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Abstract: Making predictions on the dynamics of time series of a system is a very interesting
topic. A fundamental prerequisite of this work is to evaluate the predictability of the system over
a wide range of time. In this paper, we propose an information-theoretic tool, multiscale entropy
difference (MED), to evaluate the predictability of nonlinear financial time series on multiple time
scales. We discuss the predictability of the isolated system and open systems, respectively. Evidence
from the analysis of the logistic map, Hénon map, and the Lorenz system manifests that the MED
method is accurate, robust, and has a wide range of applications. We apply the new method to
five-minute high-frequency data and the daily data of Chinese stock markets. Results show that the
logarithmic change of stock price (logarithmic return) has a lower possibility of being predicted than
the volatility. The logarithmic change of trading volume contributes significantly to the prediction
of the logarithmic change of stock price on multiple time scales. The daily data are found to have a
larger possibility of being predicted than the five-minute high-frequency data. This indicates that the
arbitrage opportunity exists in the Chinese stock markets, which thus cannot be approximated by the
effective market hypothesis (EMH).
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1. Introduction

Making predictions on the dynamics of time series of a system is a very interesting topic. Up to
now, over thousands of methods have been proposed for the prediction of the systems’ evolution [1].
A fundamental prerequisite of these works is to evaluate the predictability of the system over a wide
range of time. For an isolated system, which does not exchange information with other systems,
the predictability of the output time series is only determined by the degree of memory from the past
values. In such a case, the time series in unpredictable if it is purely random, like Gaussian white
noise; whereas, information can be extracted for prediction by analyzing the temporal structure of a
time series with memory. In another way, examples of irreversible processes include typically chaotic
dissipative processes, nonlinear stochastic processes, and processes with memory, operating away
from thermodynamic equilibrium. One should be able to make easier predictions on irreversible
processes, where the arrow of time is playing a role, than on reversible ones [2,3]. For a real-world
system that may exchange information with other systems, the past values of other systems can also
be utilized for prediction, except the past values of the underlying system itself [4,5].

In time series analysis, the multiscale analysis of time series has been broadly studied, which relies
on the fact that the time series of complex systems, associated with a hierarchy of interacting regulatory
mechanisms, usually generate complex fluctuations over multiple time scales. Analyzing the financial
time series by amplification in different proportions with a coarse-graining algorithm [6] makes it
possible to reveal both small-scale information and large-scale information at multiple resolutions.
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This paper contributes to evaluating the multiscale predictability of financial time series. Another
piece of evidence of this consideration is that the multiscale complexity (a tool of time series analysis
that is associated with factors of the degree of memory, the temporal structure, and auto-correlations)
have been measured [6,7], and hence, the predictability of time series, which is also closely related to
those factors, can be analyzed on multiple time scales as well.

Financial time series analyses have played an important role in developing some of the
fundamental economic theories. Furthermore, the understanding and analysis of financial time
series, especially the evolution of stock markets, has been attracting the close attention of economists,
statisticians, and mathematicians for many decades [8–14]. Recent research mostly focuses on the
long-term average behavior of a market, and thus sheds little light on the temporal changes of a market.
This type of method for analyzing financial time series may lead to a lack of analysis on the short-term
predictability of time series, thus ignoring the critical information that is contained in the financial
data, which may be used for the portfolio selection and pursuing an arbitrage opportunity [15].

If the efficient market hypothesis (EMH) is of some relevance to reality, then a market would be
very unpredictable due to the possibility for investors to digest any new information instantly [16].
When a market behaves as the EMH stipulates, the market will be purely random without memory,
and the variation of price will be very unpredictable. For an extensive review of the EMH, please
see [17]. However, new evidence challenges the EMH with many empirical facts from observations,
e.g., the leptokurtosis and fat tail of the non-Gaussian distribution, especially the fractal market
hypothesis (FMH) [18]. The FMH asserts that (i) a market consists of many investors with different
investment horizons, and (ii) the information set that is important to each investment horizon is
different. As long as the market maintains this fractal structure, with no characteristic time scale,
the market remains stable. When the market’s investment horizon becomes uniform, the market
becomes unstable because everyone is trading based on the same information set. In addition,
Beben and Orlowski [19] and Di Matteo et al. [20,21] found that emerging markets were likely to have
a stronger degree of memory than developed markets, suggesting that the emerging markets had a
larger possibility of being predicted.

