on the basic confusion-diffusion
architecture, researchers have proposed many novel concrete encryption strategies. In Ref. [18–24],
authors proposed some different permutation strategies for image scrambling aiming at the confusion
process. In Ref. [22,25–29], authors put forward some novel image diffusion algorithm. In Ref. [30–36],
authors adopt new chaotic systems to improve the complexity and randomness of chaotic key
streams. Some other cryptographic methods have also been tried by many researchers. For example,
some cryptographic algorithms are based on bit-level permutation and diffusion [30], and some
algorithms introduce the DNA coding mechanism [37], and some algorithms mainly use S-box
to encrypt images [38–40]. However, some image encryption schemes exist as obvious security
vulnerabilities. Thus, these image encryption schemes cannot resist some attacks, such as the
chosen/known plaintext. In addition, some image encryption algorithms are inefficient, such as using
bit-level image scrambling, DNA encoding mechanism, key related to plaintext Hash value [41,42], and
the high-dimensional chaotic system [43,44]. Encryption algorithms with low efficiency are not suitable
for some resource-constrained environments, such as mobile social network [45], sensor network
communication environment [46] and searchable encryption [47]. Compared with high-dimensional
continuous-time chaotic systems, low-dimensional discrete chaotic systems can generate chaotic
sequences with higher efficiency. Moreover, some studies show that the complexity of discrete systems
is higher than that of continuous systems [48–50].

Substitution-boxes (abbreviated as S-boxes) are important non-linear components in the block
cipher system, which play an important role in the security of cryptosystems. Therefore, some image
encryption systems based on chaos also use S-box. Majid Khan [51] employed multi-parameters chaotic
systems in the construction of S-boxes that are applied to the encryption of images. The multi-parameters
chaotic systems are hyper-chaotic systems. Moreover, the output trajectory points of the system need
to be sampled, so the time cost of generating S-boxes in the encryption scheme is bound to be long.
In addition, the S-box in the scheme is equivalent to the original key and is independent of the image
content. Therefore, it is vulnerable to the chosen-plaintext attack. In order to resist the selective
plaintext attack, some image encryption algorithms based on chaos introduce the mechanism of the
key and plaintext association. Wang et al. [52] proposed a novel image encryption algorithm based on
dynamic S-boxes constructed by chaos, in which a system up to 50 S-boxes need to be generated. It is
time-consuming and unsuitable for real-time encryption. M.A. Murillo-Escobar et al. [53] proposed a
color image encryption algorithm based on total plain image characteristics and 1D logistic map with
optimized distribution. They have a diffusion process optimized by the modified chaotic sequence.
In addition, the pseudorandom sequence for the encryption process is based on the total plain
image characteristic and a 128 bits secret key, so the encryption algorithm can resist the powerful
chosen-plaintext attack. Zhang et al. [54] proposed a plaintext-related image encryption algorithm
based on chaos. The Zhang’s system can also fight against the chosen-plaintext attacks due to using
a plaintext-related key sequence. However, in order to make the final key related to the plaintext,
the process of generating the final key in the above algorithms is complex. So far, most image and
video encryption algorithms based on chaos mainly rely on the empirical security analysis. However,
the recent study [55] has shown that the empirical safety analysis is not enough. A encryption
algorithm passing the empirical safety tests is merely a necessary condition for security, but is not a
sufficient criterion.

In order to improve the security and real-time performance of the image encryption algorithm, this
paper presents a simple yet security image encryption algorithm based on chaotic S-boxes. The main
goal of this paper is to improve the encryption efficiency of the encryption system on the premise
of ensuring a certain level of security. The main innovations of this paper are as follows: (1) A new
compound chaotic system, the Sine-Tent system (STS), is proposed. The compound system has wider
chaotic range and better chaotic performance than any of the original systems, so it is more suitable
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for cryptographic applications. (2) A simple and effective S-box construction method based on the
new compound chaotic system is proposed, which can speed up the generation of S-boxes. (3) A
double S-boxes based image encryption algorithm is designed. Double S-boxes can not only meet the
security requirements of the system, but also make the time cost much lower than multiple S-boxes.
The algorithm makes the parameters of the permutation and diffusion process interrelated and related
with image ciphertext so that the encryption algorithm can resist chosen-ciphertext attack. Additionally,
two rounds of forward and backward confusion-diffusion operation enhances the resistance of the
system to the differential analysis attack.

The rest of this paper is organized as follows. Section 2 introduces the new Sine-Tent system (STS)
model. Section 3 describes the simple and effective S-box construction method based on the Sine-Tent
system. Section 4 describes the new double S-boxes based image encryption algorithm. Section 5
presents the results of experiments and analysis of the proposed scheme. Finally, some concluding
remarks are given in Section 6.

2. The Proposed New Chaotic System

1D discrete chaotic systems have many advantages in image encryption because of their simple
structures. In this section, we firstly review two 1D chaotic maps: The Sine and Tent maps. They will
be used for constructing our new chaotic system. Then, a new discrete compound chaotic system is
proposed to solve the problems existing in the Sine and Tent maps.

2.1. Sine Chaotic Map

The Sine map is one of the famous 1D chaotic maps. It is a simple dynamical system with
complex chaotic behavior similar to the Logistic map. The mathematical model of the Sine map can be
expressed as

x(n+1) = µ/4× sin(π× x(n)) (1)

where µ is the system parameter in the range of (0, 4], x(0) is the initial state value of the system and
{x(n), n = 1, 2, . . . } is the output sequence of state values. To observe the chaotic behaviors of the Sine
map, its Lyapunov Exponent and bifurcation diagram are presented in Figure 1a,b.
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diagram; (b) bifurcation diagram.

