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Abstract: Action potentials (spikes) can trigger the release of a neurotransmitter at chemical synapses
between neurons. Such release is uncertain, as it occurs only with a certain probability. Moreover,
synaptic release can occur independently of an action potential (asynchronous release) and depends
on the history of synaptic activity. We focus here on short-term synaptic facilitation, in which
a sequence of action potentials can temporarily increase the release probability of the synapse.
In contrast to the phenomenon of short-term depression, quantifying the information transmission in
facilitating synapses remains to be done. We find rigorous lower and upper bounds for the rate of
information transmission in a model of synaptic facilitation. We treat the synapse as a two-state binary
asymmetric channel, in which the arrival of an action potential shifts the synapse to a facilitated
state, while in the absence of a spike, the synapse returns to its baseline state. The information
bounds are functions of both the asynchronous and synchronous release parameters. If synchronous
release facilitates more than asynchronous release, the mutual information rate increases. In contrast,
short-term facilitation degrades information transmission when the synchronous release probability is
intrinsically high. As synaptic release is energetically expensive, we exploit the information bounds to
determine the energy–information trade-off in facilitating synapses. We show that unlike information
rate, the energy-normalized information rate is robust with respect to variations in the strength
of facilitation.

Keywords: short-term synaptic facilitation; release site; information theory; binary asymmetric
channel; mutual information rate; information bound

1. Introduction

Action potentials are the key carriers of information in the brain. The arrival of an action potential
at a synapse opens calcium channels in the presynaptic site, which leads to the release of vesicles filled
with neurotransmitters [1]. In turn, the released neurotransmitters activate post-synaptic receptors,
thereby leading to a change in the post-synaptic potential.

This process of release, however, is stochastic. The release probability is affected by the level
of intracellular calcium and the size of the readily releasable pool of vesicles [2,3]. Moreover,
the release of a vesicle is not necessarily synchronized with the spiking process; a synapse may
release asynchronously tens of milliseconds after the arrival of an action potential [4], or sometimes
even spontaneously [5].
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The release properties of a synapse also change on different time scales. The successive release of
vesicles can deplete the pool of vesicles, thereby depressing the synapse. On the other hand, a sequence
of action potentials with short inter-spike intervals can “prime” the release mechanism and increase
the release probability, inducing short-term facilitation [6].

Several studies have addressed the modulatory role of short-term depression on synaptic
information transmission [7–9]. In contrast, the information rate of a facilitating synapse is not
yet fully understood, though it has been suggested that short-term facilitation temporally filters the
incoming spike train [10].

To study the impact of short-term facilitation on synaptic information efficacy, we employ a
binary asymmetric channel with two states. The model synapse switches between a baseline state and
facilitated state based on the history of the input. Each state has distinct release probabilities, both for
synchronous and asynchronous release. We derive a lower bound and an upper bound for the mutual
information rate of such a facilitating synapse and assess the functional role of short-term facilitation
on the synaptic information efficacy.

Short-term facilitation increases the release probability and consequently raises the metabolic
energy consumption of the synapse [11]. We calculate the rate of information transmission per unit of
energy to evaluate the compromises that a facilitating synapse makes to balance energy consumption
and information transmission.

2. Synapse Model and Information Bounds

We use a binary asymmetric channel to model the stochasticity of release in a synapse
(Figure 1A) [12]. The input of the model is the presynaptic spike process X = {Xi}∞

i=0, where Xi is
a binary random variable corresponding to the presence (Xi = 1) or absence (Xi = 0) of a spike at
time i. We assume that X is an i.i.d. random process, and Xi is a Bernoulli random variable with
P(Xi = 1) = α. The output process of the channel Y = {Yi}∞

i=0, represents a release (Yi = 1) or lack
of release (Yi = 0) at time i. The synchronous spike-evoked release probability is characterized as
P(Yi = 1|Xi = 1), and asynchronous release probability as P(Yi = 1|Xi = 0).