In this paper, we incorporate the multiscale analysis with an information-theoretic approach for
characterizing the degree of memory of time series, so as to evaluate the predication of financial time
series. We make use of the entropy rate in order to test the predictability of some synthetic data and of
the Chinese stock markets. It is an interesting alternative to regression models, which are often used
in financial time series. One advantage is that the method proposed is mainly model independent;
another is that it deals with nonlinear systems, as well as with linear ones. The remainder of the paper
is organized as follows. In the Methodology Section, we introduce a new entropy difference (ED) and
its multiscale case, multiscale entropy difference (MED). We then apply these new methods to the
numerical analysis of artificial simulations, including the logistic map, the Hénon map, the Lorenz
system, and most importantly, the financial time series analysis. Finally, we give a brief conclusion.

2. Methodology

2.1. Entropy Difference

(i) For an isolated system, which does not exchange information with other systems, the degree of
predictability of the time series can only be explained by the memory effects of its past values.

As the output of the underlying system, a time series {xt}, t = 1, · · · , T is considered. First,
the uncertainty of the time series at time t can be quantified by the Shannon entropy:

H[xt] = ∑
xt∈Θ

p(xt)log2 p(xt). (1)

p(xt) represents the probability distribution of xt; Θ is the space of samples; and H[xt] describes the
information of x at time t in bits.
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The entropy rate measures the net information generated by the system at time t, given by
H[xt|x1, x2, · · · , xt−1]. We assume that the underlying system can be approximated by a p-order
Markov process. That is to say, the value of the output time series at time t is only related to its nearest
p neighbors and is independent of further values. Therefore, we obtain H[xt|x1, x2, · · · , xt−1] =

H[xt|xt−p, xt−p+1, · · · , xt−1] ≡ H[xt|x(p)
t−1], where:

H[xt|x(p)
t−1] = ∑

xt ,x
(p)
t−1∈Θ

p(xt, x(p)
t−1)log2

p(xt, x(p)
t−1)

p(x(p)
t−1)

. (2)

The uncertainty of the time series at time t is non-increasing given the past values, and hence,
the entropy rate is no larger than the entropy itself: H[xt|x(p)

t−1] ≤ H[xt].
The difference between the Shannon entropy and the entropy rate represents the contributions of

the past values to reducing the uncertainty (and improving the predictability) of the time series at time
t. It is given by:

D = H[xt]− H[xt|x(p)
t−1]. (3)

We name D the entropy difference (ED). For any (nonlinear) time series, D ≥ 0. For a random
walk process, the contribution of past values is negligible; hence, H[xt|x(p)

t−1] = H[xt], and H[xt]−
H[xt|x(p)

t−1] = 0. D equal to zero indicates that the time series cannot be predicted at all, as no past
information can be utilized; whereas, if there exist autocorrelations/memory effects within the time
series, the past values can be used to reduce the uncertainty of time series at time t, so D > 0.

The entropy difference D is non-negative, while the upper bound of D is uncertain. Thus, we
further normalize D to the range of [0, 1], divided by its maximum value H[xt]:

D =
H[xt]− H[xt|x(p)

t−1]

H[xt]
= 1−

H[xt|x(p)
t−1]

H[xt]
. (4)

Here, 0 ≤ D ≤ 1. The normalized ED, D, quantifies the degree of predictability of the time series.
Similarly, when D is approximately 0, the time series is unpredictable. When D attains a value of one,
H[xt|x(p)

t−1] is approximately 0. Therefore, there exists no uncertainty of xt in the presence of the past

values x(p)
t−1, and the time series is completely specified (well predicted) at time t.

