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Abstract: We calculate the multifractal spectra of heartbeat RR-interval time series (tachograms) of
healthy subjects and patients with congestive heart failure (CHF). From these time series, we obtained
new subseries of 6 h durations when healthy persons and patients were asleep and awake respectively.
For each time series and subseries, we worked out the multifractal spectra with the Chhabra and
Jensen method and found that their graphs have different shapes for CHF patients and healthy persons.
We suggest to measure two parameters: the curvature around the maximum and the symmetry for
all these multifractal spectra graphs, because these parameters were different for healthy and CHF
subjects. Multifractal spectra of healthy subjects tend to be right skewed especially when the subjects
are asleep and the curvature around the maximum is small compared with the curvature around the
maximum of the CHF multifractal spectra; that is, the spectra of patients tend to be more pointed
around the maximum. In CHF patients, we also have encountered differences in the curvature of the
multifractal spectra depending on their respective New York Heart Association (NYHA) index.

Keywords: multifractal; Chhabra and Jensen method; curvature; electrocardiogram; RR tachogram;
congestive heart failure; NYHA index

1. Introduction

A complex system has many components that interact with each other; it exhibits collective
behavior and, due to the exchange of energy or information with the environment, can modify
its internal structure and patterns of activity [1], but the interaction with environment is not the
only mechanism that leads to complexity, for instance, it was shown both trough data analysis and
modelling that the scaling and nonlinear multifractal features are intrinsically generated by the
feedback mechanisms of cardiac control that act over a range of different time scales [2–4]. When we
continuously measure the variables that describe a complex system, we usually obtain time series also
with complex behaviour. Very often, these time series have monofractal or multifractal behaviour.
Monofractal signals are more homogeneous that multifractal signals and they can be characterized by a
single global scaling exponent, while multifractal signals require many exponents to fully characterize
their scaling properties and they are intrinsically more complex and inhomogeneous [5–10].

After that the first findings of multifractality in physiological dynamics were reported by
Ivanov et al. [11,12], multifractal analysis has been extensively used to study time series obtained from
physiological systems [6,13–15], and many other kinds of complex systems with emergent properties
such as urban systems [10], fuel mixtures in internal combustion engines [16], critical fluctuations in

Entropy 2019, 21, 581; doi:10.3390/e21060581 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-9872-8304
http://www.mdpi.com/1099-4300/21/6/581?type=check_update&version=1
http://dx.doi.org/10.3390/e21060581
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 581 2 of 17

magnetic-field driven random systems [17], the self-organized social dynamics [18] and the fluctuations
of stock market data [1], to mention a few. For instance, beat-to-beat RR interval time series are
inhomogeneous and non-stationary; they fluctuate in an irregular and complex manner, suggesting that
different parts of the signal have different scaling properties [8,11–13,19,20], including scaling differences
associated to sleep-wake, sleep stages and even to circadian phases [21–25]. The multifractality of the
heartbeat time series allows us to quantify the greater complexity of healthy dynamics compared to
pathological conditions [8,11,15,20,26,27]. Multifractal analysis reveals a new level of complexity by
the broad range of exponents necessary to characterize the healthy dynamics [28]. Additionally, fractal
analysis (mono-and-multi-) can be used to test stochastic models that grossly reproduce the dynamics
of beat-to-beat cardiac cycles [1,2,20,29,30].

Currently, heart diseases are becoming more common. These are a risk because if heart disease
does not receive timely treatment, people would have serious complications. One of these complications
is called CHF. The CHF occurs when the heart is weakened by diseases or conditions that damage the
heart muscle [31–33]. The NYHA (New York Heart Association) classification is commonly used by
cardiologists as a method to classify the severity of CHF. This classification has four values. NYHA
I-patients do not have limitation of physical activity. NYHA II-patients have slight limitation of
physical activity. They feel fatigue, palpitations, dyspnea (shortness of breath) when they do physical
activity. NYHA III-patients have marked limitation of physical activity, i.e., less than ordinary activity
causes fatigue, palpitations, or dyspnea. NYHA IV-patients have symptoms of heart failure at rest
and when they do physical activity, the discomfort increases [31,32]. Heart rate data of subjects with
a pathological condition, as CHF, show a clear loss of multifractality, indicating a near monofractal
behaviour [8,11,15,20].