In short-term synaptic facilitation, a presynaptic input spike facilitates the synaptic release for the
next spike. We model this phenomenon as a binary asymmetric channel whose state is determined
by the previous input of the channel (Figure 1A). In the absence of a presynaptic spike (Xi−1 = 0),
the channel is in the baseline state and the probabilities of synchronous spike-evoked and asynchronous
release are p1 and q1. If a presynaptic spike occurs at time i− 1, i.e., Xi−1 = 1, the state of the channel
is switched to the facilitated state and the synchronous and asynchronous release probabilities are
increased to p2 and q2 as follows,

p2 = u(pmax − p1) + p1, (1)

q2 = v(qmax − q1) + q1. (2)

Here, u and v are facilitation coefficients of synchronous and asynchronous release probabilities
(0 ≤ u, v ≤ 1), and pmax and qmax are the maximum release probabilities of these two modes of release.
A Markov chain describes the transitions between the baseline state and the facilitated state, and the
transition probabilities correspond to the presence or absence of an action potential in the presynaptic
neuron (Figure 1B).

If R1 and R2 represent the mutual information rates of the binary asymmetric channels
corresponding to the baseline state and facilitated state, then for i ∈ {1, 2},

Ri = h(αpi + αqi)− αh(pi)− αh(qi), (3)

where x , 1− x and h(x) = −x log2(x)− x log2(x). First we derive a lower bound for the information
rate between the input spike process X and the output process of the release site Y (the proofs for the
theorems are in the Appendix A).
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Figure 1. (A) Short-term facilitation in a synapse is modeled by a binary asymmetric channel whose
state at time i is determined by the previous input, Xi−1. If Xi−1 = 0, the synapse remains in the
baseline state; the synapse goes to the facilitated state after an action potential, Xi−1 = 1. (B) The
transition between the baseline state and the facilitated state is modeled by a two-state Markov chain
and the transition probabilities are determined by the normalized input spike rate α.

Theorem 1 (Lower Bound). Let RF denote the mutual information rate of a synapse with short-term
facilitation, modeled by the two-state binary asymmetric channel (Figure 1A). Then RLB = ᾱR1 + αR2 is
a lower bound for RF.

Since α = P(Xi = 1), RLB is the statistical average over the mutual information rates of the
two constituent states of the release site. Therefore, our theorem shows that at least in this simple
model of facilitation, the mutual information rate is higher than the statistical average over the
mutual information rates of the single states. This contrasts with the result for the two-state model of
depression [12], for which ᾱR1 + αR2 is an exact result for the mutual information rate.

Theorem 2 (Upper Bound). The mutual information rate of the two-state model of facilitation is
upper-bounded by

RUB = u7 − u6, (4)

where
u1 = α(αp1 + αq1), (5)

u2 = αq1 + αq2, (6)

u3 = α(αp2 + αq2), (7)

u4 = αp1 + αp2, (8)

u5 = u1 + u3, (9)

u6 = h(q1)α
2 +

(
h(p1) + h(q2)

)
αα + h(p2)α

2, (10)

u7 = h
(

u1u2 + u3u4

u5

)
u5 + h

(
u1u2 + u3u4

u5

)
u5. (11)

In a facilitating synapse, the release probability and consequently, the energy consumption of the
synapse increases. We define the ratio of the mutual information rate by the release probability as the
energy-normalized information rate of the synapse. The energy-normalized information rate of the
synapse without facilitation, denoted by R(E)

1 , is then

R(E)
1 = R1/(αp1 + αq1). (12)

Moreover, the release probability of the synapse in the two-state model of facilitation is
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P(Yi = 1) = α(αp1 + αq1) + α(αp2 + αq2), (13)

which is independent of i. Hence, the energy-normalized information rate of a facilitated synapse,
R(E)

F , as well as the lower and upper bounds of energy-normalized information rate, R(E)
LB and R(E)

UB ,
are calculated by dividing RF, RLB, and RUB by α(αp1 + αq1) + α(αp2 + αq2).