(ii) Next, consider a real-world system that exchanges information with other systems.
Except the past values of the underlying system itself, the past values of other systems can also
be exploited. Revisit the Granger causality, which is a statistical concept of causality that is based
on prediction [22,23]. If a signal y “Granger-causes” a signal x, then past values of y should contain
information that helps predict y above and beyond the information contained in past values of x alone.
In the Granger causality, the value of xt is predicted by two equations, respectively,

xt =
p

∑
i=1

αixt−i + ε1t.

xt =
p

∑
i=1

βixt−i +
q

∑
j=1

γjyt−j + ε2t.
(5)

The Granger causality is normally tested in the context of linear regression models. If the second
forecast is found to be more successful, according to standard cost functions, then the past of y appears
to contain information helping in forecasting xt that is not in past x(p)

t−1. The Akaike information
criterion (AIC) or Bayesian information criterion (BIC) can be adopted to determine the lagged ranks
p and q. The residual terms ε1t and ε2t, as a matter of fact, contain the information generated by the
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system at time t. A nonlinear extension of the Granger causality is the information-theoretic tool of
transfer entropy [24,25], which measures the information flow from y to x:

Ty→x = H[xt|x(p)
t−1]− H[xt|x(p)

t−1, y(q)t−1]

= ∑
xt ,x

(q)
t−1∈Θ

y(q)t−1∈Ξ

p(xt, x(p)
t−1, y(q)t−1)log2

p(xt|x(p)
t−1, y(q)t−1)

p(xt|x(p)
t−1)

. (6)

Both the Granger causality and the transfer entropy indicate that the past values of another related
system can be used to infer the trajectory of the underlying system. Hence, the ED of the isolated
system can be extended to the multiple systems case.

The entropy rate of one system in the presence of another coupled system is given by
H[xt|x(t−1)

t−1 , y(t−1)
t−1 ]. We further assume that these two systems can be approximated by the generalized

Markov processes [24], that is H[xt|x(t−1)
t−1 , y(t−1)

t−1 ] = H[xt|x(p)
t−1, y(q)t−1], and:

H[xt|x(p)
t−1, y(q)t−1] = H[xt, x(p)

t−1, y(q)t−1]− H[x(p)
t−1, y(q)t−1]

= ∑
xt ,x

(q)
t−1∈Θ

y(q)t−1∈Ξ

p(xt, x(p)
t−1, y(q)t−1)log2

p(xt, x(p)
t−1, y(q)t−1)

p(x(p)
t−1, y(q)t−1)

. (7)

The uncertainty of system x can be given by the conditional probability distribution
p(xt|x(p)

t−1, y(q)t−1). The conditional probability distribution p(xt|x(p)
t−1, y(q)t−1) describes the data range

and the occurrence probability of xt by knowing the past values of x(p)
t−1, y(q)t−1. Consider an extreme case.

If p(xt ≡ c|x(p)
t−1, y(q)t−1), where c is a constant, then xt is fixed at point c with no uncertainty. Further,

when the conditional distribution is fixed within a narrow range, the system is more deterministic at
time t by knowing x(p)

t−1, y(q)t−1, which can thus be well predicted. If the conditional distribution is still
wide in the range, the system is full of uncertainty at time t and has a low possibility of being predicted.

The reduced uncertainty by knowing the past values of both x and y is estimated by the ED:

D = H[xt]− H[xt|x(p)
t−1, y(q)t−1]. (8)

Further, the ED is normalized by:

D =
H[xt]− H[xt|x(p)

t−1, y(q)t−1]

H[xt]
= 1−

H[xt|x(p)
t−1, y(q)t−1]

H[xt]
. (9)

D ranges between 0 and 1. D being approximately 0 indicates a low degree of predictability of the
time series, and D close to 1 indicates a large degree of predictability. In addition, to set the ED in a
fixed range, the normalization of ED also has other merits. Below is the explanation.

