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Abstract: Rough set theory is an important approach for data mining, and it refers to Shannon’s
information measures for uncertainty measurements. The existing local conditional-entropies
have both the second-order feature and application limitation. By improvements of hierarchical
granulation, this paper establishes double-granule conditional-entropies based on three-level granular
structures (i.e., micro-bottom, meso-middle, macro-top ), and then investigates the relevant properties.
In terms of the decision table and its decision classification, double-granule conditional-entropies are
proposed at micro-bottom by the dual condition-granule system. By virtue of successive granular
summation integrations, they hierarchically evolve to meso-middle and macro-top, to respectively
have part and complete condition-granulations. Then, the new measures acquire their number
distribution, calculation algorithm, three bounds, and granulation non-monotonicity at three
corresponding levels. Finally, the hierarchical constructions and achieved properties are effectively
verified by decision table examples and data set experiments. Double-granule conditional-entropies
carry the second-order characteristic and hierarchical granulation to deepen both the classical entropy
system and local conditional-entropies, and thus they become novel uncertainty measures for
information processing and knowledge reasoning.

Keywords: rough set theory; information theory; conditional entropy; uncertainty; granular computing;
three-level granular structures

1. Introduction

Rough set theory can effectively implement data mining for the imprecise, inconsistent, and
incomplete information [1], and it has been extensively applied in artificial intelligence and machine
learning [2–8]. In rough set theory, attribute reduction based on decision tables is a main topic for
approximate reasoning and knowledge discovery, and there are three main construction strategies:
from the positive region, information measure, and a discernibility matrix [9–15]. By virtue of the
discernibility matrix, Wei et al. [16] proposed an incremental reduction algorithm for dynamic data;
Ma et al. [17] utilized the compressed binary discernibility matrix to construct an incremental reduction
algorithm for group dynamic data; moreover, Nie and Zhou [18] proposed a new discernibility matrix
defined by local conditional-entropies to compute the reduction core.

Information theory originated from Shannon’s entropy system [19], and it provides an effective
method for uncertainty measurement, such as in attribute reduction. Currently, information theory
has been introduced into rough set theory for uncertainty analyses and information processing [20–25].
As far as attribute reduction is concerned, Miao [26] offered the informational representation of
knowledge reduction and decision reduction, where entropy and mutual-information are highlighted;
Wang et al. [27] conducted a comparative study on attribute reduction from the algebra and
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information viewpoints, where the conditional-entropy acts as a main tool; Jiang et al. [28]
presented the relative decision entropy to propose a feature selection algorithm; Slezak [29] used
the conditional-entropy to define approximate reducts; moreover, Qian and Shu [30] provided the
mutual information criterion to evaluate candidate features in incomplete data. In general, the
entropy, conditional-entropy, and mutual-information together constitute the classical information
system with integrality and comprehensiveness, and they can function on rough set applications
(such as attribute reduction) but may exhibit different emphases in different application scenarios.
In addition, information-theoretic measures have multiple variational forms [31–35]. As far as
conditional-entropies are concerned, they are extensively applied in rough set theory from multiple
pointcuts [26,27,29,31,34,36–39], while uncertainty measurement and reduction construction still serve
as two basic issues. Aiming at probabilistic rough sets, Deng and Yao [40,41] used Shannon’s entropy
and conditional-entropy to interpret and determine probabilistic thresholds by an information-theoretic
approach, and Ma et al. [42] considered variants of conditional-entropies to construct heuristic
reduction algorithms for the probabilistic model. In particular, local conditional-entropies are put
forward by adopting double condition-granules and their union locality [18], and they can distinctively
determine a new discernibility matrix for reduction core computation; moreover, the information
measures exhibit a novel feature of second-order expressions, especially when compared to the
traditional entropy system with only single-granule descriptions [19,26,27].

Granular computing is a structural methodology of hierarchical computing and information
processing [43,44], and its technology of multi-granularity and multiple levels is useful for uncertainty
analyses and knowledge acquisition regarding data. In rough set theory, the information granulation
is of extensive concern [45–49], and the granulation monotonicity plays an important role in attribute
reduction [12,50–52]. In particular, a decision table acts as a formal background of data mining [12,53–55],
and it involves condition/decision granules and classifications from granular structures. According
to granular computing, Zhang and Miao [56] introduced three-layer granular structures of decision
tables, and they further hierarchically constructed three-way informational measures based on
weighted-entropies; moreover, Wang et al. [57] utilized three-layer granular structures to research
three-way weighted combination-entropies. These studies adhere to three-level analyses, and the latter
are directly related to granular computing [43] and three-way decisions [58], as well as their interplay.
Recently, Yao [59] discussed three-way granular computing by making use of two particular types of
three granules and three levels, where thinking in three levels results in an important model. Additionally,
three-level analyses were extensively utilized in the location allocation and programming/optimization
modeling [60–62].

According to [18], the new discernibility matrix is used for reduction core calculations,
and its creative implementation mainly depends on local conditional-entropies. Therefore, local
conditional-entropies focus on the granule-union locality rather than their underlying double-granule
interaction, and the latter more essentially adheres to the second-order characteristic; moreover,
they lack the condition granulation to restrict their uncertainty measurement function and
information procession prospect based on knowledge. Motivated by the two issues, this paper
utilizes the two-granular essence and three-hierarchical evolution to propose double-granule
conditional-entropies based on three-level granular structures. Regarding the contribution, this novel
type of information measures improves local conditional-entropies from both the granular interaction
and hierarchical/conditional granulation, and they will achieve multiple important properties
(including the integration hierarchy, number distribution, calculation algorithm, three bounds, and
granulation non-monotonicity) to offer both robust measurement functions and knowledge-application
prospects. Moreover, three-level granular structures here (including micro-bottom, meso-middle,
macro-top) adopt only the condition part of decision table, and thus they differ from and push forward
the previous ones, which include both the condition and decision parts [56].

The remainder of this paper is organized as follows. Section 2 reviews the decision table and
local conditional-entropies; Section 3 proposes and studies double-granule conditional-entropies from
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three-level granular structures; Section 4 provides a decision table example for mechanism illustration;
Section 5 makes data experiments for effectiveness verification; finally, Section 6 concludes this paper.

2. Decision Table and Its Existing Entropy Measures

Rough set theory [1] focuses on the data that are represented in an information table

(U, AT, {Va : a ∈ AT}, {Ia : a ∈ AT});

U is the universe with finite objects, AT is the finite attribute set, Va is the value domain for a ∈ AT, and
Ia : U → Va is an information function to endow each object x with a value Ia(x) = a(x) on attribute a.
The decision table is a special type of information table with AT = C ∪D and C ∩D = ∅, where C and
D denote the sets of condition attribute and decision attribute, respectively, and it is simply denoted
by (U, C ∪ D) in this paper. Furthermore, the granulation construction usually considers two parts.

(1) The condition attribute subset A ⊆ C induces an equivalence relation

IND(A) = {(x, y) ∈ U ×U : ∀a ∈ A, a(x) = a(y)},

and the latter provides the condition granulation or partition U/IND(A) = {Ai : i = 1, .., n},
where Ai = [x]iA represents the equivalence granule to exhibit number |U/IND(A)| = n.

(2) Similarly, the decision attribute set D induces the equivalence relation IND(D) and further
decision classification U/IND(D) = {Dj : j = 1, .., m}, which consists of |U/IND(D)| = m
decision classes.

The decision table (U, C ∪ D) and its granulation from A ⊆ C and D constitute the basic
background for information measure construction. The probability space (U, 2U , P) establishes the
usual probability framework, where

P : 2U → Q, P(X) =
|X|
|U| , ∀X ⊆ U, (1)

and thus two usual probabilities are

P(Ai) =
|Ai|
|U| , P(Dj/Ai) =

|Ai ∩ Dj|
|Ai|

. (2)

Definition 1 ([26,27,56]). The entropy on condition A, conditional-entropy on D given A,
and mutual-information between A and D are respectively defined by

H(A) = −
n

∑
i=1

P(Ai)log2P(Ai),

H(D/A) = −
n

∑
i=1

(
P(Ai)

m

∑
j=1

P(Dj/Ai)log2P(Dj/Ai)

)
,

I(A; D) = H(D)− H(D/A),

(3)

where

H(D) = −
m

∑
j=1

P(Dj)log2P(Dj).

Theorem 1 ([26,27,56]). The entropy, conditional-entropy, and mutual-information have granulation
monotonicity. Concretely,

U/IND(A) � U/IND(B) =⇒ H(B) ≥ H(A), H(D/B) ≤ H(D/A), I(B; D) ≥ I(A; D). (4)
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In terms of the decision table (U, C ∪ D), the classical system of Shannon entropies has
been introduced into rough set theory, as shown by Definition 1 and Theorem 1. As three basic
information measures, the entropy, conditional-entropy, and mutual-information have uncertainty
semantics and granulation monotonicity, so they are extensively used in attribute reduction and
heuristic algorithms [26,27,42]. The granulation relation U/IND(A) � U/IND(B) is equivalent to
IND(A) ⊇ IND(B), that is,

∀Bi∗ ∈ U/IND(B), ∃Ai ∈ U/IND(A), s.t., Bi∗ ⊆ Ai,

and it is usually induced by A ⊆ B ⊆ C; furthermore, relevant granulation monotonicity/
non-monotonicity becomes an important index to assess and apply uncertainty measures.