As is well known, for a dynamical system, a positive Lyapunov Exponent means chaotic behavior
occurs in the dynamical system. So, from Figure 1a, one can see that only when the parameter µ ≥ 3.57
can chaotic behavior occur in the Sine map. The bifurcation diagram depicts the possible state values
of the system under each parameter. Corresponding to a value of system parameter, if there are infinite
state values, the system with the parameter has chaotic behavior. Corresponding to a value of system
parameter, if only one or a limited number of state values output, the system with the parameter does
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not have chaotic behavior. In the bifurcation diagram shown in Figure 1b, the areas of µ with dense
points shows its good chaotic behavior and the areas of µ with the solid line represents its non-chaotic
property. There are two problems in the Sine map. First, the range of system parameters corresponding
to chaotic phenomena is limited only within the range of [3.57, 4]. Even within this range, there are
some parameters which make the Sine map have no chaotic behaviors. This is verified by its Lyapunov
Exponent diagram and the blank zone in its bifurcation diagram. Second, when the system parameter
value is less than four, the state values of the system output sequence are distributed in a narrower
range than the [0, 1] interval. Only when the system parameter value is four, the state values of the
system output sequence are distributed in the whole [0, 1] range. It shows the nonuniform distribution
in the range of [0, 1]. These two problems reduce the application value of the Sine map.

2.2. Tent Chaotic Map

The name “Tent map” comes from its bifurcation diagram, which has the tent-like shape. Its
mathematical model can be expressed as

x(n+1) =
{
µ/2× x(n) x(n) < 0.5
µ/2× (1− x(n)) x(n) ≥ 0.5

(2)

where µ is the system parameter in the range of (0, 4].
Its chaotic property is shown in the Lyapunov Exponent analysis in Figure 2a and bifurcation

analysis in Figure 2b. Both analysis results indicate that its parameter value range with chaotic behavior
is 2 ≤ µ ≤ 4. The Tent map has the same problems as the Sine map: The small parameter value range
with chaotic behavior and the nonuniform distribution of the output state values.
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2.3. The Sine-Tent System

We put forward a new compound system by combining the Sine and Tent maps and called the
new system the Sine-Tent system (STS). Its mathematical model is as follows:

x(n+1) =
{

(4− µ)/4× sin(π× x(n)) + µ/2× x(n) x(n) < 0.5
(4− µ)/4× sin(π× x(n)) + µ/2× (1− x(n)) x(n) ≥ 0.5

(3)

where µ is the system parameter in the range of [0, 4]. When µ = 0, Equation (3) degenerates to the
Sine map, while µ = 4, Equation (3) degenerates to the Tent map. Therefore, both the Sine map and
Tent map can be regarded as special cases of the Sine-Tent system.

The Lyapunov Exponent and bifurcation diagram of the STS are shown in Figure 3a,b, respectively.
From Figure 3 one can see that its parameter value range with chaotic behavior is µ∈[0, 4], which is
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much larger than those of the Sine or Tent maps. Its output sequences uniformly distribute within [0, 1]
(see Figure 3b). Hence, the STS has better chaotic performance than the Sine and Tent maps.
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The new compound system has at least three advantages compared with the Sine and Tent maps.
First, the output sequences of the new compound system spread out in the entire value range between
zero and one. Second, the proposed Sine-Tent system has a wider chaotic range. The Lyapunov
Exponents of the Sine-Tent system is positive in the entire range of 0 ≤ µ ≤ 4. However, the Sine map
and Tent map have positive values of Lyapunov Exponents only within much smaller ranges. Thirdly,
we know that a larger Lyapunov Exponent means stronger chaotic properties. From the Lyapunov
Exponent diagrams, one can see that the new system has larger Lyapunov Exponents (Lyapunov
Exponents is always close to 0.7) in the whole parameter range of [0, 4], while the Sine and Tent maps
have large Lyapunov Exponents only when the parameter is close to four. Therefore, the chaotic
characteristic of the new system is stronger, and it always maintains the invariable excellent chaotic
performance in the entire parameter range of 0 ≤ µ ≤ 4. These advantages guarantee that the proposed
Sine-Tent system is more suitable for information security applications such as image encryption.

3. An Efficient New Method for Generating S-Boxes

In Ref. [56], Belazi et al. proposed a simple yet efficient S-box generating method based on the
chaotic sine map, in which a prime number p and a one to one map from the real number interval (0, 1)
to the integer set {0, 1, 2, . . . , 255} need to be found. In this section, we present a simpler approach for
designing S-boxes using the chaotic Sine-Tent map. The new method takes advantage of the excellent
chaotic characteristics of the Sine-Tent map. The detailed steps of generating S-boxes are given below.

Step 1: Set parameter d as an odd positive integer and d > 0, d can be used as a secret key.
Step 2: Let T1 = 1:256, then we obtain an array T1 which contains 256 distinct integers in the

range of [1, 256].
Step 3: Based on T1 and d to obtain a new array T by Equation (4)

T(i) = mod(d× T1(i), 256), i = 1, 2, . . . , 256 (4)

The new array T1×256 will contain 256 distinct integers in the range of [0, 255]. As long as d is a finite
odd integer and T1(i) , T1(j) if i , j, then T(i) , T(j) if i , j. This conclusion is true and can be proved
by experimental tests.

Step 4: Set the parameters µ, initial state value x0 of the Sine-Tent map, and an integer N0 > 0.
Iterate Sine-Tent map (N0 + 256) times to generate a chaotic sequence of length (N0 + 256). Discard the
first N0 elements of the original chaotic sequence, then we can obtain a new chaotic sequence of length
256, which is represented by X.
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Step 5: Sort the chaotic sequence X, then we can get a position index array J = {J(1), J(2), . . . ,
J(256)}, J(i)∈{1, 2, . . . , 256}. As a result of the non-periodicity of the chaotic sequence, it will inevitably
lead to that J(i) , J(j) as long as i , j.