3. Results

We use Theorems 1 and 2 to calculate the lower bound and upper bound of the information
transmission rate of a synapse under short-term facilitation (Figure 2A). It is shown that the bounds
are tighter for synapses with lower facilitation levels. We find that the information rate increases with
the level of facilitation. By contrast, the bounds on the energy-normalized information rate of the
synapse are relatively invariant to the strength of facilitation (Figure 2B,C). This finding indicates that
a synapse can change the balance between its energy consumption and transmission rate by altering
its level of facilitation without affecting the information rate per release.

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

Normalized input spike rate, α 

0

0.4

0.8

1.2

R
LB(E

)

R
U

B(E
)

0

0.4

0.8

1.2
B

R
LB

R
U

B

CA

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

u = v = 0.8
u = v = 0.6

u = v = 0.4
u = v = 0.2

Normalized input spike rate, α Normalized input spike rate, α 

Figure 2. (A) Bounds of information rate in a synapse with short-term facilitation. The lower bound
and upper bound are plotted as a function of α for different values of facilitation coefficients, u and v.
(B) The lower bound of energy-normalized information rate of a synapse under short-term facilitation.
(C) The upper bound of energy-normalized information rate. The model parameters are p1 = 0.5,
q1 = 0.05, pmax = 1, and qmax = 0.2.

If the lower bound of information rate, RLB, is greater than the information rate of the synapse in
the baseline state, R1, we can conclude that short-term facilitation increases the mutual information
rate of the synapse (i.e., RF > R1). In Figure 3A, it is shown that for the modeled synapse (with
p1 = 0.5 and q1 = 0.05), short-term facilitation always increases the mutual information rate, provided
that synchronous spike-evoked release and asynchronous release are facilitated equally, i.e., u = v.

Recent findings suggest that synchronous and asynchronous release may be governed by different
mechanisms [4], and consequently they may show distinct levels of facilitation. We study the impact
of different facilitation coefficients in the modeled synapse by fixing the facilitation coefficient of
asynchronous release at v = 0.5 and calculate the information bounds for different values of u.
Short-term facilitation reduces the mutual information rate of the synapse if the upper bound of the rate
of the synapse, RUB, goes below the information rate of the synapse without facilitation, R1. Figure 3B
shows that short-term facilitation degrades the information rate of the synapse if the facilitation level
of synchronous release is much lower than that of asynchronous release. The degrading effect of
facilitation is pronounced when we compare the upper bound of the energy-normalized information
rate of the synapse with facilitation, R(E)

UB , with the energy-normalized information rate of a static

synapse, R(E)
1 . The values below zero in Figure 3C show the operating points of synapses in which

facilitation reduces the energy-normalized information rate.
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Figure 3. (A) The difference between RLB and R1 against input spike rate for various facilitation
coefficients. It is assumed that the facilitation coefficients of synchronous spike-evoked release and
asynchronous release are identical, u = v. (B) The difference between RUB and R1. (C) The difference

between R(E)
UB and R(E)

1 . In (B) and (C), the facilitation coefficient of asynchronous release is fixed at
v = 0.5. The other parameters are p1 = 0.5, q1 = 0.05, pmax = 1 and qmax = 0.2.

In addition to the facilitation coefficient, the release probability of the synapse in the baseline state
plays a critical role in determining the functional role of short-term facilitation. We study the interaction
between u and p1 in Figure 4. We show the regime of parameters for which short-term facilitation
increases/decreases the mutual information rate and energy-normalized information rate of the
synapse. If RLB < R1 < RUB (or R(E)

LB < R(E)
1 < R(E)