According to the decision table and its formal structure, Zhang and Miao [56] recently introduced
three-level granular structures, i.e.,

micro-bottom (Ai, Dj), meso-middle (U/IND(A), Dj), macro-top (U/IND(A), U/IND(D)),

and further investigated weighted-entropy constructions. As a result, the previous entropy
system (Equation (3)) is actually located at macro-top and has an equivalent construction from the
weighted-entropy system; at meso-middle, Zhang et al. [10] established three-way informational
class-specific reducts to be compared with the algebraic class-specific reducts [9].

In particular, Nie and Zhou [18] proposed a new discernibility matrix for computing
the reduction core, and they tactfully utilized a kind of novel information of so-called local
conditional-entropy. As our preliminary, the relevant entropy and matrix are reviewed as follows,
where let U/IND(C) = {Ck : k = 1, .., r} and the cardinality form is mainly adopted.

Definition 2 ([18]). The local conditional-entropy on decision table (U, C ∪ D) is defined by:

∀Cp, Cq ∈ U/IND(C) (1 ≤ p, q ≤ r),

HCp∪Cq(D/C) =−
|Cp|

|Cp ∪ Cq|
m

∑
j=1

|Cp ∩ Dj|
|Cp|

log2
|Cp ∩ Dj|
|Cp|

−
|Cq|

|Cp ∪ Cq|
m

∑
j=1

|Cq ∩ Dj|
|Cq|

log2
|Cq ∩ Dj|
|Cq|

.

(5)

Definition 3 ([18]). The discernibility matrix DM = (ri′ j′)|U|×|U| on decision table (U, C ∪ D) is defined by:

ri′ j′ =



c ∈ C,if min(|dxi′ |, |dxj′ |) = 1, c(xi′) 6= c(xj′), D(xi′) 6= D(xj′),

c ∈ C,if min(|dxi′ |, |dxj′ |) > 1, c(xi′) 6= c(xj′), D(xi′) 6= D(xj′),

H[xi′ ]C∪[xj′ ]C
(D/(C− {c})) > H[xi′ ]C∪[xj′ ]C

(D/C),

∅, otherwise

(6)

where dx = {D(y) : y ∈ [x]C} (∀x, y ∈ U) represents the set of decision values induced by conditional
class [x]C while |dx| means the corresponding cardinality [63]. In Equation (6), let [xi′ ]C = Cp, [xj′ ]C = Cq,
and then

H[xi′ ]C∪[xj′ ]C
(D/(C− {c})) = HCp∪Cq(D/(C− {c})) = −∑m

j=1
|(Cp∪Cq)∩Dj |
|Cp∪Cq | log2

|(Cp∪Cq)∩Dj |
|Cp∪Cq | (7)

is determined to represent the conditional-entropy of local decision table when accompanied by new universe
Cp ∪ Cq after deleting attribute c; moreover, H[xi′ ]C∪[xj′ ]C

(D/C) = HCp∪Cq(D/C) is clear according to
Equation (5).
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3. Double-Granule Conditional-Entropies Based on Three-Level Granular Structures

The local conditional-entropy in Equation (5) implements effective uncertainty descriptions
to guide the in-depth discernibility matrix and core calculation [18], thus exhibiting fundamental
significance. However, this basic measure has three flawed aspects, and corresponding improvements
for general applications.

(1) According to Equation (5), the locality mainly refers to less range Cp ∪ Cq in universe U.
More essentially, we can stand on the dual granules Cp and Cq to propose a novel notion of
double-granule conditional-entropies, and it differs from the usual entropy system with only the
single-granule representation which implies a kind of first-order style. Moreover, the measure
properties are lacking in [18], and we will provide in-depth properties such as restriction bounds
and granulation non-monotonicity.

(2) Regarding granular structures, all decision classes Dj (j = 1, · · · , m) (or decision classification
U/IND(D)) are considered, but condition granules involve only two factors Cp and Cq.
A condition partition U/IND(C)) needs considering in practice to provide a system description
of knowledge granulation, so we also focus on granulation U/IND(C) to introduce three-level
granular structures for hierarchical constructions of double-granule conditional-entropies.

(3) Finally, the initial concept is limited to only C for expressing the discernibility matrix and
reduction core, and a general subset A ⊆ C has better theoretical and practical prospects,
especially for the knowledge-based applications (such as attribute reduction or feature selection).

Along the above thoughts, this section mainly establishes double-granule conditional-entropies
based on a universal attribute-subset A ⊆ C and investigates relevant algorithms and properties, and
we particularly use a kind of three-level granular structures.

From a viewpoint of only condition granulation, basic descriptions of three-level granular
structures are provided in Table 1, and relevant concepts are usually intuitionistic and descriptive
according to a supporting figure with granular structures: Figure 1. Micro-bottom (Ap, Aq) focuses on
only two granules, meso-middle

(Ap, U/IND(A) = {Aq : q = 1, · · · , n})

consists of one granule and a partition, while macro-top

(U/IND(A) = {Ap : p = 1, · · · , n}, U/IND(A) = {Aq : q = 1, · · · , n})

considers the same partition with different construction origins. The three-level granular structures
carry a kind of hierarchical integration (or decomposition) relationship, and they provide n× n, n, and
one parallel patterns, respectively; they will be presented in a table form with the n× n mainbody data
as well as the edge statistics. Moreover, they differ from the existing three-level granular structures for
decision tables, which consider not only the condition granulation (with Ai and U/IND(A)) but also
decision granulation (with Dj and U/IND(D)) [56].

Table 1. Three-level granular structures based on condition granulation of the decision table.

Structure Composition System Granular Granular Number of
Naming Scale Level Parallel Patterns

Micro-Bottom (Ap, Aq) Micro Bottom n× n

Meso-Middle
(Ap, U/IND(A))

= (Ap, {Aq : q = 1, · · · , n}) Meso Middle n

Macro-Top
(U/IND(A), U/IND(A))

= ({Ap : p = 1, · · · , n}, {Aq : q = 1, · · · , n}) Macro Top 1
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Figure 1. Schematic diagram of three-level granular structures.

3.1. Double-Granule Conditional-Entropy at Micro-Bottom

The local conditional-entropies are actually at only micro-bottom, i.e., (Cp, Cq) regarding C. As a
basis of hierarchical development, this subsection improves local conditional-entropies to construct
double-granule conditional-entropies at micro-bottom (Ap, Aq) (p, q ∈ {1, · · · , n}), which comes from
an arbitrary condition-attribute subset A ⊆ C. We first suppose weight coefficients

ωp =
|Ap|

|Ap|+ |Aq|
, ωq =

|Aq|
|Ap|+ |Aq|

, (8)

where
ωp + ωq = 1.

Definition 4. At micro-bottom (Ap, Aq), the double-granule conditional-entropy is defined by

H(Ap ,Aq)(D/A) = −ωp

m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)−ωq

m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq)

= −
|Ap|

|Ap|+ |Aq|
m

∑
j=1

|Ap ∩ Dj|
|Ap|

log2
|Ap ∩ Dj|
|Ap|

−
|Aq|

|Ap|+ |Aq|
m

∑
j=1

|Aq ∩ Dj|
|Aq|

log2
|Aq ∩ Dj|
|Aq|

.
(9)

Proposition 1. The double-granule conditional-entropy based on Ap becomes

H(Ap ,Ap)(D/A) = −
m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)

= −
m

∑
j=1

|Ap ∩ Dj|
|Ap|

log2
|Ap ∩ Dj|
|Ap|

.
(10)

By using probabilistic and cardinal forms, Definition 4 proposes the double-granule
conditional-entropy at micro-bottom. In contrast to the local conditional-entropy in [18], our measure
generally adopts the same essence but a different viewpoint. In other words, Equation (9) with forms
(Ap, Ap) and |Aq|+ |Ap| is equivalent to Equation (5) with styles Ap ∪ Ap and |Aq ∪ Ap| when

Aq 6= Ap =⇒ |Aq|+ |Ap| = |Aq ∪ Ap|,
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but the former becomes different and coherent when

Aq = Ap =⇒ |Aq|+ |Ap| = 2|Aq ∪ Ap| > |Aq ∪ Ap|;

moreover, it more tends to the double-granule description rather than the granule-union locality.
In Equation (9), conditional-information measures

−
m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap),−
m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq)

represent the uncertainty of decision classification U/IND(D) regarding condition granules Ap and Aq,
respectively, and they are integrated into H(Ap ,Aq)(D/A) by two complementary weight coefficients ωp

and ωq. As a result, H(Ap ,Aq)(D/A) embodies a kind of information fusion of double-granule Ap, Aq

to describe decision classification U/IND(D) and its uncertainty, from the perspective of conditional
information. Therefore, H(Ap ,Aq)(D/A) is naturally called the double-granule conditional-entropy,
and it is actually located at micro-bottom (Ap, Aq). In particular, the double-granule measures utilize
the double-granule fusion to capture a new feature of second-order, because main entropy systems
(such as those in Equation (3)) utilize only the single-granule description which correspondingly refers
to the so-called first-order information. Proposition 1 focuses on a specific case of Aq = Ap, and the
concrete result H(Ap ,Ap)(D/A) degenerates into a one-order measure regarding conditional-entropy.