Step 6: Calculate the 1D array S as follows:

S(i) = T(J(i)), i = 1, 2, . . . , 256 (5)

Step 7: Transform the 1D array S1×256 into a 2D matrix S16×16, and this is the proposed S-box.
By the above method, the length of chaotic sequences to be used in constructing a 16 × 16 sized

S-box is only 256. Therefore, the time cost of this method is very low. In our experiments, double
S-boxes are generated by the above S-box generation algorithm. The initial condition x0, system
parameter µ of the Sine-Tent map and the parameters {d, N0} for the S-box generation are set as
{x10 = 0.21, µ1 = 0.399, d1 = 43, N0 = 500} and {x20 = 0.27, µ2 = 3.999, d2 = 241, N0 = 500} for S-box S1
and S2, respectively. The generated double S-boxes are shown in Tables 1 and 2, which are used in our
proposed image encryption algorithm.

Table 1. The chaotic S-box S1 generated with parameters {x10 = 0.21, µ1 = 0.399, d1 = 43, N0 = 500}.

S-box c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

r1 27 4 47 58 146 86 137 215 61 68 129 80 131 214 97 119
r2 168 210 253 91 219 30 112 63 52 188 73 139 55 16 158 204
r3 124 71 21 45 169 32 208 121 198 179 246 8 175 194 35 5
r4 70 3 114 42 205 89 101 159 173 127 75 235 118 243 143 141
r5 147 13 196 163 11 62 134 76 191 133 132 145 33 43 120 31
r6 17 156 245 186 25 237 88 161 0 83 87 72 116 150 255 226
r7 138 74 46 34 136 99 12 218 110 195 105 57 172 65 2 216
r8 211 184 19 20 84 242 85 98 189 22 24 185 166 109 15 217
r9 167 48 56 78 90 59 36 244 6 107 142 180 23 238 106 7

r10 28 247 199 201 40 250 206 183 223 200 29 67 128 126 10 241
r11 113 233 207 140 152 135 122 174 228 151 102 148 79 176 49 95
r12 190 103 92 39 64 1 171 220 212 51 221 130 249 170 164 230
r13 60 162 117 154 157 160 229 187 100 26 37 155 225 222 232 104
r14 181 224 53 18 108 96 66 38 248 182 178 251 165 231 202 81
r15 50 93 149 9 239 192 209 82 115 236 44 144 69 111 153 125
r16 254 41 227 213 193 14 77 197 54 123 203 177 94 252 234 240

Table 2. The chaotic S-box S2 generated with parameters {x20 = 0.27, µ2 = 3.999, d2 = 241, N0 = 500}.

S-box c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

r1 75 140 59 156 233 234 149 214 126 105 134 228 101 84 111 35
r2 113 241 53 202 17 96 93 168 172 82 78 203 159 182 249 118
r3 115 68 195 107 189 104 165 80 39 94 150 254 199 183 157 74
r4 52 210 55 200 229 48 132 163 219 201 117 146 153 43 71 230
r5 60 70 103 211 95 92 36 12 81 133 46 176 209 251 237 186
r6 98 136 20 44 178 185 177 19 137 50 21 206 65 192 129 79
r7 240 7 121 38 27 196 25 167 89 72 162 221 148 147 24 223
r8 100 47 248 164 34 29 73 69 245 1 10 191 216 26 204 18
r9 37 15 32 108 9 160 139 220 238 232 58 161 109 6 169 62

r10 45 3 0 180 114 120 246 250 33 194 198 13 158 31 66 155
r11 83 125 244 51 212 97 91 99 77 138 173 243 253 102 123 166
r12 225 208 110 40 222 87 218 197 170 184 124 131 4 112 179 255
r13 85 64 193 88 56 16 236 207 181 144 231 239 152 135 122 67
r14 151 171 42 154 142 247 28 41 14 252 224 188 54 175 217 130
r15 22 215 49 5 141 11 2 127 145 86 116 213 205 63 242 128
r16 30 226 227 106 187 23 174 190 143 8 76 61 235 119 57 90

In the first row of Table 1, c1, c2, . . . , c16 denotes the column numbers of the S-box. Additionally,
in the first column of Table 1, r1, r2, . . . , r16 denotes the row numbers of the S-box.
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To determine the randomness of proposed S-box method, the statistical test suite (version 2.1.1),
proposed by the National Institute of Standards and Technology (NIST) NIST-800-22 is introduced.
The NIST-800-22 test results are listed in Table 3. We find that the 12 tests successfully passed. Moreover,
the Random Excursions Test, Random Excursions Variant Test, and Universal Statistical Test were not
applicable for the proposed S-box. This is because the sequence generated by an S-box only consists of
2048 bits. However, the Random Excursions Test and Random Excursions Variant Test require a long
sequence consisting of a minimum of 1,000,000 bits, and the Universal Statistical Test also requires a
long sequence consisting of a minimum of 387,840 bits.

Table 3. NIST-800-22 test results of the obtained S-box.

NIST-800-22 Tests p-Value Result

Frequency Test 1.00000 SUCCESS
Block Frequency Test 0.320250 SUCCESS

Cumulative Sums Test 0.536610 SUCCESS
Runs Test 0.894524 SUCCESS

Longest Run of Ones Test 1.0000 SUCCESS
Rank Test 0.481248 SUCCESS

Discrete Fourier Transform Test 0.807748 SUCCESS
Nonperiodic Template Matchings Test 0.861831 SUCCESS
Overlapping Template Matchings Test 0.282761 SUCCESS

Approximate Entropy Test 0.011732 SUCCESS
Serial Test 0.239176 SUCCESS

Linear Complexity Test 0.203697 SUCCESS
Random Excursions Test \ TESTNOTAPPLICABLE

Random Excursions Variant Test \ TESTNOTAPPLICABLE
Universal Statistical Test \ TESTNOTAPPLICABLE

4. The Proposed S-Box based Encryption Scheme

4.1. Cryptanalysis of an S-Box Based Encryption Algorithm

In Ref. [57], Çavuşoğlu et al. proposed an image encryption scheme by using the S-box generated
with a novel hyper-chaotic system. The sketch of the encryption scheme is shown in Figure 4.
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Suppose the input pixel value array of the plain image is P = [p(1), p(2), . . . , p(L)]. The output
pixel value array of the cipher image is C = [c(1), c(2), . . . , c(L)]. The encryption steps can be described
in detail below.
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Step 1: Generate three real value chaotic sequences x, y, and z by using a hyper-chaotic system
with given parameters and initial state values as secret keys.