UB ), the bounds cannot specify whether facilitation
increases or decreases the rate of information transmission (or energy-normalized information rate);
these regions are marked in black in Figure 4. We show that for an unreliable synapse (with small p1)
and relatively large facilitation coefficient, u, short-term facilitation increases both mutual information
rate and energy-normalized information rate of the synapse, since the enhancement of synchronous
release dominates the rise of asynchronous release. Interestingly, it has been observed that for many
facilitating synapses the baseline release probability is quite low [13,14]. For synapses that are more
reliable a priori, the relative facilitation of asynchronous releases counteracts the improvement in
the information rate. In reliable synapses (with higher values of p1) and relatively small facilitation
coefficients, short-term facilitation not only decreases the energy-normalized information rate of the
synapse but also drops the information transmission rate. In addition, Figure 4 shows that higher
input spike rates expand the range of synaptic parameters (p1 and u) for which short-term facilitation
enhances the rate-energy performance of the synapse.
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Figure 4. The regime of parameters (u and p1) for which short-term facilitation increases/decreases the
mutual information rate or energy-normalized information rate of the synapse. Asynchronous release
is fixed at q1 = 0.05 and v = 0.5. The other parameters are pmax = 1 and qmax = 0.2.
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To study the effect of asynchronous release, we repeat the analysis of Figure 4 for very high
(q1 = 0.1) and very low (q1 = 0.01) asynchronous release probabilities. Comparing Figure 5A,B reveals
that decreasing the level of asynchronous release expands the range of synchronous release parameters,
u and p1, for which short-term facilitation increases the mutual information rate and energy-normalized
information rate. We also study the interaction between asynchronous release probability q1 and the
facilitation coefficient of asynchronous release v, keeping the parameters of synchronous release
fixed at p1 = 0.5 and u = 0.5 (Figure 5C). To benefit from short-term facilitation, the synapse
needs to decrease the release probability and/or the facilitation coefficient of the asynchronous mode
of release. For synapses with very high asynchronous release probabilities, short-term facilitation
can still boost the information rate and energy-normalized rate of the synapse, provided that the
facilitation coefficient of the asynchronous release is small enough. Similar to the results in Figure 4,
by increasing the normalized spike rate, the synapse spends more time in the facilitated state and
therefore, the impact of short-term facilitation on rate-energy efficiency of the synapse is enhanced.
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Figure 5. The functional impact of asynchronous release. (A) The range of synchronous release
parameters, u and p1, in which short-term facilitation enhances energy-rate efficiency of the synapse;
the asynchronous release probability is q1 = 0.1. (B) Similar to (A) for q1 = 0.01. (C) The functional
classes of short-term facilitation are modified by the baseline release probability, q1, and facilitation
coefficient, v, of the asynchronous release probability. The other simulation parameters are v = 0.5 in
(A,B), and p1 = 0.5 and u = 0.5 in (C). For all simulations, pmax = 1 and qmax = 4q1.
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Short-term facilitation creates a memory for the synapse, since the release probability of the
synapse depends on the history of spiking activity. It is, therefore, important to study how
short-term facilitation modulates information transmission rate in synapses with temporally correlated
spike trains by making the Poisson rate of the input spike train time-dependent [15] (Figure 6A).
We use a sinusoidal rate stimulus with a frequency of 1 Hz on top of a baseline rate (Figure 6B)
and use the context-tree weighting algorithm to numerically estimate the mutual information
and energy-normalized information rates of the facilitating synapse [16]. The amplitude of the
sinusoidal signal specifies the level of correlation. The raster plots of the neurons show the synchrony
between the spiking activity of the neuron and the sinusoidal instantaneous rate (Figure 6C).
The instantaneous firing rate, averaged over 1000 trials, provides a good estimate of the stimulus
(Figure 6D). The functional classes of short-term facilitation are calculated as a function of baseline
release probability and facilitation coefficient of synchronous release for different levels of correlation.
This numerical analysis shows that correlations in the presynaptic spike train can slightly enlarge the
regions in which short-term facilitation increases the mutual information rate and energy-normalized
information rate (Figure 6E).
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Figure 6. (A) Generation of correlated spike trains. (B) Sinusoidal stimulus signals, with a frequency
of 1 Hz, average value of 0.3, and amplitudes 0, 0.075, and 0.15, are used as the normalized rate α(t)
of the inhomogeneous Poisson process. (C) The spike raster plots of the simulated neurons (5 trials
for each amplitude). (D) The estimation of the instantaneous neuronal firing rate from 1000 trials.
(E) Functional classes of short-term facilitation for correlated input. The first column corresponds to the
uncorrelated input (α(t) = 0.3) and the second and third columns correspond to the correlated spike
trains generated by sinusoidal stimulus signals with amplitudes 0.075 and 0.15. The other simulation
parameters are q1 = 0.05, v = 0.5, pmax = 1, and qmax = 0.2.
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In the general model of facilitation, it is assumed that the state of the synapse at time i is affected
not only by the spiking activity of the presynaptic neuron at time i− 1, but also by the whole history
of the spiking events. Synchronous and asynchronous release probabilities converge to the limit
probabilities, p(L) and q(L), exponentially by time constants τL,p and τL,q . The arrival of an action