In this article, we apply the multifractal methodology to the analysis of RR tachograms of healthy
people and patients with CHF (classification NYHA I to NYHA IV). We calculate multifractal spectra
and observe in the resulting graphs that they tend to have a peak at the maximum in the case of CHF
patients and that usually multifractal spectra of healthy subjects are right skewed while the majority
of CHF spectra are left skewed or almost symmetric. For these reasons, we suggest to measuring
the curvature around the maximum of the spectrum graphs and to characterize the symmetry of
multifractal spectrum. These new parameters help us to differentiate time series of healthy subjects
and CHF patients, but the most important fact is that these parameters give us information of the
health status of CHF patients. The article is organized as follows: In Section 2 we introduce the used
methods; in Section 3 we describe the databases; in Section 4 we present and discuss the results of our
study and finally in Section 5, we present our conclusions.

2. Methods

2.1. The Multifractal Spectrum Width and Symmetry

To calculate the multifractal spectra, we use the method proposed by Chhabra and Jensen [34].
For completeness reasons, here, we present a summary of this method. We can consider time series as
a singular measure P(x) if we normalize it. We obtain the fractal dimension f(α) covering the measure
with boxes of length L = 2−n and computing the probabilities Pi(L) in each of the boxes. We then
construct a one-parameter family of normalized measures µi(q, L), where the probabilities in the boxes
of size L are [34]

µi(q, L) =
[Pi(L)]

q∑
i[Pi(L)]

q (1)

The fractal dimension is

f (q) = lim
L→0

∑
µi(q, L)log[µi(q, L)]

logL
, (2)
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and the singularity strength is

α(q) = lim
L→0

∑
µi(q, L)log[Pi(L)]

logL
(3)

Equations (2) and (3) provide a relationship between the dimension f (α) and the singularity
strength α as implicit functions of the parameter q. To obtain multifractal spectra, for each q value,
we evaluate the numerators on the right hand sides of the Equations (2) and (3), for decreasing box
sizes (increasing n) and we plot these results versus log L. The obtained graphs are straight lines and
we calculate the slopes and so we obtain a pair of coordinates f(q) and α(q) for each q. In this way we
built the multifractal spectra.

The parameter q provides a microscope for exploring different regions of the singular measure.
For q > 1, µ(q) amplifies the more singular regions of P, while for q < 1 it accentuates the less singular
regions, and for q = 1 the measure µ(1) replicates the original measure [34], but from the point of
view of the physiological interpretation and following to Amaral et al. [4] the q > 1 part of spectrum
reflects singularities associated with large amplitude fluctuations in heart beat intervals, while the
q < 1 part of the multifractal spectrum reflects singularities related to small amplitude fluctuations.
This is directly related to neuro-autonomic regulation: during sleep the parasympathetic tone (PS)
is dominant, which leads to large amplitude fluctuation in heart beat intervals; during wake the
sympathetic tone (SS) is dominant, and heart beat dynamics exhibit much smaller fluctuations [4].

We used the Chhabra and Jensen method to obtain the multifractal spectra because this method
calculates directly f(α) and it does not use the Legendre transforms [6,34]. The multifractal spectrum is
a downward concave curve that gives us information about time series of complex systems.

We characterize the multifractal spectrum by its width and asymmetry. ∆α = αmax − αmin is a
measure of how wide the range of fractal exponents found in the signal; and, thus, it measures the
time series degree of multifractality [8,11,12,19,20,26,27]. α0 corresponds to the maximum of f (α).
The asymmetry depends on αmax, αmin and α0. We define ∆αright = αmax − α0 and ∆αle f t = α0 − αmin.
If ∆αright = ∆αle f t, the spectrum is symmetric, and if ∆αright , ∆αle f t, it is asymmetric. If ∆αright > ∆αle f t,
the spectrum is biased to the right and if ∆αright < ∆αle f t, the spectrum is biased to the left.