The predictability of a system is mainly subjected to the contributions of two aspects:

(i) The degree of the memory of the underlying system, that the past information can be well
utilized to infer the future evolution of the system;

(ii) Whether a system is more deterministic than other systems. This is related to the range of the
fluctuations of the time series, which can be partly explained by the variance of the time series.
A time series with large variance (entropy) tends to be more difficult to predict than a time
series with much small variance. Both the variance and the entropy reflect the diversity of the
system. A system with more diverse states is likely to have large variance and entropy, whereas
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a system with few states tends to have small ones. Obviously, a system with fewer states is
easier to predict than that with diverse states.

Therefore, the normalization of ED by dividing D by H[xt] makes it possible to compare the
degree of predictability between different systems, even if they have different ranges of fluctuations.
Moreover, regarding the estimation of entropy values from time series, there may exist biases for
different estimators. The normalization can offset those biases caused by the estimation of entropy if
the numerator and the denominator use the same estimator.

Further, for a more complicated case of multiple subsystems (larger than 2 subsystems), e.g.,
the Lorenz system, the predictability of the time series can be given by:

D =
H[xt]− H[xt|x(p)

t−1, y(q)t−1, z(l)t−1]

H[xt]

= 1−
H[xt|x(p)

t−1, y(q)t−1, z(l)t−1]

H[xt]
,

(10)

when the past values of x, y, and z can be used to predict xt. Here, Z(l)
t−1 could be a vector of possible

explanatory variables.

2.2. Multiscale Entropy Difference

The predictability of time series estimated by ED and the normalized version is given on a unique
time scale, on which the data are sampled. Here, we further evaluate that the multiscale predictability
of time series relies on the fact that the time series of complex systems, associated with a hierarchy of
interacting regulatory mechanisms, usually generate complex fluctuations over multiple time scales.
There exist many approaches for the multiscale analysis in the framework of fractal theory [26], e.g.,
the data segments of detrended fluctuation analysis (DFA) [27], coarse-graining [6], and the time delay
of phase space reconstruction [28,29], where the coarse-graining is one of the simplest methods.

We coarse grained the original data onto multiple time scales with a scale parameter s [2,6,7].
By the non-overlapping coarse-graining, the original time series x (with length T) is rescaled to X(s):

Xt(s) =
1
s

ts

∑
k=(t−1)s+1

xk. (11)

t ranges from 1 to T/s. Xt(s) represents the moving average of the system x at time t on the temporal
scale s. The coarse-graining process is a low-pass filter, where the high-frequency fluctuations are
filtered out. At small time scales, the details of the time series can be reserved, while at large scales, the
details are ignored and only the profile of the time series is retained.

The procedure of the multiscale entropy difference (MED) mainly includes 3 steps:

Step 1. Coarse grain the original time series {xt} (t = 1, · · · , T) to the coarse-grained time series
{Xt(s)} (t = 1, · · · , T/s), with a time scale s.

Step 2. Estimate the ED and the normalized ED for the coarse-grained time series {Xt(s)}
(t = 1, · · · , T/s), respectively.

Step 3. Change the time scale s and observe the changes of ED, and the normalized ED,
on different time scales.

When the scale s is equal to 1, the MED method retrieves back the ED method. For other scales,
the MED can evaluate the multiscale predictability of the time series. To be noted, for a short time
series of length T, the multiscale analysis may be affected by the finite size effects at large time scales,
which can be solved by the refined entropy estimators during the coarse-graining process. For more
details, please see [5,30,31].
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3. Numerical Simulations

In this section, we consider three examples to test our new methods, including one isolated system
and two open systems.