potential at time i increases the limit probabilities p(L)
i and q(L)

i by u(pmax − p(L)
i ) and v(qmax − q(L)

i )

respectively; the initial values of the limit probabilities are p(L)
0 = p1 and q(L)

0 = q1. In the quiescent
intervals, the limit probabilities decay to the baseline values, p1 and q1, by facilitation decay time
constants, τf ,p and τf ,q . The numerical methods are used to compare the synaptic information efficacy of
the two-state model with the general model of short-term facilitation. We show that the two-state model
provides a good approximation for the mutual information rate (Figure 7A) and energy-normalized
information rate (Figure 7B) of a facilitating synapse, provided that the facilitation decays rapidly.
If the facilitation decay time constant is large, similar to the approach in [12], the parameters of the
two-state model can be tuned to provide a better estimation.
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Figure 7. (A) Mutual information rate of the two-state model (solid lines) and general model (dashed
lines) of short-term facilitation as a function of normalized input spike rate for various values of
baseline synchronous release probability, p1. (B) Similar to (A) for energy-normalized information rates.
The simulation parameters are q1 = 0.05, u = v = 0.5, pmax = 1, qmax = 0.2, τL,p = τL,q = 250 msec,
and τf ,p = τf ,q = 20 msec.

4. Discussion

We studied how prior spikes, by facilitating the release of neurotransmitter at a synapse, modulate
the rate of synaptic information transfer. Most components of neural hardware are noisy, hybrid
analog-digital devices. In particular, the synapse maps quite naturally onto an asymmetric binary
channel in communication theory. Some neurons, such as thalamic relay neurons, act as nodes in a
network for long-range communication using spikes, so it is natural to quantify the performance of
the synapses in bits [17–23]. Synaptic information efficacy quantifies the amount of information that
the post-synaptic potential contains about the spiking activity of the presynaptic neuron. This analysis,
however, does not guarantee that the post-synaptic neuron accesses or uses this information, which
rather depends on the biophysical mechanisms of encoding and decoding.

To capture the phenomenon of facilitation, we made the binary asymmetric channel have two
states. The resulting model permits the short-term dynamics of synchronous and asynchronous
releases to be different, which enabled us to assess the impact of each release mode on the efficacy of
synaptic information transfer. We first assumed identical facilitation coefficients for synchronous
and asynchronous release (i.e., u = v) and demonstrated that the lower bound of information
rate of a facilitating synapse is higher than the information rate of a static synapse (Figure 3A).
We were, therefore, able to show that synapses quantifiably transmit more information through
short-term facilitation, as long as synchronous and asynchronous release of neurotransmitter obey the
same dynamics. Indeed, the increase in information can outweigh the higher energy consumption,
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as measured by the energy-normalized information rate, provided that synchronous release is
facilitated more than asynchronous release. In contrast, when facilitation enhances the asynchronous
component of release more strongly than the synchronous component, short-term facilitation would
have the opposite effect, namely to decrease synaptic information efficacy.