Proposition 2. At micro-bottom, double-granule conditional-entropies offer n× n values, i.e.,

H(Ap ,Aq)(D/A) (p, q = 1, · · · , n).

Since both Ap and Aq have n granules based on p = 1, · · · , n and q = 1, · · · , n, H(Ap ,Aq)(D/A)

offers number n × n (Proposition 2) to correspond to n × n micro-bottoms. The n × n kinds of
double-granule conditional-entropies are arranged in Table 2, and the mainbody refers to an n× n
square symmetric matrix where

H(Ap ,Aq)(D/A) = H(Aq ,Ap)(D/A).

Based on Equation (9), Algorithm 1 resorts to a “for” loop to effectively offer a double-granule
conditional-entropy H(Ap ,Aq)(D/A) for two arbitrary granules Ap, Aq ∈ U/IND(A). Furthermore,
we can achieve all n × n entropies values by adding two “for” loops regarding p = 1, · · · , n and
q = 1, · · · , n.

Table 2. Matrix distribution of double-granule conditional-entropies at micro-bottom.

U/IND(A) A1 · · · Aq · · · An
A1 H(A1,A1)(D/A) · · · H(A1,Aq)(D/A) · · · H(A1,An)(D/A)

...
...

. . .
...

. . .
...

Ap H(Ap ,A1)(D/A) · · · H(Ap ,Aq)(D/A) · · · H(Ap ,An)(D/A)

...
...

. . .
...

. . .
...

An H(An ,A1)(D/A) · · · H(An ,Aq)(D/A) · · · H(An ,An)(D/A)
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Algorithm 1: Calculation of double-granule conditional-entropy at micro-bottom
Input: Decision table (U, C ∪ D), target subset A ⊆ C, and two special indexes

p, q ∈ {1, · · · , n};
Output: Double-granule conditional-entropy H(Ap ,Aq)(D/A) at micro-bottom (Ap, Aq).

1: Compute U/IND(A) to obtain two concrete granules Ap, Aq ∈ U/IND(A), and determine
ωp, ωq.

2: Compute U/IND(D) to obtain all decision classes Dj (j = 1, · · · , m).
3: Let Hp = 0, Hq = 0.
4: for j ∈ {1, .., m} do

5: Hp ← Hp − P(Dj/Ap)log2P(Dj/Ap),
Hq ← Hq − P(Dj/Aq)log2P(Dj/Aq).

6: end for
7: Obtain H(Ap ,Aq)(D/A) = ωp Hp + ωq Hq.
8: return H(Ap ,Aq)(D/A).

Theorem 2. At micro-bottom, the double-granule conditional-entropy has lower and upper bounds. Concretely,

H(Ap ,Aq)(D/A) ≤ H(Ap ,Aq)(D/A) ≤ H(Ap ,Aq)(D/A),

where

H(Ap ,Aq)(D/A) = −
|Ap|
2|U|

m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)−
|Aq|
2|U|

m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq),

H(Ap ,Aq)(D/A) = −
m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)−
m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq).
(11)

Proof. |Ap|, |Aq| ∈ [1, |U|) implies

ωp =
|Ap|

|Ap|+ |Aq|
∈
[ |Ap|

2|U| , 1
)

,

ωq =
|Aq|

|Ap|+ |Aq|
∈
[ |Aq|

2|U| , 1
)

,
(12)

so H(Ap ,Aq)(D/A) ∈ [H(Ap ,Aq)(D/A), H(Ap ,Aq)(D/A)].

In Theorem 2, the double bounds of H(Ap ,Aq)(D/A) are acquired by the enlarging and reducing
of weight coefficients. Regarding Equation (12),

(
Aq 6= Ap

)∨(
Aq = Ap ∧ |Aq| = |Ap| ≤

|U|
2

)
=⇒ ωp ≥

|Ap|
|U| >

|Ap|
2|U| , ωq ≥

|Aq|
|U| >

|Aq|
2|U| ;

(13)

on the other hand,

(
Aq = Ap

)∧(
|Aq| = |Ap| >

|U|
2

)
=⇒ ωp =

1
2
∈
[ |Ap|

2|U| ,
|Ap|
|U|

)
, ωq =

1
2
∈
[ |Aq|

2|U| ,
|Aq|
|U|

)
. (14)
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In other words, ωp and ωq have theoretical lower bounds |Ap |
2|U| and |Aq |

2|U| , respectively, but they usually

have closer lower bounds |Ap |
|U| and |Aq |

|U| , respectively. Therefore, H(Ap ,Aq)(D/A) can theoretically
achieve H(Ap ,Aq)(D/A), such as in the case

Ap = Aq = U =⇒
(

ωp =
1
2
=
|Ap|
2|U|

)∧(
ωq =

1
2
=
|Aq|
2|U|

)
;

usually, it may be practically restricted by a better measure:

H′(Ap ,Aq)
(D/A) = −

|Ap|
|U|

m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)−
|Aq|
|U|

m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq), (15)

which offers

H′(Ap ,Aq)
(D/A) ≥ H(Ap ,Aq)(D/A). (16)

We below provide another upper bound of H(Ap ,Aq)(D/A), which may be better than
H(Ap ,Aq)(D/A) in some cases.

Theorem 3. At micro-bottom, the double-granule conditional-entropy has an upper bound. Concretely,

H(Ap ,Aq)(D/A) ≤ H∗(Ap ,Aq)
(D/A)

= −
m

∑
j=1

|Ap ∩ Dj|+ |Aq ∩ Dj|
|Ap|+ |Aq|

log2
|Ap ∩ Dj|+ |Aq ∩ Dj|

|Ap|+ |Aq|
.

(17)

Proof. As shown in Figure 2, function f (P) = −Plog2P (P ∈ [0, 1]) is convex,
where f ′′(P) = − 1

Pln2 < 0. Thus, let

Pp = P(Dj/Ap) =
|Ap ∩ Dj|
|Ap|

, Pq = P(Dj/Aq) =
|Aq ∩ Dj|
|Aq|

,

and then the famous “Jensen’s inequality” in mathematics could induce

ωp + ωq = 1 =⇒ −ωpPplog2Pp −ωqPqlog2Pq ≤ −(ωpPq + ωpPq)log2(ωpPq + ωpPq),

where

ωpPq + ωpPq =
|Ap|

|Ap|+ |Aq|
|Ap ∩ Dj|
|Ap|

+
|Aq|

|Ap|+ |Aq|
|Aq ∩ Dj|
|Aq|

=
|Ap ∩ Dj|+ |Aq ∩ Dj|

|Ap|+ |Aq|
.

In other words, we can get

H(Ap ,Aq)(D/A) =
m

∑
j=1

[−ωpPplog2Pp −ωqPqlog2Pq]

≤
m

∑
j=1
−(ωpPq + ωpPq)log2(ωpPq + ωpPq)

=−
m

∑
j=1

|Ap ∩ Dj|+ |Aq ∩ Dj|
|Ap|+ |Aq|

log2
|Ap ∩ Dj|+ |Aq ∩ Dj|

|Ap|+ |Aq|

=H∗(Ap ,Aq)
(D/A).
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Figure 2. Convex figure of information function f (P) = −Plog2P.