Step 2: Transform the three real value sequences x, y and z into three integer sequences X, Y and
Z by the chaos-based pseudo random number generator (PRNG). Each element in X, Y and Z is an
8-bit integer and its decimal number is in the range of [0, 255].

Step 3: The S-box, denoted as S = [s(j, k)], is created by using sequences X, Z and a novel S-box
generation algorithm. Where, s(j, k)∈{0, 1, . . . , 255}, j = 1, 2, . . . , 16, k = 1, 2, . . . , 16.

Step 4: The intermediate cipher image array P’ = [p’(1), p’(2), . . . , p’(L)] is generated by using
sequences Y = [y(1), y(2), . . . , y(L)] as

p’(i) = y(i)
⊕

p(i), i = 1, 2, . . . , L (6a)

where
⊕

denotes bitwise XOR. The decryption operation corresponding to Equation (6a) can be
expressed as Equation (6b):

p (i) = y(i)
⊕

p’(i), i = 1, 2, . . . , L (6b)

Step 5: Perform sub-byte operation on P’ with the 16 × 16 sized S-box S, and obtain the cipher
image array C = [c(1), c(2), . . . , c(L)].

Here, the sub-byte operation is a process in which each pixel value in the image is substituted
with an element value in the S-box. The sub-byte operation can be implemented by defining a
function. For example, the function sub_byte[S, p] can find a substitute to p from the S-box S. Let
q = sub_byte[S, p], the algorithm of the function sub_byte[S, p] can be described as Algorithm 1.
For example, if p = 55 = (0011 0111)2, then j = (0011)2 + 1 = 4, k = (0111)2 + 1 = 8. Consequently,
q = sub_byte[S, p] = sub_byte[S, 55] = s(j, k) = s(4,8).

Algorithm 1 The algorithm pseudo code of function q = sub_byte[S, p].

Input: S = [s(j, k)], p; (j = 1, 2, . . . , 16, k = 1, 2, . . . , 16.)
Output: q = sub_byte[S, p];
1: Convert p to a binary number (b8b7 . . . b2b1)2;
2: Let j = (b8b7b6b5)2 = 8 × b8 + 4 × b7 + 2 × b6 + 1 × b5; k = (b4b3b2b1)2 = 8 × b4 + 4 × b3 + 2 × b2 + 1 × b1;
3: Let j = j + 1; k = k + 1;
4: Let q = s(j, k);

Therefore, Step 5 can be expressed by the following general form:

c(i) = sub_byte[S, p’(i)], i = 1, 2, . . . , L (7a)

The decryption operation corresponding to Equation (7a) can be expressed as Equation (7b):

p’(i) = sub_byte_1[S, c(i)], i = 1, 2, . . . , L (7b)

where, function sub_byte_1[·, ·] is the inverse operation of the function sub_byte[·, ·].
The above S-box based encryption algorithm has the following potential defects:
(1) The chaotic sequence Y and S-box is actually the equivalent of the secret keys, which are not

related with the image to be encrypted.
(2) The algorithm has no diffusion effect. While one pixel is changed in the plain image, there is

only one changed pixel in the cipher image.
(3) The sequence Y and S-box are separated in the bitwise XOR process and Sub-Byte process, and

the bitwise XOR process unrelated to the Sub-Byte process.
Based on the above analysis, we find that the above encryption scheme cannot resist the

chosen-plaintext attack. Suppose the target cipher image to be recovered is C = [c(1), c(2), . . . , c(L)], we
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can launch chosen-plaintext attack on the above encryption scheme to recover its corresponding plain
image P = [p(1), p(2), . . . , p(L)]. The simplest attacking algorithm can be described as Algorithm 2.

Algorithm 2 The simplest attacking algorithm pseudo code.

1: n = 0;
2: while (n < 256) do
3: Choose the n-th plain image Pn = [n, n, . . . , n];
4: Get its corresponding cipher image Cn = [cn(1), cn(2), . . . , cn(L)] by using the encryption machine of Figure 4;
5: for i =1, 2, . . . , L, do

if c(i) = = cn(i), then we can get p(i) = n;
6: end for
7: n = n + 1;
8: end while

This simplest attack method with Algorithm 2 requires 256 selected plaintext images. However, a
more efficient chosen-plaintext method only needs to select two plain images. For details, readers can
refer to Ref. [58].

4.2. The Novel Double S-Boxes Based Image Encryption Algorithm

To eliminate the security defects that exist in some S-box based encryption algorithms, a novel
double S-boxes based image encryption algorithm is proposed. The main innovations of the new
scheme lie in the following three aspects: Firstly, the new Sine-Tent compound chaotic system is used
to generate double S-boxes, which are used in the two rounds of the encryption process of the new
scheme. Secondly, the first S-box is used to realize pixel confusion and substitution simultaneously.
Thirdly, two rounds of the encryption process are correlated and the diffusion mechanism is introduced.
The main steps of the novel double S-boxes based image encryption algorithm is described as follows:

Step 1: Input the secret parameters {x10, µ1, d1, x20, µ2, d2, r0, t0, m} and the plain image PI with
the size of M × N. PI is reshaped to a 1D pixel array P = [p(1), p(2), . . . , p(L) ], where L = M × N.

Step 2: Generate the first S-box S1 by using the new S-box generation algorithm with parameters
{x10, µ1, d1}.