In previous work, we studied the information transmission in a synapse during short-term
depression [9,12]. There, the state of the binary asymmetric channel, which models the synapse,
depended on the history of the output (Yi−1, Yi−2, . . . , Y1). Facilitation, in contrast, depends on
the history of the input (Xi−1, Xi−2, . . . , X1). This simple change makes the problem much more
challenging mathematically, as it is, in fact, isomorphic to an unsolved problem in information theory,
namely the entropy rate of a hidden Markov process [24]. Nevertheless, the lower bound we derive
for a facilitating synapse mirrors the exact result we had derived earlier for short-term depression.
Moreover, in practice, this bound is fairly tight.

The bounds derived here are only a first step towards understanding information transmission in
facilitating synapses. The two-state binary asymmetric channel simplifies the process of facilitation
by making the release probability depend only on the presence or absence of a presynaptic spike at
the previous time-point. Yet when the facilitation decays rapidly, the two-state model converges in
behavior to a more general model that considers the entire history of spiking.

Our model ignores the possibility of temporal correlations in the presynaptic spike train.
Instead, in line with many other studies, the time series of spikes were assumed to obey Poisson
statistics [8,22,25]. This simplification made the information-theoretic analysis of the synapse tractable
and helped us to derive the upper bound and lower bound of information rate. Different methods have
been suggested for modeling correlated spike trains, such as inhomogeneous Poisson processes [15,26],
autoregressive point processes [27], and random spike selections from a set of spike trains [15].
We used an inhomogeneous Poisson process to generate correlated spike trains and estimated the
mutual information rate and energy-normalized information rate of the synapse numerically. In the
future, it will be of interest to study the effect of correlated input on the information efficacy of the
general model of facilitation in which the release probabilities are determined by the whole history of
spiking activity.

In this study, we have assumed that in response to an incoming action potential, the release
site releases at most one vesicle. To capture multiple releases, the model should be extended to a
communication channel with binary input and multiple outputs. The analysis of this channel will
reveal the impact of multiple releases on the mutual information rate of a static and dynamic synapse.
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Appendix A

Proof of Theorem 1. Let Xn , (X1, X2, ..., Xn). By definition,

RF = lim
n→∞

1
n

I(Xn; Yn), (A1)
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where
I(Xn; Yn) = H(Yn)− H(Yn|Xn). (A2)

The chain rule implies that

H(Yn) =
n

∑
i=1

H(Yi|Yi−1), (A3)

H(Yn|Xn) =
n

∑
i=1

H(Yi|Yi−1, Xn). (A4)

The model in Figure 1A posits that Yi depends only on Xi and Xi−1. Given Xi−1, Yi is independent
of Yi−1 and consequently

H(Yi|Yi−1, Xn) = H(Yi|Xi−1, Xi). (A5)

Also
H(Yi|Yi−1, Xi−1) = H(Yi|Xi−1). (A6)

From (A6),

H(Yi|Yi−1)− H(Yi|Xi−1) = I(Yi; Xi−1|Yi−1) ≥ 0. (A7)

Hence,
H(Yi|Yi−1) ≥ H(Yi|Xi−1), (A8)

and together with (A3),

H(Yn) ≥
n

∑
i=1

H(Yi|Xi−1), (A9)

From (A4) and (A5),

H(Yn|Xn) =
n

∑
i=1

H(Yi|Xi−1, Xi). (A10)

By applying (A9) and (A10) to (A2),

I(Xn; Yn) ≥
n

∑
i=1

(
H(Yi|Xi−1)− H(Yi|Xi−1, Xi)

)
(A11)

=
n

∑
i=1

I(Yi; Xi|Xi−1). (A12)

Using the definition of conditional mutual information (for i ≥ 2),

I(Yi; Xi|Xi−1) = I(Yi; Xi|Xi−1 = 0)P(Xi−1 = 0) + I(Yi; Xi|Xi−1 = 1)P(Xi−1 = 1) (A13)

= ᾱR1 + αR2. (A14)

Finally, the lemma follows from (A1), (A12) and (A14).