We first consider the logistic map. It is a polynomial mapping of degree two, which consists of
only one nonlinear system: xt = µxt−1(1− xt−1). For ∀t, xt ∈ [0, 1] can be used to represent the ratio
of existing population to the maximum possible population in ecology. The values of interest for the
parameter µ are those in the interval [0, 4]. Complex, chaotic behavior can arise from this very simple
non-linear dynamical equation. Most values of µ beyond 3.56995 exhibit chaotic behavior. Here, we set
µ = 3.7 and let the data length T = 105. The initial value of x0 was set to 0.5.

As only one equation is described in the logistic map, xt changes no information with other
variables. We added Gaussian white noises on the original time series xt with different strengths to
obtain a composite time series: yt = xt + λεt. εt is the Gaussian white noise (with zero mean and unit
variance). λ ≥ 0 is a parameter that tunes the strength of noises. xt is the real signal corrupted by the
external noise εt, and λ determines the signal-noise ratio. The larger λ, the smaller the signal-noise
ratio is.

We used k-means clustering [32] to discretize the original data into k symbols, so as to estimate the
entropies. k is a pre-defined parameter that determines the number of clusterings. Here, the parameter
k for the k-means clustering was 10, i.e., we symbolized the original continuous time series as 10 discrete
symbols. In Figure 1, we show the values of normalized ED D on multiple time scales s = 1, 2, · · · , 10,
with the noise strength parameter λ from 0.01 to 0.1 with a step of 0.01, since the variance of the
original time series x of the logistic map (T = 105) was only 0.0412, the original data length was
T = 105, therefore, even at s = 10, this ensured that the coarse-grained data length was 104. For s = 1
and λ = 0, corresponding to the original time series x, the degree of predictability was larger than 0.7.
This indicates that the logistic map had a large possibility of being predicted, which coincides well
with what the equation describes. When the scale increased, the predictability of the coarse-grained
time series decreased, since the relationship between Xt(s) and Xt−1(s) became weaker on large scales.
Moreover, the predictability of the time series also decreased with increasing λ, as the signal-noise
ratio became lower. D reached a value very close to zero when λ = 0.1, so the composite time series
could not be predicted. We also tested other values of k, for which it turned out that the values of
larger k gave more reliable results; however, this was limited by the original data length. We further
generated several groups of Gaussian white noises to add on the original time series and obtained
very similar results, which verified the robustness of our new methods.
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0.00
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0.47

0.58
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0.5

Figure 1. The values of D (Equation 4, lagged rank p = 1) on multiple time scales s = 1, 2, · · · , 10,
with the noise strength parameter λ = 0.01, 0.02, · · · , 0.1 for the logistic map.
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Next, we considered the Hénon map, which consists of two subsystems: xt = 1− ax2
t−1 + yt−1

and yt = bxt−1. The map depends on two parameters, a and b. For the classical Hénon map, it has
values of a = 1.4 and b = 0.3. There exists nonlinear information flow from xt−1 and yt−1 to xt, i.e.,
a one-step transition from the past data of one variable y to the current the data of another variable x.
The initial values were set to (1, 0).

We generated data with the classical Hénon map, with the data length T = 105. In Figure 2,
we show the values of normalized ED D on multiple time scales s = 1, 2, · · · , 10. For s = 1,
which corresponds to the original time series x and y, the degree of predictability was 0.77. This
indicates that xt can be well predicted by using the past values of x and y. When the scale increased,
the predictability of the coarse-grained time series decreased, as the relationship among Xt(s),
Xt−1(s), and Yt−1(s) became weaker on large scales. We also compare DXt−1(s),Yt−1(s)→Xt(s) = 1−
H[Xt(s)|Xt−1(s), Yt−1(s)]/H[Xt(s)] with DXt−1(s)→Xt(s) = 1− H[Xt(s)|Xt−1(s)]/H[Xt(s)] in Figure 2.
Here, the lagged ranks p and q were both set to one. Obviously, if we only used the past values of
x to predict xt, the predictability of the time series would be much lower than if we incorporated
both the past values of x and y. Therefore, we always obtained DXt−1(s),Yt−1(s)→Xt(s) ≥ DXt−1(s)→Xt(s).
Actually, DXt−1(s),Yt−1(s)→Xt(s) −DXt−1(s)→Xt(s) is just the normalized multiscale transfer entropy [5],
and its unique scale case Dxt−1,yt−1→xt −Dxt−1→xt is the normalized transfer entropy [24,33], from y
to x.