We introduce the symmetry parameter r, to better quantify the symmetry,

r =
αmax − α0

α0 − αmin
=

∆αright

∆αle f t
(4)

If r = 1 then the spectrum is symmetric, if r > 1 the spectrum is right skewed and if r < 1 then
it is left skewed. If r << 1, the multifractal spectrum is sharply skewed towards the left. If r >> 1,
the multifractal spectrum is sharply skewed towards the right (Figure 1).
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The change in shape of the curve for the CHF group may provide insights into the alteration of
the cardiac control mechanisms due to this pathology and gives information about the morphology of
the multifractal spectrum around the maximum.
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2.2. Curvature

At any point of the graph of a function y = f (x), the curvature can be calculated using the
relationship [35,36]:

K =

∣∣∣∣ d2 y
dx2

∣∣∣∣[
1 +

(
dy
dx

)2
]3/2

(5)

As illustrated in Figure 2, at point C the curvature of the graph of the function is greater than at
point P, the circles shown are called circles of curvature and ρ is the radius of such circles and is called
the radius of curvature, the curvature is calculated as K = 1/ρ. At a point where the function is almost
flat, the curvature is practically zero and at points where the function has almost a peak the curvature
will be very large.
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The curvature around point P is smaller than the curvature around point C.

In the case of multifractal spectra, around the maxima we can expect great values of curvature and
the curvature must be close to zero for large values of

∣∣∣q∣∣∣. Recently, the curvature of the multifractal
spectrum was used to estimate to the degree of fractality of the temporal evolution of London’s street
network from 1780 to 2010 [10].

3. Databases

Heartbeat time series were analysed for healthy people and CHF patients. The databases were
obtained from the Physionet website [37]; these are 24 h recordings of heartbeat time series, taken by
ambulatory recorders (Holter).

We downloaded three different databases. The first database is called Normal Sinus Rhythm (nsr)
RR Interval Database it has data from 54 healthy subjects (30 men, age 28–76, and 24 women, age 58–73).
The second and third databases have CHF patients. The second database is called Congestive Heart
Failure RR Interval Database and contains information of 29 CHF patients (34–79 years) including
information of their NYHA classification (class I-III). The third database is called the BIDMC CHF
Database and it contains 15 patients (11 men of 22–71 years and four women 54–63 years) with severe
CHF (NYHA class III-IV). That is, we have 44 CHF patients. We analysed these 24 h-time series and
then we obtained two segments of six hours from each time series: one when the subjects were asleep
and the other when the subjects were awake. However, we only analysed 40 of these 6 h CHF segments
when the patients are asleep and 38 when they are awake. The cases of 6 h CHF not considered, are not
reported because it was not possible to have continuous periods of 6 h either asleep or awake.

4. Results

For each heartbeat time series, we calculated their multifractal spectra and measured αmax, αmin and
α0; the width of spectra ∆α, and the symmetry parameters ∆αrigth, ∆αle f t and r. The calculations were



Entropy 2019, 21, 581 5 of 17

made from q = −10 to q = 10, with bins of 0.1 [11,12]. Figure 3 shows two typical segments for a
healthy person (nsr05) (a) and a patient with CHF (chf010) (b). For each q-value and following the
described method of Chhabra and Jensen [34], the plots indicated in (c) and (d) are made to determine
α(q) and f (α(q)) by using least squares; it is shown in the case where q = 9, that the multifractal
spectrum is constructed with the pairs (α(q), f (α (q)).
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It has been reported that ∆α values of multifractal spectra decrease with disease and age [11,12,15,
19,20] and there are important reported results relative to the comparison between asleep and awake
subjects regarding the width of the multifractal spectra [21,22,38]. In this work, we focus our study
on the symmetry and shape of the spectra in order to obtain new parameters to better differentiate
between healthy subjects and CHF patients. Similarly, we want to find differences between each NYHA
classification; it means that we want to discriminate the severity of the disease. For instance, we hope
that multifractal spectra of NYHA I-CHF patients would be very different of the multifractal spectra of
NYHA III-IV-patients. In order to improve this task, we analyse the total series (24 h) and subseries
(6 h) when the patients were asleep and other subseries (6 h) when the patients were awake.

4.1. On the Symmetry of the Spectra

As observed in Table 1, the spectra of healthy subjects tend to be right skewed; in fact, when we
analysed the 24 h total series, 49 (90.7%) spectra were right skewed and five were left skewed. However,
the analysis of the 6 h time series when the subjects were asleep showed that the 54 (100%) spectra
were right skewed. In addition, analysis of the 6 h time series when these healthy subjects were awake
showed that 45 (83.3%) spectra were right skewed and nine spectra were left skewed. In contrast, in the
spectra of CHF 24 h time series we found that 25 spectra (56.8%) were right skewed and 19 spectra
were left skewed. Nevertheless, the analysis of the 6 h time series when the CHF patients were awake
showed that 21 (55.3%) spectra were right skewed and 17 spectra were left skewed. In contrast, analysis
of the 6 h time series when the CHF patients were asleep showed that 31 (77.5%) spectra were right
skewed and nine spectra were left skewed (Table 1).