Step 3: Generate the second S-box S2 by using the new S-box generation algorithm with parameters
{x20, µ2, d2}.

Step 4: Perform the first round of encryption on array P with the first S-box S1, and obtain the
temporary cipher image pixel array B = [b(1), b(2), . . . , b(L)] as

j = mod(1 + m, L) + 1;
r = r0;
b(1) = mod(sub_byte[S1, p( j)] + r, 256).

for i = 1 (8)


j = mod(i + m, L) + 1;
r = mod(b(i− 1) + r, 256);
b(i) = mod(sub_byte[S1, p( j)] + r + b(i− 1), 256).

for i = 2, 3, . . . L (9)

where, sub_byte[S1, x] denotes byte substitution for x using S-box S1. The first round of encryption
is the forward confusion-diffusion operation, in which permutation and diffusion are implemented
simultaneously by introducing the location index j.

Step 5: Perform the second round of encryption on array B with the second S-box S2, and obtain
the final cipher image pixel array C = [c(1), c(2), . . . , c(L)] as{

t = t0;
c(L) = sub_byte[S2, mod(b(L) + t, 256)].

for i = L (10)
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{
t = mod(c(i + 1) + t, 256);
c(i) = sub_byte[S2, mod(b(i) + c(i + 1) + t, 256)].

for i = L− 1, L− 2, . . . , 1 (11)

where, sub_byte[S2, x] denotes byte substitution for x using S-box S2. The second round of encryption
is the backward diffusion operation.

Step 6: Transform the 1D vector C into a 2D matrix with size of M × N, then the cipher image CI
is obtained.

The decryption process is the inverse operation of the encryption process. To recover the plain
image P from the cipher image CI, the operating steps are as follows.

Step 1: Input the secret parameters {x10, µ1, d1, x20, µ2, d2, r0, t0, m} and the cipher image CI with
the size of M × N, and CI is reshaped to a 1D pixel array C = [c(1), c(2), . . . , c(L)], where L = M × N.

Step 2: Generate the first S-box S1. The operation is exactly the same as Step 2 of the
encryption process.

Step 3: Generate the second S-box S2. The operation is exactly the same as Step 3 of the
encryption process.

Step 4: Recover the intermediate cipher image pixel array B = [b(1), b(2), . . . , b(L)] as{
t = t0;
b(L) = mod(sub_byte_1(S2, c(L)) − t + 256, 256).

for i = L. (12)

{
t = mod(c(i + 1) + t, 256)
b(i) = mod(sub_byte_1(S2, c(i)) − t− c(i + 1) + 256, 256)

for i = L− 1, L− 2, . . . , 1 (13)

where, sub_byte_1[S2, ·] denotes the inverse operation of sub_byte[S2, ·] using S-box S2.
Step 5: Recover the original plain image pixel array P = [p(1), p(2), . . . , p(L)] as

j = mod(1 + m, L) + 1;
r = r0;
p( j) = sub_byte_1(S1, mod(b(1) − r + 256, 256)).

for i = 1. (14)


j = mod(i + m, L) + 1;
r = mod(b(i− 1) + r, 256);
p( j) = sub_byte_1(S1, mod(b(i) − b(i− 1) − r + 256, 256)).

for i = 2, 3, . . . , L (15)

where, sub_byte_1[S1, ·] denotes the inverse operation of sub_byte[S1, ·] using S-box S1.
Step 6: Transform P into an M × N matrix, then the decrypted image PI is obtained.

5. Experimental Results and Security Analyses

To examine the security and efficiency of the proposed cryptosystem, we carry out some simulation
experiments. All the algorithms are implemented with MATLAB R2016b run on a Microsoft Windows
7 operating system. The hardware environment is a PC with 3.3 GHz CPU, and 4 GB memory. Without
losing generality, we adopted the public test images come from the USC-SIPI Image Database. Test
images are 8-bit grayscale images with a size of 256 × 256, such as Lena, Baboon, Pepper. The all-black
and all-white images are also used in the simulation experiments. The secret keys {x10, µ1, d1, x20, µ2,
d2, r0, t0, m} are set as {0.21, 0.399, 43, 0.27, 3.999, 241, 98, 200, 129}.

5.1. Experimental Results

The original plain images and their corresponding cipher-images are shown in Figures 5 and 6,
respectively. While the decrypted images are identical to the corresponding original ones. As can
be seen, the cipher-images are completely disordered and unrecognizable. Therefore, our proposed
algorithm has a good encryption effect.
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Figure 6. Encrypted cipher images. (a) The Lena cipher image; (b) the Peppers cipher image; (c) the
Baboon cipher image; (d) the all-white cipher-image; (e) the all-black cipher image.

5.2. Key Space Analyses

A secure encryption scheme should have a large key space so as to resist brute-force attack. In our
proposed encryption scheme, the secret keys include {x10, µ1, d1, x20, µ2, d2, r0, t0, m}. Among them,
{x10, µ1, x20, µ2} are four double-precision real numbers, each of them can reach the accuracy of 15
decimal places. d1 and d2 are two odd integers, each of them can have 104 different values. r0 and t0 are
two integers, each of them has 255 different values. m is an integer range from 1 to L, where L = 65536. So,
the key space of our proposed encryption scheme is (1015×4+4×2) × 255 × 255 × 65536 ≈ 2258, which is a
key equivalent to 258 bits in length. Therefore, the key space is large enough to resist brute-force attack.