In Theorem 3, the convex property of information function f (P) = −Plog2P is utilized to
provide a new upper bound H∗(Ap ,Aq)

(D/A) of central measure H(Ap ,Aq)(D/A). When comparing

Equations (7) and (17), we can surprisingly discover that H∗(Ap ,Aq)
(D/A) highly adheres to

HAp∪Aq(D/(A− {a})) = −
m

∑
j=1

|(Ap ∪ Aq) ∩ Dj|
|Ap ∪ Aq|

log2
|(Ap ∪ Aq) ∩ Dj|
|Ap ∪ Aq|

, (18)

which naturally comes from HCp∪Cq(D/(C− {c})) (Equation (7)). In fact,

H∗(Ap ,Aq)
(D/A) = HAp∪Aq(D/(A− {a})) (19)

when Ap 6= Aq; when

Aq = Ap =⇒
|Ap ∩ Dj|+ |Aq ∩ Dj|

|Ap|+ |Aq|
=
|Ap ∩ Dj|
|Ap|

≥
|Ap ∩ Dj|

2|Ap|
=
|(Ap ∪ Aq) ∩ Dj|
|Ap|+ |Aq|

,

where Ap ∪ Aq = Ap, there is a difference between two measures, and we obtain

H∗(Ap ,Ap)
(D/A) = −

m

∑
j=1

|Ap ∩ Dj|
|Ap|

log2
|Ap ∩ Dj|
|Ap|

6= −
m

∑
j=1

|Ap ∩ Dj|
2|Ap|

log2
|Ap ∩ Dj|

2|Ap|
= HAp∪Aq(D/(A− {a})). (20)

Thus far, H(Ap ,Aq)(D/A) has one lower bound H(Ap ,Aq)(D/A) and two upper bounds
H(Ap ,Aq)(D/A), H∗(Ap ,Aq)

(D/A). An interesting question naturally emerges, i.e., can we necessarily

determine the size relationship between H(Ap ,Aq)(D/A) and H∗(Ap ,Aq)
(D/A) to provide an exact

bound? Unfortunately, the answer is negative, and the later example and experiment will reveal the
size uncertainty. We simply provide a mechanism analysis. Let

Ppq =
|Ap ∩ Dj|+ |Aq ∩ Dj|

|Ap|+ |Aq|
,

and its numerator/denominator be the corresponding sum of numerators/denominators of Pp and Pq.
According to [64], we can obtain

Ppq ∈ [min(Pp, Pq), max(Pp, Pq)]

but Ppq produces an uncertainty location between Pp and Pq. In view of the information function
f (P) = −Plog2P and its maximum point ( 1

e , 1
eln2 ) (Figure 2),

f (Pp) + f (Pq), f (Ppq)
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never having the necessary size relationships, so

H(Ap ,Aq)(D/A) =
m

∑
j=1

( f (Pp) + f (Pq)), H∗(Ap ,Aq)
(D/A) =

m

∑
j=1

f (Ppq)

also never have the necessary size relationships. In summary, H(Ap ,Aq)(D/A) and H∗(Ap ,Aq)
(D/A)

adopt different views to become irrelevant and interactive, and they together restrict H(Ap ,Aq)(D/A).
With the addition of lower bound of H(Ap ,Aq)(D/A), there are in total three bounds to systematically
emerge. Similar to H(Ap ,Aq)(D/A) and its distributional Table 2, they can also be arranged in a table
with an n× n square symmetric matrix, i.e., Table 3, and thus Table 3 correspondingly restricts Table 2.

Finally, consider relevant granulation monotonicity/non-monotonicity. In fact, micro-bottom
and its double-granule conditional-entropies focus on only two condition granules and thus
never consider the condition granulation and further monotonicity/non-monotonicity. Moreover,
U/IND(A) � U/IND(B) implies the granulation refining and granule decomposition from A to B;
thus Ap, Aq ∈ U/IND(A) and Bp∗ , Bq∗ ∈ U/IND(B) exhibit complex correspondence and uncertainty
change, so we cannot mine fine relationships between H(Ap ,Aq)(D/A) and H(Bp∗ ,Bq∗ )

(D/B).
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Table 3. Three bounds of double-granule conditional-entropies at micro-bottom.

U/IND(A) A1 · · · Aq · · · An

A1
[H(A1,A1)(D/A)(D/A), H(A1,A1)(D/A)]

H∗(A1,A1)
(D/A)

· · ·
[H(A1,Aq)(D/A), H(A1,Aq)(D/A)]

H∗(A1,Aq)
(D/A)

· · ·
[H(A1,An)(D/A), H(A1,An)(D/A)]

H∗(A1,An)
(D/A)

...
...

. . .
...

. . .
...

Ap
[H(Ap ,A1)(D/A), H(Ap ,A1)(D/A)]

H∗(Ap ,A1)
(D/A)

· · ·
[H(Ap ,Aq)(D/A), H(Ap ,Aq)(D/A)]

H∗(Ap ,Aq)
(D/A)

· · ·
[H(Ap ,An)(D/A), H(Ap ,An)(D/A)]

H∗(Ap ,An)
(D/A)

...
...

. . .
...

. . .
...

An
[H(An ,A1)(D/A), H(An ,A1)(D/A)]

H∗
(An ,A1)

(D/A)
· · ·

[H(An ,Aq)(D/A), H(An ,Aq)(D/A)]

H∗(An ,Aq)
(D/A)

· · ·
[H(An ,An)(D/A), H(An ,An)(D/A)]

H∗
(An ,An)

(D/A)
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3.2. Double-Granule Conditional-Entropy at Meso-Middle

As analyzed above, double-granule conditional-entropies at micro-bottom never consider
the condition granulation to lack robust functions of uncertainty descriptions. In terms of
fixed decision granulation U/IND(D), H(Ap ,Aq)(D/A) at micro-bottom (Ap, Aq) involves only
two condition granules Ap, Aq and their interactive uncertainty information. For the function
promotion, the condition granulation U/IND(A) with systematic granules is worth introducing
based on double-granule conditional-entropy H(Ap ,Aq)(D/A). Thus, we will gradually strengthen
the knowledge granulation U/IND(A) to establish better double-granule conditional-entropies,
by virtue of three-level granular structures (Table 1). This subsection discusses double-granule
conditional-entropies at meso-middle

(Ap, U/IND(A) = {A1, · · · , An}) (p ∈ {1, · · · , n}).

Definition 5. At meso-middle (Ap, U/IND(A)), the double-granule conditional-entropy is defined by

H(Ap)(D/A) = −
n

∑
q=1

(
ωp

m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)

)
−

n

∑
q=1

(
ωq

m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq)

)

= −
n

∑
q=1

(
|Ap|

|Ap|+ |Aq|
m

∑
j=1

|Ap ∩ Dj|
|Ap|

log2
|Ap ∩ Dj|
|Ap|

)
−

n

∑
q=1

(
|Aq|

|Ap|+ |Aq|
m

∑
j=1

|Aq ∩ Dj|
|Aq|

log2
|Aq ∩ Dj|
|Aq|

)
.

(21)

Corollary 1. At meso-middle, the double-granule conditional-entropy has an analytic expression:

H(Ap)(D/A) = −
(

n

∑
q=1

|Ap|
|Ap|+ |Aq|

)(
m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)

)
−

n

∑
q=1

(
|Aq|

|Ap|+ |Aq|
m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq)

)
. (22)

Theorem 4. Double-granule conditional-entropies have a hierarchical integration from micro-bottom to
meso-middle, i.e.,

H(Ap)(D/A) =
n

∑
q=1

H(Ap ,Aq)(D/A) = H(Ap ,A1)
(D/A) + · · ·+ H(Ap ,Aq)(D/A) + · · ·+ H(Ap ,An)(D/A). (23)

By Definition 5 (Corollary 1) and Theorem 4, meso-middle’s measure H(Ap)(D/A) (which can
also be noted by H(Ap ,U/IND(A))(D/A)) hierarchically integrates double-granule conditional-entropies
H(Ap ,Aq)(D/A) by condition-granular summation on q = 1, · · · , n. Thus, H(Ap)(D/A) inherits
the features of double-granule and conditional-entropy, it considers a granule Ap and condition
granulation U/IND(A) to be at meso-middle (Ap, U/IND(A)), so it is called the double-granule
conditional-entropy at meso-middle. As a transition, H(Ap)(D/A) combines granule Ap and partition
U/IND(A) to describe decision classification U/IND(D) and its uncertainty, from the perspective of
conditional information.

Similar to and based on previous discussions on H(Ap ,Aq)(D/A) (Section 3.1), we will provide
corresponding properties of H(Ap)(D/A), including the number distribution, calculation algorithm,
three bounds, and granulation monotonicity/non-monotonicity.

Proposition 3. At meso-middle, double-granule conditional-entropies offer n values, i.e.,

H(Ap)(D/A) (p = 1, · · · , n).

In Proposition 3, double-granule conditional-entropies naturally exhibit number n to correspond
to n meso-middles. The n values can be stored in an n-dimension vector to be related to the
previous distributional Table 2. By enlarging Table 2, they are represented by the marginal vector
of the bottom or right in Table 4, and they exactly correspond to the relevant row/column sum
of micro-bottom’s information values. According to Equations (21) and (23), Algorithm 2 resorts
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to two “for” loops to effectively offer a double-granule conditional-entropy H(Ap)(D/A) for an
arbitrary granule Ap ∈ U/IND(A). In fact, the inner loop invokes Algorithm 1 to calculate an
arbitrary double-granule conditional-entropy at micro-bottom, while the outer loop integrates n
related bottomed measures to produce H(Ap)(D/A). Furthermore, we can achieve all n middle
entropies values by adding a “for” loop regarding p = 1, · · · , n.