We calculated r as a better way to quantify the symmetry. In both cases (healthy and CHF) we
have right (r > 1) and left skewed spectra (r < 1). The difference is that we observed that many of the
healthy spectra that are right skewed are sharply biased to the right (r >> 1) and the spectra that are
left skewed are slightly left skewed. In general, CHF patient spectra are slightly right skewed, the rest
are left skewed and some of them are sharply left skewed (r << 1).
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For instance, the maximum value of r for the 24 h time series of healthy subjects is the nsr30 case
(nsr is for normal sinus rhythm), we found for this subject rmax = 6.7 (see Table 2), this is a multifractal
spectrum very right skewed. There are some multifractal spectra of healthy subjects that have r values
slightly less than 1 and they are slightly left skewed, as for example, for one 24 h-time series of a
healthy male person (nsr50), we obtained rmin = 0.9 (Table 2). It means that the multifractal spectrum is
slightly asymmetric and left skewed.

Table 1. The average index of symmetry r.

Healthy CHF

24 h RR time series.
Right skewed (49 subjects)

r = 1.9 ± 1.0
Right skewed (25 patients)

r = 1.5 ± 0.5
Left skewed (5 subjects)

r = 0.9 ± 0.05
Left skewed (19 patients)

r = 0.8 ± 0.16

6 h RR time series asleep
Right skewed (54 subjects)

r = 4.5 ± 5.3
Right skewed (25 patients)

r = 1.9 ± 0.8

Left skewed (0 subjects) Left skewed (19 patients)
r = 0.7 ± 0.18

6 h RR time series awake
Right skewed (45 subjects)

r = 2.0 ± 0.8
Right skewed (31 patients)

r = 1.9 ± 0.8
Left skewed (9 subjects)

r = 0.8 ± 0.08
Left skewed (9 patients)

r = 0.7 ± 0.2

Table 2. The r values of healthy people time series of 24 h. The acronym in parentheses refers to age in
years and gender (female or male), nsr means normal sinus rhythm (for healthy persons).

Person r Person r Person r

nsr01(64F) 1.85 nsr19(65F) 1.69 nsr37(63M) 2.56
nsr02(67M) 1.52 nsr20(58F) 1.14 nsr38(62M) 1.23
nsr03(67F) 1.14 nsr21(59M) 2.19 nsr39(70F) 1.49
nsr04(62F) 2.05 nsr22(68M) 3.38 nsr40(63F) 3.34
nsr05(62F) 1.80 nsr23(66F) 1.97 nsr41(64F) 1.28
nsr06(64M) 2.66 nsr24(63F) 2.07 nsr42(68F) 2.21
nsr07(76M) 2.12 nsr25(75M) 0.92 nsr43(66M) 1.87
nsr08(64F) 1.76 nsr26(72M) 0.83 nsr44(65F) 1.57
nsr09(66M) 1.22 nsr27(64M) 4.47 nsr45(67F) 1.76
nsr10(61F) 1.71 nsr28(65M) 2.20 nsr46(63F) 1.82
nsr11(65F) 1.04 nsr29(63M) 1.44 nsr47(28.5M) 1.01
nsr12(66M) 2.94 nsr30(70F) 6.65 nsr48(38M) 0.88
nsr13(63F) 1.34 nsr31(67M) 2.35 nsr49(39M) 1.06
nsr14(65F) 1.40 nsr32(68M) 1.81 nsr50(29M) 0.83
nsr15(74M) 1.34 nsr33(65M) 3.93 nsr51(40M) 1.15
nsr16(73F) 1.24 nsr34(67M) 2.75 nsr52(39M) 1.05
nsr17(71F) 1.40 nsr35(66M) 1.18 nsr53(35M) 1.69
nsr18(68M) 1.27 nsr36(60F) 1.24 nsr54(35M) 0.94

For 6 h time series of sleeping subjects, we found that all the 54 spectra are right skewed,
for example, the maximum value of r is the nsr15, we obtained for this subject an r value of rmax = 31.9
(Table 3), this is a spectrum sharply biased to the right. For 6 h time series of awake subjects we found
that the maximum value of r is rmax = 4.1 which corresponds to the subject nsr24. The minimum r value
was rmin = 0.7 (Table 3) for nsr05.
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Table 3. The r values for 6 h time series of healthy people and CHF patients awake and asleep, CHF
means congestive heart failure (for diseased persons).