Proof of Theorem 2. The non-negativity of mutual information implies that

H(Yi|Yi−1) ≤ H(Yi|Yi−1). (A15)

By conditioning on Xi−2,

P(Yi−1 = 1) = (αp1 + αq1)α + (αp2 + αq2)α = u5, (A16)
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and similarly
P(Yi−1 = 0) = (αp1 + α q1)α + (αp2 + α q2)α = u5. (A17)

Moreover
H(Yi|Yi−1 = 0) = h

(
P(Yi = 1|Yi−1 = 0)

)
, (A18)

H(Yi|Yi−1 = 1) = h
(

P(Yi = 1|Yi−1 = 1)
)
, (A19)

and

P(Yi = 1|Yi−1 = 0) = ∑
xi−1∈{0,1}

P(Yi = 1|Yi−1 = 0, Xi−1 = xi−1)× P(Xi−1 = xi−1|Yi−1 = 0). (A20)

We have

P(Yi = 1|Yi−1 = 0, Xi−1 = 0) = P(Yi = 1|Xi−1 = 0) (A21)

= αp1 + αq1, (A22)

P(Yi = 1|Yi−1 = 0, Xi−1 = 1) = P(Yi = 1|Xi−1 = 1) (A23)

= αp2 + αq2. (A24)

Also

P(Xi−1=1|Yi−1=0)=
P(Yi−1=0|Xi−1=1)P(Xi−1=1)

P(Yi−1=0)
, (A25)

By conditioning on Xi−2, and given the fact that Xi−2 and Xi−1 are independent,

P(Yi−1 = 0|Xi−1 = 1) = α p1 + αp2 = u4. (A26)

Hence,

P(Xi−1 = 1|Yi−1 = 0) =
αu4

u5
, (A27)

and similarly, we can show that

P(Xi−1 = 0|Yi−1 = 0) =
α u2

u5
. (A28)

Therefore,

P(Yi = 1|Yi−1 = 0) =
u1u2 + u3u4

u5
. (A29)

With the same approach,

P(Yi = 1|Yi−1 = 1) =
u1u2 + u3u4

u5
. (A30)

The conditional entropy H(Yi|Yi−1) can be written as

H(Yi|Yi−1) = H(Yi|Yi−1 = 1)P(Yi−1 = 1) + H(Yi|Yi−1 = 0)P(Yi−1 = 0), (A31)

and for i > 2, we can infer from (A16)–(A19), (A29), and (A30),

H(Yi|Yi−1) = h(
u1u2 + u3u4

u5
)u5 + h(

u1u2 + u3u4

u5
)u5 (A32)

= u7, (A33)
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We also conclude that H(Yi|Yi−1) is independent of i for i > 2. Moreover, we can easily obtain

H(Yi|Xi−1, Xi) = h(q1)α
2 +

(
h(p1) + h(q2)

)
αα + h(p2)α

2 (A34)

= u6. (A35)

From (A5) and (A15),

I(Xn; Yn) =
n

∑
i=1

(
H(Yi|Yi−1)− H(Yi|Xi, Xi−1)

)
(A36)

≤
n

∑
i=1

(
H(Yi|Yi−1)− H(Yi|Xi, Xi−1)

)
. (A37)

Therefore, from (A33) and (A35),

I(Xn; Yn) ≤ I(Y1; X1) + H(Y2|Y1)− H(Y2|X2, X1) + (n− 2)(u7 − u6), (A38)

and by dividing by n and calculating the limit when n goes to infinity,

RF ≤ u7 − u6, (A39)

and the proof is complete.
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