5.3. Statistical Analysis

5.3.1. Histogram Analysis

A histogram of an image demonstrates the distribution of the image pixel values, and it exposes
the pixel distribution characteristics of the image. The more uniform the distribution of the pixel values,
the closer the image is to the random signal image. Figure 7 shows the histograms of the above test
plain images and cipher images encrypted by our proposed algorithm (the histograms of the all-white
and all-black plain images are omitted). It can be seen from Figure 7 that the distributions of pixel
values in plain images are clearly not uniform but in cipher images are very uniform.
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Where, n is the number of gray levels of an image, and n = 256 for 8-bit gray images. Z is a vector and 
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detect the variance values of the above test images and their cipher images, the variances of 

histograms of the plain images (size of 256 × 256) and their cipher images are calculated by using 

Figure 7. Histograms of plain images and cipher images. (a) The histogram of the Lena plain image;
(b) the histogram of the Lena cipher image; (c) the histogram of the Peppers plain image; (d) the
histogram of the Peppers cipher image; (e) the histogram of the Baboon plain image; (f) the histogram
of the Baboon cipher image; (g) the histogram of the all-white cipher image; (h) the histogram of the
all-black cipher image.
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The distribution characteristics of a histogram can also be described quantitatively with the
variance of a histogram, which is calculated by [16]

var(Z) =
1
n2

n∑
i=1

n∑
j=1

1
2
(zi − z j)

2 (16)

where, n is the number of gray levels of an image, and n = 256 for 8-bit gray images. Z is a vector and
Z = {z1, z2, . . . , zn}, zi and zj are the numbers of pixels with gray values equal to (i − 1) and (j − 1)
respectively. The lower value of variance indicates the higher uniformity of an image. In order to
detect the variance values of the above test images and their cipher images, the variances of histograms
of the plain images (size of 256 × 256) and their cipher images are calculated by using Equation (16).
The results are listed in Table 4. Table 4 also lists the results obtained by the algorithm in References [39]
and [40]. The average variance of five cipher images obtained with our proposed algorithm is 256.7125,
which is much less than that of Zhang’s algorithm [39], Wang’s algorithm [40], and Çavuşoğlu’s
algorithm [57]. Thus, our proposed image encryption algorithm has better performance in resisting
statistical attacks.

Table 4. Variances of histograms of the test images.

Images Plain Image Cipher
Image Cipher Image [39] Cipher Image [40] Cipher Image [57]

Lena 30,665.703 221.195 284.578 283.156 381.688
Peppers 36,379.133 224.234 269.727 227.898 332.898
Baboon 47,799.055 288.664 268.211 277.297 297.625

All-white image 16,711,680 293.039 544.234 41,725.063 1214.484
All-black image

cipher image 16,711,680 256.430 1396.765 43,233.188 1214.484

Average 6,707,640.778 256.713 552.703 17,149.320 688.236

5.3.2. Correlation Analysis

Natural images usually have a strong correlation with adjacent pixels. An efficient encryption
algorithm should reduce the correlation in cipher images. In order to exhibit the correlation strength
intuitively, we randomly selected 2000 pairs of pixel along a certain direction (horizontal or vertical or
diagonal) from an image to draw the correlation distribution diagram. Figure 8 shows the correlation
distribution diagrams of the Lena plain and cipher image encrypted by our encryption algorithm.
The abscissa and ordinate values at any point in the graph represent the values of a pair of neighbor
pixels, respectively. For plaintext images, most of the points in the graph are distributed near a straight
line with an inclination of 45 degrees. That is to say, the abscissa and ordinate coordinates of most
points are basically equal, indicating that the pixel values of neighboring points in plaintext images are
basically equal. However, the pixel values of each group of neighbor points in ciphertext images are
not equal. The results confirm that the correlation among the adjacent pixels is reduced greatly by our
proposed encryption algorithm.

To illustrate quantitatively the correlation of adjacent pixels in an image, we can calculate the
correlation coefficient rXY by using N pairs of an adjacent pixel. rXY is defined as

rXY = cov(X, Y)/
√

D(X)
√

D(Y) (17)

where, X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yN}, (xi, yi) is the i-th pairs of the adjacent pixel
gray-scale values, and

D(X) =
1
N

N∑
i=1

(
xi −X

)2

, D(Y) =
1
N

N∑
i=1

(
xi −Y

)2

(18)
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cov(X, Y) =
1
N

N∑
i=1

(
xi −X

)(
yi −Y

)
(19)

X =
1
N

N∑
i=1

xi, Y =
1
N

N∑
i=1

yi (20)

Three types of correlation coefficients of adjacent pixels in the Lena plain and cipher image are
calculated, respectively. Correlation coefficients of the Lena plain images are as: 0.9567 (horizontal
direction), 0.9239 (vertical direction), 0.8888 (diagonal direction), showing that correlation coefficients
of adjacent pixels in the Lena plain image are very high (all close to one). Results of the Lena cipher
image are listed in Table 5. From Table 5, we can see that the correlation coefficients of adjacent pixels in
the Lena cipher image are very low (all close to zero). Table 5 also lists the correlation coefficients of the
Lena cipher image encrypted with Zhang’s algorithm, Wang’s algorithm and Çavuşoğlu’s algorithm.
The experimental results show that our proposed algorithm has the smallest absolute values of the
correlation coefficient among the three algorithms, showing the best scrambling effect.
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(d) horizontal correlation in cipher image Lena; (e) vertical correlation in cipher image Lena; (f) diagonal
correlation in cipher image Lena.

Table 5. Correlation coefficients of the Lena cipher images encrypted by different algorithms.