Table 4. Marginal distribution of double-granule conditional-entropies at meso-middle and macro-top.

U/IND(A) A1 · · · Aq · · · An Meso-Middle
A1 H(A1,A1)(D/A) · · · H(A1,Aq)(D/A) · · · H(A1,An)(D/A) H(A1)(D/A)

...
...

. . .
...

. . .
...

...
Ap H(Ap ,A1)(D/A) · · · H(Ap ,Aq)(D/A) · · · H(Ap ,An)(D/A) H(Ap)(D/A)

...
...

. . .
...

. . .
...

...
An H(An ,A1)(D/A) · · · H(An ,Aq)(D/A) · · · H(An ,An)(D/A) H(An)(D/A)

Meso-Middle H(A1)(D/A) · · · H(Aq)(D/A) · · · H(An)(D/A) Macro-Top: H(D/A)

Algorithm 2: Calculation of double-granule conditional-entropy at meso-middle
Input: Decision table (U, C ∪ D), target subset A ⊆ C, and a special index p ∈ {1, · · · , n};
Output: Double-granule conditional-entropy H(Ap)(D/A) at meso-middle (Ap, U/IND(A)).

1: Compute U/IND(A) to obtain all condition classes Ai (i = 1, · · · , n) and a fixed granule
Ap ∈ U/IND(A).

2: Compute U/IND(D) to obtain all decision classes Dj (j = 1, · · · , m).
3: Let H(Ap)(D/A) = 0.
4: for q ∈ {1, .., n} do

5: Compute ωp, ωq.
6: Let Hp = 0, Hq = 0.
7: for j ∈ {1, .., m} do

8: Hp ← Hp − P(Dj/Ap)log2P(Dj/Ap),
Hq ← Hq − P(Dj/Aq)log2P(Dj/Aq).

9: end for
10: Obtain H(Ap ,Aq)(D/A) = ωp Hp + ωqHq.
11: H(Ap)(D/A)← H(Ap)(D/A) + H(Ap ,Aq)(D/A).
12: end for
13: return H(Ap)(D/A).

Theorem 5. At meso-middle, the double-granule conditional-entropy has a lower bound and two upper bounds.
Concretely,

H(Ap)(D/A) ∈ [H(Ap)(D/A), H(Ap)(D/A)],

H(Ap)(D/A) ≤ H∗(Ap)
(D/A),

(24)
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where

H(Ap)(D/A) =
n

∑
q=1

H(Ap ,Aq)(D/A) = −
n|Ap|
2|U|

m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)−
n

∑
q=1

(
|Aq|
2|U|

m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq)

)
,

H(Ap)(D/A) =
n

∑
q=1

H(Ap ,Aq)(D/A) = −n
m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)−
n

∑
q=1

m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq),

H∗(Ap)
(D/A) =

n

∑
q=1

H∗(Ap ,Aq)
(D/A) = −

n

∑
q=1

m

∑
j=1

|Ap ∩ Dj|+ |Aq ∩ Dj|
|Ap|+ |Aq|

log2
|Ap ∩ Dj|+ |Aq ∩ Dj|

|Ap|+ |Aq|
.

(25)

Theorem 5 naturally comes from Theorems 2–4. The three bounds in Equation (25) hierarchically
integrate previous three bounds at micro-bottom (Equations (11) and (17)) to correspondingly restrict
H(Ap)(D/A). They can be supplemented into distributional Table 4, and following Table 5 provides
the relevant part.

Table 5. Three bounds of double-granule conditional-entropies at meso-middle and macro-top.

U/IND(A) H(Ap)(D/A) H(Ap)(D/A) H(Ap)(D/A) H∗
(Ap)

(D/A)

A1 H(A1)(D/A) H(A1)(D/A) H(A1)(D/A) H∗(A1)
(D/A)

...
...

...
...

...
Ap H(Ap)(D/A) H(Ap)(D/A) H(Ap)(D/A) H∗(Ap)

(D/A)

...
...

...
...

...
An H(An)(D/A) H(An)(D/A) H(An)(D/A) H∗(An)

(D/A)

Macro-Top H(D/A) H(D/A) H(D/A) H∗(D/A)

At meso-middle, H(Ap)(D/A) introduces the condition granulation U/IND(A), but it still
needs condition granule Ap. Thus, we cannot make a positive assertion regarding granulation
monotonicity/non-monotonicity. In fact, U/IND(A) � U/IND(B) also implies chaos between
H(Ap)(D/A) and H(Bp∗ )

(D/B).

3.3. Double-Granule Conditional-Entropy at Macro-Top

As analyzed above, double-granule conditional-entropies at meso-middle consider the condition
granulation, but in an insufficient way, and H(Ap)(D/A) also depends on a single condition granule Ap.
For the thorough granulation and robust description, systematic measures H(Ap)(D/A) (p = 1, · · · , n)
can be further integrated to generate double-granule conditional-entropies at macro-top. Based on the
previous thought and result in Sections 3.1 and 3.2, this subsection further discusses double-granule
conditional-entropies at macro-top

(U/IND(A) = {Ap : p = 1, · · · , n}, U/IND(A) = {Aq : q = 1, · · · , n}),

which is given in Table 1. We will directly provide the relevant integration definition,
number distribution, calculation algorithm, three bounds, and we finally uncover an important
conclusion of granulation non-monotonicity.

Definition 6. At macro-top (U/IND(A), U/IND(A)), the double-granule conditional-entropy is defined by

H(D/A) = −
n

∑
p=1

n

∑
q=1

(
ωp

m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)

)
−

n

∑
p=1

n

∑
q=1

(
ωq

m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq)

)

= −
n

∑
p=1

n

∑
q=1

(
|Ap|

|Ap|+ |Aq|
m

∑
j=1

|Ap ∩ Dj|
|Ap|

log2
|Ap ∩ Dj|
|Ap|

)
−

n

∑
p=1

n

∑
q=1

(
|Aq|

|Ap|+ |Aq|
m

∑
j=1

|Aq ∩ Dj|
|Aq|

log2
|Aq ∩ Dj|
|Aq|

)
.

(26)
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Corollary 2. At macro-top, the double-granule conditional-entropy has an analytic expression:

H(D/A) = −
n

∑
p=1

(
n

∑
q=1

|Ap|
|Ap|+ |Aq|

)(
m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)

)
−

n

∑
p=1

n

∑
q=1

(
|Aq|

|Ap|+ |Aq|
m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq)

)
. (27)

Theorem 6. Double-granule conditional-entropies have a hierarchical integration from micro-bottom and
meso-middle to macro-top, i.e.,

H(D/A) =
n

∑
p=1

H(Ap)(D/A) = H(A1)
(D/A) + · · ·+ H(An)(D/A)

=
n

∑
p=1

n

∑
q=1

H(Ap ,Aq)(D/A) = H(A1,A1)
(D/A) + · · ·+ H(An ,An)(D/A).

(28)

By Definition 6 (Corollary 2) and Theorem 6, macro-top’s measure H(D/A) hierarchically
integrates meso-middle’s entropies H(Ap)(D/A) by a single summation on p = 1, · · · , n, and thus it
further hierarchically integrates micro-bottom’s entropies H(Ap ,Aq)(D/A) by double summations on
p, q = 1, · · · , n. As a result, H(D/A) inherits the features of double-granule and conditional-entropy.
It considers only conditional granulation U/IND(A) to be at macro-top (U/IND(A), U/IND(A)),
so it is called the double-granule conditional-entropy at macro-top. As an ultimate measure,
H(D/A) completely utilizes the U/IND(A) granulation information to effectively describe decision
classification U/IND(D) and its uncertainty, thus holding robust measurement functions for
knowledge granulation. Moreover, H(D/A) can be noted by H(U/IND(A),U/IND(A))(D/A)).

Proposition 4. At macro-top, the double-granule conditional-entropy offers only one value, i.e.,

H(D/A) at macro-top (U/IND(A), U/IND(A)).