Person Awake Asleep Patient Awake Asleep

nsr01 1.88 3.17 chf001 1.45 1.56
nsr02 1.52 2.90 chf002 1.06 0.62
nsr03 1.19 3.01 chf004 1.44 1.16
nsr04 1.58 4.09 chf005 0.63 1.43
nsr05 0.72 2.99 chf006 No data 1.85
nsr06 0.92 3.09 chf007 2.91 1.06
nsr07 1.34 20.70 chf008 3.67 1.94
nsr08 2.28 3.36 chf010 1.04 0.28
nsr09 1.41 3.99 chf011 1.70 1.51
nsr10 1.04 3.06 chf012 1.02 1.20
nsr11 0.95 3.10 chf013 0.30 1.02
nsr12 3.05 3.19 chf014 0.89 1.01
nsr13 1.61 2.46 chf015 0.62 1.05
nsr14 1.47 2.86 chf201 2.70 1.15
nsr15 0.95 31.86 chf202 0.80 0.70
nsr16 0.83 1.65 chf203 2.84 3.71
nsr17 1.03 1.57 chf204 2.13 1.60
nsr18 2.15 1.45 chf205 0.61 0.47
nsr19 2.06 2.32 chf207 0.75 1.28
nsr20 1.32 1.45 chf208 2.56 1.62
nsr21 1.01 2.38 chf209 No data 0.80
nsr22 3.10 3.67 chf210 2.45 2.01
nsr23 1.14 1.74 chf211 0.82 2.51
nsr24 4.15 1.55 chf212 0.44 0.66
nsr25 0.79 1.85 chf213 0.89 2.65
nsr26 0.75 8.41 chf214 0.98 1.51
nsr27 2.41 2.80 chf215 2.45 0.75
nsr28 2.30 3.50 chf216 2.48 1.89
nsr29 1.05 2.92 chf217 1.30 3.63
nsr30 2.53 17.01 chf218 0.82 3.28
nsr31 1.82 2.73 chf219 1.10 2.20
nsr32 1.18 3.40 chf220 0.91 1.25
nsr33 3.59 6.52 chf221 0.82 2.18
nsr34 1.93 9.43 chf223 0.64 1.09
nsr35 1.94 1.49 chf224 1.56 2.60
nsr36 3.52 4.53 chf225 0.68 0.98
nsr37 3.80 3.16 chf226 2.45 3.17
nsr38 1.98 2.40 chf227 1.20 2.56
nsr39 2.81 3.48 chf228 1.12 3.01
nsr40 2.57 5.39 chf229 0.53 0.69
nsr41 1.69 1.22
nsr42 2.12 1.40
nsr43 3.22 3.07
nsr44 2.14 2.45
nsr45 2.17 4.09
nsr46 1.05 3.73
nsr47 1.85 2.87
nsr48 0.86 2.91
nsr49 1.14 14.96

nsr050 1.25 2.76
nsr051 1.52 3.88
nsr052 1.28 3.09
nsr053 2.52 2.91
nsr054 0.86 3.86
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Considering the 24 h-time series spectra of CHF patients, the maximum r value belongs to the
chf008 patient, that has rmax = 2.5 (Table 4). It means that the multifractal spectrum is right skewed,
but it is not as right skewed as the nsr30 multifractal spectrum. The minimum r value belongs to the
chf012 patient, rmin = 0.4 (Table 4), this r value is associated with a spectrum sharply biased to the left.

Table 4. The r values of CHF patients time series of 24 h. In parenthesis, we have NYHA index, age in
years and gender (M is for male, F is for female, U is for unknown).