� � � � � � � 	 
 ��
s

���

���

���

���

��	

���



Xt−1(s), Yt−1(s) →Xt(s)
Xt−1(s) →Xt(s)

Figure 2. The values of D on multiple time scales s = 1, 2, · · · , 10. The parameter k for the k-means
clustering is 20. We compare DXt−1(s),Yt−1(s)→Xt(s) with DXt−1(s)→Xt(s) and find that DXt−1(s)→Xt(s) is
always smaller than DXt−1(s),Yt−1(s)→Xt(s) on each time scale. This indicates that the predictability of x
can be improved by incorporating the past values of y more than the past values of x alone. Therefore,
the past values of y contain information for predicting x, which coincides well with the equations of
the map.

Third, we studied the Lorenz system [34], which consists of three subsystems: dx/dt = σ(y− x),
dy/dt = x(r− z)− y, and dz/dt = xy− bz. Here, x, y, and z make up the system states, t time, and σ,
r, and b the parameters: σ = 10, r = 28, b = 8/3. We integrated these equations numerically, applying
a fourth-order Runge–Kutta method with the initial values of (0.1, 0, 0).

We used the Lorenz system to generate data of length T = 105. In Figure 3, we give the values of
normalized ED on multiple time scales s = 1, 2, · · · , 10. For s = 1, which corresponds to the original
time series x, y, and z, the degree of predictability of yt reached 0.88. This indicates that yt can be well
predicted by using the past values of x, y, and z. When the scale increased, the predictability of the
coarse-grained time series decreased, as the relationship among Yt(s), Xt−1(s), Yt−1(s) and Zt−1(s)
became weaker on large scales. We also compared DXt−1(s),Yt−1(s),Zt−1(s)→Yt(s) with DXt−1(s),Yt−1(s)→Yt(s),
DYt−1(s),Zt−1(s)→Yt(s), and DYt−1(s)→Yt(s). Here, the lagged ranks p, q, and l were all set to one. We found
that yt can be well predicted giving the past values of x and y. Interestingly, the past values of z
contributed much less to predicting y, although in the second equation of the Lorenz system, the change
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of y (dy/dt) is also explained by z. This can be explained as follows. In the x–y phase plane, x is closely
related to y in the “diagonal” direction, as shown in Figure 3. However, in the y–z phase plane, no
obvious relationship appears between y and z. Therefore, both the past values of x and y contribute to
predicting y, rather than z. To predict other variables like x and z, we obtained very similar results.
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Figure 3. Upper left panel: A sample solution in the Lorenz system when σ = 10, r = 28, and b = 8/3,
with initial values (0.1, 0, 0). The data length is T = 105. Upper right panel: the values of D on multiple
time scales s = 1, 2, · · · , 10. The parameter k for the k-means clustering is 20. Lower left panel: the x–y
phase plane. Lower right panel: the y–z phase plane.

4. Financial Time Series Analysis

The emerging stock markets have been found to have memory with the past values [35]; thus,
the stock prices are not purely random. Past values can be used for the prediction of future stock
prices. In this section, we study the predictability of the stock data of Shanghai and Shenzhen stock
markets in China. We analyze the Shanghai Composite Index (SSE) and Shenzhen Composite Index
(SZSE), both including the trading price and trading volume. At time t, the data related to trading
price are given by xt, and the data related to trading volume are given by yt. Except the original data,
we also analyzed the logarithmic change of stock price (i.e., logarithmic return): log(xt)− log(xt−1),
the logarithmic change of trading volume: log(yt)− log(yt−1), the volatility (absolute return) of stock
price: |log(xt)− log(xt−1)|, and the volatility of trading volume: |log(yt)− log(yt−1)|, respectively.