In Proposition 4, the double-granule conditional-entropy naturally exhibits number 1 to
correspond to the sole macro-top. In fact, the first top entropy comes from the fusion of either n
middle entropies or n× n bottom entropies; thus, three-level entropies accord with three-level granular
structures (Table 1) from the quantitative and structural perspective, and they embody the hierarchical
integration. In particular, the sole conditional-entropy H(D/A) is put into the lower-right corner of
Table 4, thus corresponding to the summations of central n× n micro values and marginal n meso
values. According to Equations (26) and (28), Algorithm 3 resorts to three “for” loops to effectively
offer the double-granule conditional-entropy H(D/A). The two inner loops invoke Algorithm 2 to
calculate an arbitrary double-granule conditional-entropy at meso-middle (where the central loop
invokes Algorithm 1 to construct micro-bottom’s entropies), while the outer loop integrates n related
meso-middle’s information values to produce H(D/A). In other words, Algorithms 1–3 exhibit a kind
of hierarchical evolution based on circulation development, and thus they constitute a novel kind of
three-level algorithms.
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Algorithm 3: Calculation of double-granule conditional-entropy at macro-top
Input: Decision table (U, C ∪ D), target subset A ⊆ C;
Output: Double-granule conditional-entropy H(D/A) at Macro-Top (U/IND(A),

U/IND(A)).
1: Compute U/IND(A) to obtain all condition classes Ai (i = 1, · · · , n).
2: Compute U/IND(D) to obtain all decision classes Dj (j = 1, · · · , m).
3: Let H(D/A) = 0.
4: for p ∈ {1, .., n} do

5: Let H(Ap)(D/A) = 0.
6: for q ∈ {1, .., n} do

7: Compute ωp, ωq.
8: Let Hp = 0, Hq = 0.
9: for j ∈ {1, .., m} do

10: Hp ← Hp − P(Dj/Ap)log2P(Dj/Ap),
Hq ← Hq − P(Dj/Aq)log2P(Dj/Aq).

11: end for
12: Obtain H(Ap ,Aq)(D/A) = ωp Hp + ωq Hq.
13: H(Ap)(D/A)← H(Ap)(D/A) + H(Ap ,Aq)(D/A).
14: end for
15: H(D/A)← H(D/A) + H(Ap)(D/A).
16: end for
17: return H(D/A).

Theorem 7. At macro-top, the double-granule conditional-entropy has a lower bound and two upper
bounds. Concretely,

H(D/A) ∈ [H(D/A), H(D/A)],

H(D/A) ≤ H∗(D/A),
(29)

where

H(D/A) =
n

∑
p=1

H(Ap)(D/A) =
n

∑
p=1

n

∑
q=1

H(Ap ,Aq)(D/A)

= −n
n

∑
p=1

(
|Ap|
2|U|

m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)

)
− n

n

∑
q=1

(
|Aq|
2|U|

m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq)

)

= −n
n

∑
p=1

(
|Ap|
|U|

m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)

)
,

(30)

H(D/A) =
n

∑
p=1

H(Ap)(D/A) =
n

∑
p=1

n

∑
q=1

H(Ap ,Aq)(D/A)

= −n
n

∑
p=1

m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap)− n
n

∑
q=1

m

∑
j=1

P(Dj/Aq)log2P(Dj/Aq)

= −2n
n

∑
p=1

m

∑
j=1

P(Dj/Ap)log2P(Dj/Ap),

(31)



Entropy 2019, 21, 657 18 of 31

H∗(D/A) =
n

∑
p=1

H∗(Ap)
(D/A) =

n

∑
p=1

n

∑
q=1

H∗(Ap ,Aq)
(D/A)

= −
n

∑
p=1

n

∑
q=1

m

∑
j=1

|Ap ∩ Dj|+ |Aq ∩ Dj|
|Ap|+ |Aq|

log2
|Ap ∩ Dj|+ |Aq ∩ Dj|

|Ap|+ |Aq|
.

(32)

Theorem 7 naturally comes from Theorems 2–6. The three bounds in Equations (30)–(32)
hierarchically integrate previous three bounds at meso-middle and micro-bottom, and thus they
become three new uncertainty measures at macro-top (U/IND(A), U/IND(A)) to correspondingly
restrict H(D/A). They are supplemented into the bottom in the previous bound table: Table 5.

Theorem 8. At macro-top, the double-granule conditional-entropy has granulation non-monotonicity. That is,
U/IND(A) � U/IND(B) cannot necessarily achieve

either H(D/A) ≥ H(D/B) or H(D/A) ≤ H(D/B),

and both cases can practically exist. In addition, the matched double bounds H(D/A) and H(D/A)

(Equations (30) and (31)) also have the granulation non-monotonicity, and they cannot theoretically acquire

either H(D/A) ≥ H(D/B) or H(D/A) ≤ H(D/B),
either H(D/A) ≥ H(D/B) or H(D/A) ≤ H(D/B).

At macro-top, the double-granule conditional-entropy completely breaks away from the condition
granule dependence to establish the condition granulation description, so it becomes a powerful
type of information measure for knowledge-based uncertainty representation. In terms of condition
granulation, its non-monotonicity is finally revealed in Theorem 8, and the relevant evidence will
be provided in the later example and experiment. Moreover, this fundamental non-monotonicity
conclusion embodies information uncertainty, and it can be induced or explained by the previous
complexity mechanism at micro-bottom and meso-middle. Based on macro-top and its granulation
mechanism, the related three bounds (Equations (30)–(32)) and their monotonicity/non-monotonicity
can be practically observed, and thus we also obtain the granulation non-monotonicity for H(D/A)

and H(D/A); however, the case of upper bound H∗(D/A) becomes a remaining problem.

4. Decision Table Example

In this section, the above theoretical constructions and properties are illustrated by a decision table
example. By extracting a part of VOTING data set (which comes from UCI database [65]), we provide
a practical decision table (U, C ∪ D) in Table 6 with

|U| = 8, |C| = 11, |D| = 1.

Table 6. A decision table.

U c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 D

x1 2 2 4 4 4 3 4 4 4 2 4 1
x2 2 2 4 4 2 2 4 4 4 2 3 1
x3 3 4 3 4 2 4 2 4 4 2 2 0
x4 2 4 2 3 2 4 2 4 2 2 4 0
x5 4 4 2 4 2 4 3 4 4 4 3 0
x6 2 4 2 4 2 2 2 4 4 4 4 0
x7 2 2 4 4 2 2 2 3 4 4 2 0
x8 2 2 4 4 2 2 2 4 4 3 4 1
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According to this decision table,

U/IND(D) = {D1 = {x1, x2, x8}, D2 = {x3, x4, x5, x6, x7}}

provides m = |U/IND(D)| = 2. As an example, A = {c1, c2, c3, c4, c5} is chosen to generate condition
granulation

U/IND(A) = {A1 = {x1}, A2 = {x2, x7, x8}, A3 = {x3}, A4 = {x4}, A5 = {x5}, A6 = {x6}},

where n = |U/IND(A)| = 6. By virtue of three-level granular structures (Table 1), double-granule
conditional-entropies and their three bounds are calculated by relevant algorithms and definitions, and
they are compactly listed in Tables 7 and 8, respectively. The measures at micro-bottom, meso-middle,
macro-top have numbers 36, 6, 1, respectively, and they correspond to the central 6× 6 matrix, marginal
6-dimensional vector, lower-right-corner 1 digit, respectively. In part, we provide some processes of
entropy calculation as follows.

−P(D1/A1)log2P(D1/A1) = 0,−P(D2/A1)log2P(D2/A1) = 0,

−P(D1/A2)log2P(D1/A2) = 0.3900,−P(D2/A2)log2P(D2/A2) = 0.5283,

H(A1,A1)
(D/A) =

1
1 + 1

(0 + 0) +
1

1 + 1
(0 + 0) = 0,

H(A1,A2)
(D/A) =

1
1 + 3

(0 + 0) +
3

1 + 3
(0.3900 + 0.5283) = 0.6887;

H(A1)
(D/A) = H(A1,A1)

(D/A) + H(A1,A2)
(D/A) + · · ·+ H(A1,A6)

(D/A)

= 0 + 0.6887 + 0 + 0 + 0 + 0 = 0.6887;

H(D/A) = H(A1)
(D/A) + H(A2)

(D/A) + · · ·+ H(A6)
(D/A)

= 0.6887 + 4.3619 + 0.6887 + 0.6887 + 0.6887 + 0.6887 = 7.8055.

(33)

By Tables 7 and 8, we can make relevant verification analyses. First, entropies and bounds
naturally present hierarchical integration relationships from micro-bottom to meso-middle to
macro-top. Indeed, conditional-entropies are correspondingly restricted by three bounds. Moreover,
the two types of upper bounds exactly have no necessary size relationships, and a part but powerful
proof is provided as follows: H(A1,A2)

(D/A) = 0.9183 > 0.8113 = H∗(A1,A2)
(D/A),

H(A1,A3)
(D/A) = 0 < 1 = H∗(A1,A3)

(D/A);

 H(A1)
(D/A) = 0.9183 < 4.8113 = H∗(A1)

(D/A),

H(A2)
(D/A) = 6.4281 > 5.7296 = H∗(A2)

(D/A).
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Table 7. Information values of double-granule conditional-entropies in the example.

U A1 A2 A3 A4 A5 A6 Meso-Middle
A1 0 0.6887 0 0 0 0 0.6887
A2 0.6887 0.9183 0.6887 0.6887 0.6887 0.6887 4.3619
A3 0 0.6887 0 0 0 0 0.6887
A4 0 0.6887 0 0 0 0 0.6887
A5 0 0.6887 0 0 0 0 0.6887
A6 0 0.6887 0 0 0 0 0.6887

Meso-Middle 0.6887 4.3619 0.6887 0.6887 0.6887 0.6887 Macro-Top: 7.8055

Table 8. Three bounds of double-granule conditional-entropies in the example.