Patient r Patient r Patient r

chf001(III-IV, 71M) 1.09 chf201(III, 55M) 1.51 chf216(II, 58U) 0.94
chf002(III-IV, 61F) 1.05 chf202(III, 59F) 0.85 chf217(I, 50U) 1.99
chf003(III-IV, 63M) 1.73 chf203(III, 68M) 1.25 chf218(I, 72U) 1.04
chf004(III-IV, 54M) 1.18 chf204(III, 62M) 1.62 chf219(III, 62U) 1.39
chf005(III-IV, 59F) 0.72 chf205(III, 39M) 0.47 chf220(II, 64U) 1.02
chf006(III-IV, UM) 1.89 chf206(III, 38F) 0.91 chf221(I, 37U) 1.11
chf007(III-IV, 48M) 2.41 chf207(III, 62M) 0.82 chf222(III, 63U) 0.76
chf008(III-IV, 51M) 2.51 chf208(III, 62M) 0.77 chf223(III, 56U) 0.87
chf009(III-IV, 63F) 0.87 chf209(III, 65M) 0.88 chf224(II, 35U) 1.85
chf010(III-IV, 22M) 1.03 chf210(III, 43M) 2.02 chf225(III, 66U) 0.78
chf011(III-IV, 54F) 1.54 chf211(II, 34U) 1.48 chf226(II, 51U) 2.44
chf012(III-IV, 61M) 0.89 chf212(II, 54U) 0.41 chf227(III, 64U) 1.27
chf013(III-IV, 63M) 0.71 chf213(I, 53U) 1.34 chf228(III, 31U) 1.25
chf014(III-IV, 61M) 1.01 chf214(II, 79U) 0.89 chf229(III,58U) 0.54
chf015(III-IV, 53M) 0.60 chf215(II, 43U) 0.86

For the 6 h time series of sleeping CHF patients we found that the maximum r value belongs to
the chf203 patient, rmax = 3.7 (Table 3), while the minimum corresponds to the chf012, it is rmin = 0.2
(Table 3). For 6 h time series of awake CHF patients we found that the maximum value of r is rmax = 3.6
(Table 3) which corresponds to the subject chf008. The minimum r value was rmin = 0.3 (Table 3) for
chf013. In both cases the minima values indicate that the spectra are sharply biased to the left.

Based on the results we can conclude that right skewed spectra are associated to healthy subjects,
especially when they are sleeping, the 100% of the spectra were right skewed in this case. Although
the CHF patients present right and left skewed spectra; in general, the right skewed spectra of CHF
patients are not as right skewed as the spectra of healthy subjects for the three cases, 24 h, 6 h asleep
and 6 h awake; besides the left skewed spectra of CHF patients are in general more left skewed that
the spectra of healthy subjects for the three cases. Special attention should be paid in Table 1 to the
case of sleeping subjects and patients, because there is a big difference between the r average values in
this case.

Statistical tests were made to verify if there was a significant difference between the average
values of r, for example in Figure 4, a bar diagram is shown comparing the average values of r for
the 24 h series and the 6 h series in the two cases analysed, awake and asleep, in all three cases the
differences were statistically significant. In all the statistical tests that we made in this article we used a
significance level of 0.05.
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Figure 4. Bar chart showing the average values of r, mean r-values are compared for series of healthy 
adults and patients with CHF. The statistical differences were significant for the 24 h (p ≈ 0.001), 6 h 
Figure 4. Bar chart showing the average values of r, mean r-values are compared for series of healthy
adults and patients with CHF. The statistical differences were significant for the 24 h (p ≈ 0.001), 6 h
awake (p ≈ 0.025) and 6 h asleep (p ≈ 0.00025) tachograms. The big error bar for the case of awake 6 h
series is due to the fact that there are many cases (see Table 3) with spectra sharply skewed towards
the right.

4.2. On the Curvature of the Spectra around the Maximum

We note that the multifractal spectra of CHF patients have a spiky form around the maximum and
the multifractal spectra of healthy persons tend to be most rounded around the maximum (Figure 5).
We calculate the curvature of the multifractal spectra by using Equation (4); we numerically obtain
first and second derivatives that we use to calculate the curvature. At the end we focus only on the
curvature around the spectrum maximum because the curvature is almost zero in regions far from the
maximum. The concept of curvature related to multifractality had been suggested by Ivanov et al.
(2001) [8], when they affirmed that “the constantly changing curve of the τ(q) (the scaling exponents)
curves for the healthy records suggest multifractality”. However, as far as we know, in our article it is
the first time that the curvature concept around the maximum of the multifractal spectrum has been
used to characterize the spectra of healthy people and patients with CHF, although the curvature of
the multifractal spectrum has been used in other applications [10].
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We constructed each multifractal spectrum as a set of points (α, f (α)), one point for each q value.
As the calculation was made for q = −10 to q = 10, with bins of 0.1, at the end our multifractal spectra
have 201 points. To calculate the first derivative we can use the forward difference D+(h):f’(α)~D+(h) =
(f(α + h) − f(α))/h or the backward difference D−(h):f’(α)~D−(h) = (f(α) − f(α − h))/h and then we can
combine both differences to estimate the second numerical derivative as [38–40]:

f ′(α) ∼
D+(h) −D−(h)

h
=

f (α+ h) − 2 f (α) + f (α− h)
h2 (6)