4.1. Five-Minute High-Frequency Data Analysis

We first analyzed the predictability of five-minute high-frequency data of SSE and SZSE. The data
ranged from 3 March 2016 to 9 October 2018. In Figure 4, the left panels show the predictability of the
stock price, logarithmic return, and price volatility for SSE, respectively. The right panels show the
predictability of the stock price, logarithmic return, and price volatility for SZSE, respectively.
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Figure 4. The multiscale entropy difference (MED) for the five-minute high-frequency stock data
for the Shanghai and Shenzhen markets. Left panels show the results of the stock price (upper left),
logarithmic return (middle left), and price volatility (lower left) for the Shanghai Composite Index
(SSE), respectively. Right panels are those for the Shenzhen Composite Index (SZSE), respectively.
The data related to the trading price are given by X, and the data related to trading volume are given
by Y. X∗ and Y∗ represent the shuffled data.

For the original non-stationary stock prices, the predictability was very high on multiple time
scales (as shown on the left panels of Figure 4), with D larger than 0.8, in the presence of either Xt−1

alone or Xt−1&Yt−1. The reason is that we can just use Xt−1 as the predicted value of Xt. The prediction
error would be very small, because neighboring stock prices are very close. This explains why D was
so large, but such a prediction is meaningless for the arbitrage. What makes investors more interested
are the logarithmic return, which indicates the price going up or down, and the price volatility, which
is the indicator of risk.

On the middle panels of Figure 4, the logarithmic return is more likely to be predicted given the
past values of logarithmic return and the logarithmic change of trading volume than given the past
values of logarithmic return alone, that is DXt−1(s),Yt−1(s)→Xt−1(s) > DXt−1(s)→Xt−1(s). This indicates that
the trading volume contributes significantly to the prediction of the stock price. The close relationship
between the stock price and trading volume was also found in previous studies, e.g., [36]. We shuffled
the underlying data, represented by X∗ and Y∗. The predictability for the shuffled data became much
lower, because the shuffling process broke the memory among neighboring values for prediction,
although it retained the distribution of the data.



Entropy 2019, 21, 684 10 of 13

We also show the results of price volatility on the lower panels of Figure 4. The degree of the
predictability became larger than that of the logarithmic return. There existed long-range persistent
correlations in the volatility series [37], so that the clustering of extreme volatilities emerged. A larger
volatility was more likely to be followed by a large volatility, and vice versa [38,39]. The clustering of
extreme volatilities made it possible to predict the volatility series from the neighboring past values.
We found that the trading volume volatility can also help to predict the price volatility. The price
volatility of SZSE was more likely to be inferred than SSE as D was larger. This is consistent with
the previous findings [40]. The Shanghai market was relatively more stochastic than the Shenzhen
market (i.e., the Shenzhen market was a little more structured and predictable). This reflects the fact
that the Shenzhen market consists of most of the medium- to small-sized companies in China; they
are relatively less stable than the large companies. Moreover, the predictability of the price volatility
increased when the scale s increased.

4.2. Daily Data Analysis

We next analyze the predictability of the daily data of SSE and SZSE. The SSE data ranged
from 19 December 1990 to 9 October 2018. The SZSE data ranged from 3 April 1991 to 8 October
2018. The correlations between Chinese stock markets and other major stock markets in the world
were rather low most of the time. This indicates the fact that Chinese stock markets are relatively
independent of the other stock markets, and therefore, we treated the Chinese stock market as an
isolated system here. The left panels of Figure 5 show the predictability of the stock price, logarithmic
return, and price volatility for SSE, respectively. The right panels show those for SZSE, respectively.