U A1 A2 A3 A4 A5 A6 Meso-Middle

A1
[0, 0]

0
[0.1722, 0.9183]

0.8113
[0, 0]

1
[0, 0]

1
[0, 0]

1
[0, 0]

1
[0.1722, 0.9183]

4.8113

A2
[0.1722, 0.9183]

0.8113
[0.3444, 1.8366]

0.9183
[0.1722, 0.9183]

1
[0.1722, 0.9183]

1
[0.1722, 0.9183]

1
[0.1722, 0.9183]

1
[1.2053, 6.4281]

5.7296

A3
[0, 0]

1
[0.1722, 0.9183]

1
[0, 0]

0
[0, 0]

0
[0, 0]

0
[0, 0]

0
[0.1722, 0.9183]

2.0000

A4
[0, 0]

1
[0.1722, 0.9183]

1
[0, 0]

0
[0, 0]

0
[0, 0]

0
[0, 0]

0
[0.1722, 0.9183]

2.0000

A5
[0, 0]

1
[0.1722, 0.9183]

1
[0, 0]

0
[0, 0]

0
[0, 0]

0
[0, 0]

0
[0.1722, 0.9183]

2.0000

A6
[0, 0]

1
[0.1722, 0.9183]

1
[0, 0]

0
[0, 0]

0
[0, 0]

0
[0, 0]

0
[0.1722, 0.9183]

2.0000

Meso-
Middle

[0.1722, 0.9183]
4.8113

[1.2053, 6.4281]
5.7296

[0.1722, 0.9183]
2.0000

[0.1722, 0.9183]
2.0000

[0.1722, 0.9183]
2.0000

[0.1722, 0.9183]
2.0000

Macro-Top:
[2.0662, 11.0196]

18.5049
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Finally, the granulation non-monotonicity at macro-top (Theorem 8) is verified. For this, we chose
a natural attribute-addition chain:

{c1} ⊂ {c1, c2} ⊂ · · · ⊂ {c1, c2, · · · , c11}.

CAk (k ∈ {1, 2, · · · , 11}) denotes the attribute subset in the chain, and its granulation is represented by

U/IND(CAk) = {CAk,1, · · · , CAk,p, · · · , CAk,|U/IND(CAk)|}.

In other words, CAk,p corresponds to the kth chain element CAk to represent the pth
condition granule in partition U/IND(CAk). According to the subset chain, Table 9 provides
double-granule conditional-entropies, including both part values at micro-bottom (CAk,p, CAk,q),
meso-middle (CAk,p, U/IND(CAk)) and all values (as well as the three bounds) at macro-top
(U/IND(CAk), U/IND(CAk)). As a supporting detail, previous Tables 7 and 8 actually embrace the
chain element CA5 and its partition U/IND(CA5) = {{x1}, {x2, x7, x8}, {x3}, {x4}, {x5}, {x6}}, while
double-granule conditional-entropies regarding attribute subset CA2 = {c1, c2} and corresponding
condition granulation

U/IND(CA2) = {CA2,1 = {x1, x2, x7, x8}, CA2,2 = {x3}, CA2,3 = {x4, x6}, CA2,4 = {x5}}

are supplemented in Table 10 for better observation and illustration.

(1) Since different chain subsets may have different equivalence partitions and granule numbers, the
measures at micro-bottom and meso-middle consider condition granules to have a distinctive
number and difficult correspondence. Table 9 focuses on the small and the same granule
number, but relevant granules have different connotations. For example, the granules of the
first one —CAk,1 (k = 1, 2, · · · , 11)—may be different. Thus, we cannot acquire the so-called
granulation non-monotonicity assertion because of granulation incompletion, although the values
at micro-bottom and meso-middle actually exhibit a kind of non-monotonic change in Table 9.

(2) In contrast, macro-top offers the complete condition granulation, so we can effectively focus on
value monotonicity/non-monotonicity for both double-granule conditional-entropies and their
three bounds. Observing the bottom part of Table 9 in the enlargement chain direction, we can
discover that the three types of information measures are all non-monotonic, i.e.,

H(D/CAk), H(D/CAk), H(D/CAk) (except H∗(D/CAk)).

More vividly, the entropy and its three bounds regarding the chain are depicted in Figure 3, so
the related granulation non-monotonicity becomes clearer. For example, the macro entropy value
H(D/CAk) first increases and then decreases in the addition chain direction. Moreover, Table 9
and Figure 3 reflect the restriction properties of three bounds.
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Table 9. Double-granule conditional-entropies based on an attribute-enlargement chain in the example.

Level Measure CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CA10 CA11

Micro-
Bottom

H(CAk,1,CAk,1)(D/CAk,)

H(CAk,1,CAk,2)(D/CAk)

H(CAk,1,CAk,3)(D/CAk)

H(CAk,2,CAk,2)(D/CAk)

H(CAk,2,CAk,3)(D/CAk)

1.0000
0.8571
0.8571

0
0

0.8113
0.6490
0.5409

0
0

0.8113
0.6490
0.5409

0
0

0.8113
0.6490
0.6490

0
0

0
0.6887

0
0.9183
0.6887

0
0.6887

0
0.9183
0.6887

0
1
0
0
0

0
1
0
0
0

0
1
0
0
0

0
1
0
0
0

0
1
0
0
0

Meso-
Middle

H(CAk,1)(D/CAk)

H(CAk,2)(D/CAk)

H(CAk,3)(D/CAk)

2.7143
0.8571
0.8571

2.6502
0.6490
0.5409

2.6502
0.6490
0.5409

3.4074
0.6490
0.6490

0.6887
4.3619
0.6887

0.6887
4.3619
0.6887

0.6667
0.6667
0.6667

0
0
0

0
0
0

0
0
0

0
0
0

Macro-
Top

H(D/CAk)
H(D/CAk)
H(D/CAk)
H∗(D/CAk)

4.4286
2.2500
6.0000
4.9409

4.4891
1.6226
6.4902
6.6951

4.4891
1.6226
6.4902
6.6951

6.0035
2.0282
8.1128
8.5789

7.8055
2.0282
11.0196
18.5409

7.8055
2.0282
11.0196
18.5409

9.0000
1.7500

14.0000
28.0196

0
0
0

30

0
0
0

30

0
0
0

30

0
0
0

30

Table 10. Double-granule conditional-entropies regarding CA2 = {c1, c2} in the example.

U CA2,1 CA2,2 CA2,3 CA2,4 Meso-Middle
CA2,1 0.8113 0.6490 0.5409 0.6490 2.6502
CA2,2 0.6490 0 0 0 0.6490
CA2,3 0.5409 0 0 0 0.5409
CA2,4 0.6490 0 0 0 0.6490

Meso-Middle 2.6502 0.6490 0.5409 0.6490 Macro-Top: 4.4891
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Figure 3. Macro-top’s double-granule conditional-entropies and their three bounds based on an
attribute-enlargement chain in the example.

5. Data Experiments

In this section, the above theoretical results and their effectiveness are verified by data experiments.
The new measures are mainly suitable for categorical (or nominal) data, which are usually used in the
traditional rough set theory, and thus we adopt three relevant data sets from the UCI Machine Learning
Repository [65], whose concrete descriptions on decision table (U, C ∪ D) are given in Table 11.

Table 11. Three UCI data sets.

Label Name |U| |C| |U/IND(C)| |D| |U/IND(D)|
(1) VOTING 435 16 342 1 2
(2) SPECT 187 22 169 1 2
(3) Tic-Tac-Toe 958 9 958 1 2

Similar to the above example, we also adopt the attribute-addition chain

CA1 = {c1} ⊂ · · · ⊂ CA|C| = {c1, c2, · · · c|C|} (34)

and its relevant symbol such as

U/IND(CAk) = {CAk,1, · · · , CAk,p, · · · , CAk,|U/IND(CAk)|}.

Note that this attribute-subset sequence (Equation (34)) can deeply and typically probe the hierarchical
knowledge-granulation within a framework of the complete lattice (2C,⊆). As a representative
manifestation, we provide two typical results regarding the first chain element CA1 = {c1} and the
last one CA|C| = C.

(1) Regarding VOTING, {c1} and C induce three and 342 granules, respectively, and relevant
double-granule conditional-entropies and three bounds are provided in Tables 12 and 13,
respectively.

(2) Regarding SPECT, {c1} and C produce two and 169 granules, respectively, and relevant three-level
measures and three bounds are provided in Tables 14 and 15, respectively.

(3) Regarding Tic-Tac-Toe, {c1} and C determine three and 958 granules, respectively, and relevant
entropies and bounds are provided in Tables 16 and 17, respectively.
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Table 12. Double-granule conditional-entropies in the VOTING data set.