Algorithms Horizontal Vertical Diagonal

The proposed algorithm −0.002088 0.000312 0.001444
Zhang’s algorithm [39] −0.000582 0.001336 −0.004690
Wang’s algorithm [40] 0.006057 0.012468 −0.006030

Çavuşoğlu’s algorithm [57] 0.001640 0.031372 −0.000626
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5.3.3. Information Entropy Analysis

Information entropy can be used to describe the degree of randomness or uncertainty of signals.
The information entropy H(m) of an image is calculated by

H(m) = −
2n
−1∑

i=0

P(mi) log2[P(mi)] (21)

where P(mi) denotes the occurrence probability of the gray level i, and i = 0, 1, 2, . . . , 2n. Here, 2n

is the number of grayscale levels of an image. If each mi has the same occurrence probability in an
image, then P(mi) = 1/2n, then the image is completely random with H(m) = n. For an image with
256 gray-scale levels, n = 8, so, the information entropy of a completely random 8-bit gray image is
eight. A good encryption algorithm should make the information entropy of its cipher image close to
eight. We calculated the information entropy values of several cipher images obtained by four different
encryption algorithms. The results are listed in Table 6. All the images have the same size of 256 × 256.
From Table 6, one can see that all the entropy values are significantly closer to eight, so the randomness
is satisfactory. Among these four algorithms, our proposed algorithm has the largest average entropy
value, showing the best randomness of the cipher image encrypted by our proposed algorithm.

Table 6. Information entropy values of several cipher images obtained by different algorithms.

Test Images Ref. [39] Ref. [40] Ref. [57] Ours

Lena cipher image 7.9969 7.9969 7.9958 7.9976
Peppers cipher image 7.9970 7.9975 7.9963 7.9975
Baboon cipher image 7.9970 7.9969 7.9967 7.9968

All-black cipher image 7.9846 7.3901 7.9871 7.9972
All-white cipher image 7.9940 7.3998 7.9871 7.9968

5.3.4. Sensitivity Analysis

(1) Sensitivity to plain images

A secure encryption algorithm should be sensitive to the change of the plain image so as to resist
the differential attack. To measure the sensitivity of an algorithm to tiny changes in a plain image,
the number of pixels changing rate (NPCR) and the unified average changing intensity (UACI) are
introduced. The NPCR and UACI are calculated by Equations (22)–(24).

NPCR =
1

M×N

M∑
i=1

N∑
j=1

δ(i, j) × 100% (22)

UACI =
1

M×N
(

M∑
i=1

N∑
j=1

∣∣∣c1(i, j) − c2(i, j)
∣∣∣

255
) × 100% (23)

where, M, N represent the number of rows and columns of an image, respectively. C1 = [c1(i, j)] and
C2 = [c2(i, j)] express two encrypted images corresponding to two plain images with a tiny difference,
and δ(i, j) is computed by

δ(i, j) =
{

1, i f c1(i, j) , c2(i, j),
0, i f c1(i, j) = c2(i, j).

(24)

The larger the values of NPCR and UACI, the stronger the sensitivity of the algorithm to plaintext. For
the best case, the ideal average value of NPCR is about 99.61%, and the ideal average value of UACI is
about 33.46% [16].

To measure the sensitivity of our improved algorithm to the plain image, the original Lena gray
image (size of 256 × 256) is adopted as the first plain image, and the second plain image is obtained by
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changing only one pixel of the first plain image. To obtain two cipher images C1 and C2 by executing
the proposed encryption algorithm with the same secret keys, respectively. Then NPCR and UACI are
computed with two cipher images, and the results are listed in Table 7. Table 7 also lists the results
obtained by using the Zhang’s, Wang’s and Çavuşoğlu’s algorithm. The results indicate that our
proposed encryption algorithm is very sensitive to the plain image, and its sensitivity is better than
those of Zhang’s and Wang’s algorithm.

Table 7. Values of number of pixels changing rate (NPCR) and unified average changing intensity
(UACI) of Lena cipher images.

Position i Values Zhang’s [39] Wang’s [40] Çavuşoğlu’s [57] Ours

1 NPCR(%) 49.81 1.53 × 10−3 1.53 × 10−3 99.64
1 UACI(%) 16.86 1.14 × 10−3 2.75 × 10−4 33.55

L/4 NPCR(%) 74.69 1.53 × 10−3 1.53 × 10−3 99.59
L/4 UACI(%) 25.08 1.68 × 10−4 8.26 × 10−4 33.25
L/2 NPCR(%) 99.64 1.53 × 10−3 1.53 × 10−3 99.57
L/2 UACI(%) 33.54 6.10 × 10−4 4.13 × 10−4 33.41
L NPCR(%) 49.84 1.53 × 10−3 1.53 × 10−3 99.62
L UACI(%) 16.72 8.80 × 10−4 8.62 × 10−4 33.46

(2) Sensitivity to Secret Keys

A secure encryption algorithm should also be sensitive to the change of secret keys. That is to say,
when secret keys change slightly, the cipher image should change dramatically. NPCR and UACI can
also be used to measure the sensitivity of an encryption algorithm to secret keys. In our simulation
tests, two groups of secret keys with a tiny difference are used to encrypt the same plain image Lena
and two cipher images, C1 and C2, are obtained. The tiny change (to a float number is 10−15, or to an
integer number is one) is introduced to one of the secret keys (x10, µ1, d1, x20, µ2, d2, r0, t0, m) while
keeping all the others unchanged. The NPCR and UACI of the cipher images C1 and C2 are calculated
and listed in Table 8. The experimental results indicate that our proposed algorithm is very sensitive to
a slight change in any secret key.

Table 8. NPCR and UACI of the proposed algorithm with a tiny difference in one of the secret keys.

Values ∆x10 = 10−15 ∆µ1 = 10−15 ∆x20 = 10−15 ∆µ2 = 10−15 ∆d1 = 1 ∆d2 = 1 ∆r0 = 1 ∆t0 = 1 ∆m = 1

NPCR(%) 99.63 99.62 99.56 99.62 99.61 99.58 99.63 99.61 99.61
UACI(%) 33.53 33.34 33.50 33.41 33.38 33.53 33.46 33.41 33.37

5.4. Analysis of Anti-Attack Performance

5.4.1. Classical Types of Attacks

According to Kerchoff’s hypothesis, it is usually assumed that the cryptanalysts or opponents
know the cryptosystem, and the security entirely depends on the secret key. A secure cryptosystem
should resist all kinds of attacks; otherwise, the cryptosystem is insecure. Generally speaking, there
are four classical types of attacks to break a cryptosystem, and their orders from the hardest types to
the easiest types are listed as follows.