For the non-stationary daily stock prices, the predictability on the upper panels of Figure 5 is high,
but meaningless, in the presence of either Xt−1 alone or Xt−1&Yt−1. On the middle panels of Figure 5,
the daily logarithmic return is more likely to be predicted given the past values of the logarithmic
return and logarithmic change of trading volume than given the past values of the logarithmic return
alone: DXt−1(s),Yt−1(s)→Xt−1(s) > DXt−1(s)→Xt−1(s). However, the shuffled data showed a bit confusing
results, as DXt−1(s),Yt−1(s)→Xt−1(s) and DX∗t−1(s),Y

∗
t−1(s)→X∗t−1(s)

were very close to each other, especially
for the Shenzhen market.

We show the results of daily price volatility on the lower panels of Figure 5. The degree of the
predictability became larger than that of the daily logarithmic return. Moreover, the MED values
were much larger for the daily data than the five-minute data. This indicates that the daily data were
more deterministic and predictable than the high-frequency data. The Shanghai market and Shenzhen
market showed very similar results.

Our daily data results showed an average degree of predictability. However, they involved times
of both high and low volatilities, which implies a change in market behavior. During the times of high
volatility (e.g., the 2008 world economic crisis), we found that the degree of predictability increased;
while during the times of low volatility, the degree of predictability was much lower. This coincides
well with previous studies [40] that the economic crisis can reduce the complexity of stock time series,
making the volatility easier to predict.

To be noted, the reasons why we considered only one lag for each variable were two-fold:
(i) Suppose that the sampling frequency of the original time series is f . In the multiscale analysis,
the coarse-graining process, like a low-pass filter, can down sample the time series to f /s. Therefore,
for the five-minute high-frequency data, although we used one lag for each variable, we still considered
long-distance connections, which were much larger than five minutes. (ii) For most cases, we found
that the low-frequency daily data could be approximated by one-order Markov processes. This means
that major information could be be exposed by the current daily price and trading volume. Further,
past daily data contributed little to predicting the market behavior of the following day, in the presence
of the current data.
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Figure 5. The MED for the daily stock data in the Shanghai and Shenzhen markets. Left panels show
the results of the stock price (upper left), logarithmic return (middle left), and price volatility (lower
left) for SSE, respectively. Right panels are those for SZSE, respectively. The data related to trading
price are given by X, and the data related to trading volume are given by Y. X∗ and Y∗ represent the
shuffled data.

5. Conclusions

In this paper, we introduced a new information-theoretic tool of MED to evaluate the degree of
predictability for financial time series. The MED quantifies the contributions of the past values by
reducing the uncertainty of the forthcoming values in time series on multiple time scales. For the
isolated system, only the past values of the time series alone can be used. However, for the open
systems, the past values of the time series and the past values of other time series (which have a close
relationship with the underlying time series) can both be utilized. We performed several simulations
based on the method, including the logistic map, the Hénon map, and the Lorenz system. All these
simulations verified the accuracy and the robustness of our new method. We finally applied the MED
method to the analysis of Chinese stock markets. The analysis on the five-minute high-frequency data
and daily data of SSE and SZSE revealed that: (i) the logarithmic return had a lower possibility of
being predicted than the price volatility; (ii) the trading volume volatility contributed significantly to
the prediction of the stock price volatility on multiple time scales; (iii) the daily data were found to
have a larger possibility of being predicted than the five-minute high-frequency data.
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We note that our new evaluation methods of predictability were based on the assumption of
the generalized Markov processes of the underlying time series. However, there still exist many
other predicting methods that do not follow such a rule. For example, the k-nearest neighbors (KNN)
prediction method [41] and the recurrence quantification analysis (RQA) tool [42] trace out more
long-distance past values, so as to match them with the current states. In such a case, our methods
would not be applicable any more.
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