U/IND(CA1) CA1,1 CA1,2 CA1,3 Meso-Middle · · · U/IND(CA16) CA16,1 · · · CA16,342 Meso-Middle
CA1,1 0.9867 0.9782 0.8369 2.8018 · · · CA16,1 0 · · · 0 0

CA1,2 0.9782 0.8113 0.6578 2.4473 · · ·
...

...
. . .

...
...

CA1,3 0.8369 0.6578 0.6479 2.1427 · · · CA16,342 0 · · · 0 0

Meso-Middle 2.8018 2.4473 2.1427
Macro-Top:

7.3918 · · · Meso-Middle 0 · · · 0
Macro-Top:

0

Table 13. Three information bounds in the VOTING data set.

U/IND(CA1) CA1,1 CA1,2 CA1,3 Meso-Middle · · · U/IND(CA16) CA16,1 · · · CA16,342 Meso-Middle

CA1,1

[1.0706,
1.9734]
0.9867

[0.5577,
1.7980]
0.9921

[0.8139,
1.6346]
0.9649

[2.4422,
5.4060]
2.9436

· · · CA16,1
[0, 0]

0 · · · [0, 0]
0

[0, 0]
221.3143

CA1,2

[0.5577,
1.7980]
0.9921

[0.0448,
1.6226]
0.8113

[0.3009,
1.4592]
0.6596

[0.9034,
4.8798]
2.4630

...
...

...
. . .

...
...

CA1,3

[0.8139,
1.6346]
0.9649

[0.3009,
1.4592]
0.6596

[0.5571,
1.2959]
0.6479

[1.6719,
4.3898]
2.2724

· · · CA16,342
[0, 0]

0 · · · [0, 0]
0

[0, 0]
221.3143

Meso-
Middle

[2.4422,
5.4060]
2.9436

[0.9034,
4.8798]
2.4630

[1.6719,
4.3898]
2.2724

Macro-Top:
[5.0174,
14.6755]
7.6790

· · · Meso-
Middle

[0, 0]
221.3143 · · · [0, 0]

221.3143

Macro-Top:
[0, 0]
50132
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Table 14. Double-granule conditional-entropies in the SPECT data set.

U/IND(CA1) CA1,1 CA1,2 Meso-Middle · · · U/IND(CA22) CA22,1 · · · CA22,169 Meso-Middle
CA1,1 0.2108 0.3815 0.5924 · · · CA22,1 0 · · · 0 1.5335

...
...

. . .
...

...
CA1,2 0.3815 0.5399 0.9215 · · · CA22,169 0 · · · 0 1.5335

Meso-Middle 0.5924 0.9215
Macro-Top:

1.5139 · · · Meso-Middle 1.5335 · · · 1.5335
Macro-Top:

513.0879

Table 15. Three information bounds in the SPECT data set.

U/IND(CA1) CA1,1 CA1,2 Meso-Middle · · · U/IND(CA22) CA22,1 · · · CA22,169 Meso-Middle

CA1,2

[0.1015,
0.4217]
0.2109

[0.1908,
0.7508]
0.4030

[0.2922,
1.1725]
0.6138

· · · CA22,1
[0, 0]

0 · · · [0, 0]
0

[0.0332,
1.9457]
8.8982

...
...

...
. . .

...
...

CA1,2

[0.1908,
0.7508]
0.4030

[0.2801,
1.0799]
0.5400

[0.4708,
1.8306]
0.9429

· · · CA22,169
[0, 0]

0 · · · [0, 0]
0

[0.0332,
1.9457]

161.2140

Meso-
Middle

[0.2922,
1.1725]
0.6138

[0.4708,
1.8306]
0.9429

Macro-Top:
[0.7631,
14.6755]
1.5566

· · · Meso-
Middle

[0.0332,
1.9457]
8.8982

· · ·
[0.0332,
1.9457]

161.2140

Macro-Top:
[11.2085,
657.6332]

2867
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Table 16. Double-granule conditional-entropies in the Tic-Tac-Toe data set.

U/IND(CA1) CA1,1 CA1,2 CA1,3 Meso-Middle · · · U/IND(CA9) CA9,1 · · · CA9,958 Meso-Middle
CA1,1 0.8742 0.9248 0.8794 2.6784 · · · CA9,1 0 · · · 0 0

CA1,2 0.9248 0.9881 0.9509 2.8638 · · ·
...

...
. . .

...
...

CA1,3 0.8794 0.9509 0.8901 2.7203 · · · CA9,958 0 · · · 0 0

Meso-Middle 2.6784 2.8638 2.7203
Macro-Top:

8.2625 · · · Meso-Middle 0 · · · 0
Macro-Top:

0

Table 17. Three information bounds in the Tic-Tac-Toe data set.

U/IND(CA1) CA1,1 CA1,2 CA1,3 Meso-Middle · · · U/IND(CA9) CA9,1 · · · CA9,958 Meso-Middle

CA1,1

[0.3814,
1.7483]
0.8741

[0.3635,
1.8622]
0.9404

[0.2859,
1.7642]
0.8796

[1.0308,
5.3748]
2.6940

· · · CA9,1
[0, 0]

0 · · · [0, 0]
0

[0, 0]
332

CA1,2

[0.3635,
1.8622]
0.9404

[0.3455,
1.9762]
0.9881

[0.2680,
1.8781]
0.9628

[0.9770,
5.7165]
2.8913

...
...

...
. . .

...
...

CA1,3

[0.2859,
1.7642]
0.8796

[0.2680,
1.8781]
0.9628

[0.1905,
1.7801]
0.8900

[0.7444,
5.4224]
2.7324

· · · CA9,958
[0, 0]

0 · · · [0, 0]
0

[0, 0]
626

Meso-
Middle

[1.0308,
5.3748]
2.6940

[0.9770,
5.7165]
2.8913

[0.7444,
5.4224]
2.7342

Macro-Top:
[2.7522,
16.5138]
8.3178

· · · Meso-
Middle

[0, 0]
332 · · · [0, 0]

626

Macro-Top:
[0, 0]

415664
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From the perspective of macro-top, double-granule conditional-entropies and their three information
bounds based on the attribute-enlargement chain are finally summarized in Figure 4. These tables and
figures can be utilized to effectively verify all previous conclusions, including the hierarchy, algorithm,
restriction, and non-monotonicity. In particular, double-granule conditional-entropies are confined by
three bounds, thus supporting the boundedness (Theorems 2, 3, 5 and 7); moreover, the entropies and their
matched double-bounds fluctuate up and down, thus proving relevant granulation non-monotonicity
(Theorem 8).

(a) (VOTING) Entropies and bounds (b) (VOTING) Entropies

(c) (Tic-Tac-Toe) Entropies and bounds (d) (Tic-Tac-Toe) Entropies

(e) (SPECT) Entropies and bounds (f) (SPECT) Entropies

Figure 4. Macro-top’s double-granule conditional-entropies and their three information bounds based
on an attribute-enlargement chain in data experiments.

6. Conclusions

The information measures implement fundamental uncertainty measurement in rough set
theory and granular computing. The local conditional-entropies have the second-order feature,
but they are limited to micro-bottom for describing discernibility matrix and reduction core [18].
In this paper, double-granule conditional-entropies achieve corresponding improvements of
hierarchical/conditional granulation, and thus they become broader measures with uncertainty
representation and information processing. They focus more on the double-granule interaction
rather than granule-union locality, which is used in local conditional-entropies [18]. This strategy
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directly utilizes the second-order mechanism to implement more systematic and robust uncertainty
measurements, especially when compared to the current mainstream of first-order information
measures. In our studies, double-granule conditional-entropies and their hierarchies, granulation,
algorithms, bounds, and non-monotonicity are acquired and verified at three-level granular structures
(i.e., micro-bottom, meso-middle, macro-top), and these results underlie both the efficiency in
information processing and effectiveness in knowledge-based data analyses. Furthermore, their future
developments and in-depth applications can be explored as follows.

(1) In contrast to the relevant technology in [56], the hierarchical granulation of three-level granular
structures focuses on the conditional granulation and relevant number, and it can be generalized
for granular computing.

(2) The double-granule conditional-entropies and their three bounds become new types of
information measures with the second-order feature. In contrast to the traditional first-order
entropy system, their description power and application advantage need further practical
verification.

(3) The double-granule conditional-entropies have three-restrictive bounds and granulation
non-monotonicity, which have been experimentally verified by a granulation-hierarchical
sequence (i.e., Equation (34)). These results are worth deeply utilizing in uncertainty measurement
and data mining.

(4) The double-granule conditional-entropies originate from the local conditional-entropies to carry
a potential and distinctive advantage of discernibility matrix representation, and they also have
the complete conditional granulation to have application prospects in knowledge reasoning or
acquisition. Both their relationships with the discernibility matrix and their functions on attribute
reduction need be deeply researched by promoting the previous studies in [18].
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