(1) Ciphertext-only attack: The cryptanalyst possesses one or more ciphertexts.
(2) Known-plaintext attack: The cryptanalyst has some plaintexts and the corresponding ciphertexts.
(3) Chosen-plaintext attack: The cryptanalyst has the opportunity to use the encryption machinery,

so he or she can choose some plaintext and generate ciphertext.
(4) Chosen-ciphertext attack: The cryptanalyst has the opportunity to use the cryptograph, so he

or she can choose some ciphertexts and generate plaintexts.
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Among the four classical attack types mentioned above, the chosen-ciphertext attack is the most
powerful attack. If a cryptosystem can resist this attack, it can resist other types of attacks.

In our proposed scheme, {S1, S2, r, t} become the equivalent keys to the original keys. It is not
difficult to understand the following conclusions from the encryption formulas of Equations (8)–(11).
First, it is difficult for an attacker to decipher the above equivalent keys even if he or she obtains known
plaintext-ciphertext pairs (p(i), c(i)). Second, the equivalent keys r and t are updated before encrypting
the i-th pixel and they are related with the intermediate ciphertext b(i−1) or the final ciphertext c(i+1).
It means that a different cipher image will yield different sequences of {r, t}. Even if the attacker
cracked the key sequences of {r, t} with some specially chosen-ciphertext, the key streams of {r, t}
cannot be used to decrypt the target cipher image due to the key streams of the target cipher image
that are different from the cracked key streams. Moreover, it is difficult to decipher the key streams
{r, t} directly by using the chosen-ciphertext attack. Therefore, the proposed scheme can well resist the
chosen-ciphertext attack and can resist the four classical types of attacks.

5.4.2. Analysis of Robustness against Noise and Occlusion

In order to resist the differential cryptanalysis attack brought by the opponent, a strong diffusion
mechanism is introduced into the proposed encryption algorithm. As a result, the ciphertext is sensitive
to the noise of the transmission channel, so the algorithm lacks robustness to noise and occlusion.
However, the lack of such robustness also makes it impossible for the opponent to decipher the
plaintext accurately, which can ensure that the confidentiality of the image content is protected. As for
how to make the encrypted image not only resist differential attack, but also withstand a certain degree
of noise, we consider introducing an error correction mechanism in channel coding and decoding. This
is worthy of further study in the future.

5.5. Analysis of Speed

In addition to security performance, a practical cryptosystem should also have faster encryption
speed. To evaluate the encryption efficiency of the proposed algorithm, the 8-bit greyscale images with
a size of 256 × 256 and 512 × 512 are encrypted. And the same type of S-box based image encryption
algorithms proposed by Zhang [39], Wang [40], and Çavuşoğlu [57] are also implemented on the same
hardware and software platform mentioned at the beginning of Section 5. The average values of the
encryption/decryption time taken by Zhang’s algorithm, Wang’s algorithm, Çavuşoğlu’s algorithm
and our proposed algorithm are shown in Table 9, respectively. The experimental results show the
advantages of the proposed algorithm in time efficiency.

Table 9. The time cost tests (unit: s).

Image Size Ref. [39] Ref. [40] Ref. [57] This Paper

256 × 256 1.205 1.256 0.823 0.464
512 × 512 4.750 4.828 3.253 1.708

Our proposed algorithm has an execution time that includes: Two S-boxes generated by a novel
simple method using the 1D discrete chaotic map, 2L times of byte substitution and 2L times mod 256
addition operations. Zhang’s algorithm execution time include: Two S-boxes generated by an ordinary
method using the 1D discrete chaotic map, 2L times of byte substitution, L times mod 256 addition
operations and L times bitXor operations. Wang’s algorithm has an execution time that includes: Three
S-boxes generated by an ordinary method using the 3D continuous-time chaotic system, L times of
byte substitution, L times mod 3 addition operations and L times bitXor operations. Çavuşoğlu’s
algorithm has an execution time that includes: One S-box generated by an ordinary method using the
3D continuous-time chaotic system, L times of byte substitution and L times bitXor operations. The mod
addition operation has a less execution time than the bitXor operation, and the bitXor operation has a
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less execution time than the byte substitution operation. Our algorithm to generate the S-box has the
least execution time among the four algorithms. As the result, the total execution time of our algorithm
is the smallest one among the four algorithms.

6. Conclusions

In this paper, an efficient and secure image encryption scheme is presented. The main contributions
of this paper are as follows: First, a new compound chaotic system, the Sine-Tent map, is proposed, which
has wider chaotic range and better chaotic performance than any of the old one. And the new compound
chaotic system is more suitable for cryptosystem. Second, an efficient and secure method for generating
S-boxes is proposed, which has less execution time than the other ones. Third, a novel double S-boxes
based image encryption algorithm is proposed. By introducing equivalent key sequences {r, t} related
with image ciphertext, the proposed cryptosystem can resist the four classical types of attacks, which is an
advantage over other S-box based encryption schemes. It overcomes the security defects of some old
S-box based encryption algorithms. In addition, two rounds of forward and backward confusion-diffusion
operation enhance the sensitivity of the algorithm. The simulation results and security analysis verify the
effectiveness of the proposed scheme. The new scheme has obvious efficiency advantages, which means
that it has better application potential in real-time image encryption. The proposed scheme is also suitable
to color images by connecting three color channels of color image into gray image.

As for the research of the chaotic image encryption, there are two aspects worthy of further study
in the future. First, we need to explore new security evaluation criteria to make up for the shortcomings
of empirical security standards. Second, in order to ensure that the encryption system is not only
resistant to differential cryptanalysis attacks, but also robust to noise, it may be an effective solution to
introduce error-correcting codes in the process of cryptography and decoding.
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