We used the first and second numerical derivatives to obtain the curvature by using Equation (5);
we obtained plots of the curvature for the entire spectrum as is depicted in Figure 6, this figure is
constructed with 199 points (the original plot has 201 points, the first derivative has 200 points and the
second derivative has 199 points), the figure illustrates that the curvature around the maximum of the
spectrum is big and it decreases almost to zero for big values of

∣∣∣q∣∣∣. In this figure and in all figures
that depict curvature, the notation “number of data” in the horizontal axis means that the first point
corresponds to the curvature around the point of the spectrum that corresponds to q = −10, the last
point corresponds to the curvature value around the point of the spectrum that corresponds to q = 10,
then the central point (the number 100, that is the maximum) corresponds to the curvature around
q = 0.

The curvature values were calculated for each one of the multifractal spectra (healthy people and
patients with CHF for both 24 h- and 6 h-time series). We obtained the curvature plot (Figure 7) for each
spectrum and then we obtained the average curvature plot for each three groups. Figure 7 shows the
average curvature of the 24 h and 6 h (asleep and awake) times series for the CHF patients (Figure 7a)
and healthy subjects (Figure 7b). The vertical axis represents the average curvature values. We notice
in Figure 7a that the maximum value of the average curvature (mvac) for the CHF patients is 1724 ±
330 and in Figure 7b we see that for healthy persons mvac = 506 ± 92 (in both cases for the 24 h-time
series). The difference is statistically significant, with a level of significance of 0.05 (p ≈ 2 × 10−9).
On the other hand, for the case of 6h-time series (awake) the mvac for CHF patients is 1971 ± 377 and
for healthy persons mvac = 587 ± 108, again the difference is statistically significant (p ≈ 4× 10−11).
For the case of asleep 6 h-time series mvac = 1986 ± 380 for CHF patients and mvac = 1177 ± 220 for
healthy people, and again the difference is statistically significant (p ≈ 0.0006). By comparing these
values, we can see that the maximum average curvature of CHF patient is almost three times that of
the healthy people when they are awake, but it is two times the mean curvature of healthy people
when they are asleep. We can confirm that the multifractal spectra of patients tend to have the sharpest
peak around the maximum.

In addition, Figure 7a reveals that the mvac value in the 6 h spectra when CHF patients were
asleep or awake have similar values. We think that it occurs because the CHF patients have sleeping
troubles and they are awake a lot of time or maybe it is because the condition of CHF patients is
aggravated when they are sleeping [41]. Actually, if we make a comparison of the values of curvature
around the maximum between healthy asleep and healthy awake we found that there is a significant
difference between the corresponding means (p ≈ 8× 10−8), but if the comparison is made between the
values corresponding to sleeping congestive and awake congestive there is no significant difference
(p ≈ 0.91).
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4.3. The Symmetry and the Curvature

When we calculate parameter r, we see that all the 54 healthy spectra are biased to the right when
the subjects are asleep, and when we analyse 24 h-total time series spectra, five of them are slightly
biased to the left and nine spectra corresponding to awake subjects are also slightly biased to the left.
In the literature it has been reported that the spectra of healthy subjects are wide [8,10,13,15,16]. And in
addition, from our results we observe that healthy subjects’ spectra tend to be biased to the right.
On the other hand, we have found that the curvature of the spectra around the maximum is much
larger for those corresponding to CHF-patients that for healthy subjects. It seems that this criterion can
help to distinguish between CHF and healthy persons.

In this section, by using the curvature, we examine the series of healthy people whose spectra
were skewed to the left. We measure the curvature parameter values for these spectra. In Figure 8a,
we show that the maximum values of the average curvature for 5 spectra of the 24 h time series are
between 477 ± 86 and 724 ± 137 and they are similar to the average curvature value (506 ± 92) of
healthy persons. We notice that those values are smaller than the maximum value of the average
curvature for the spectra of 24 h-time series of CHF patients (K = 1724 ± 330).
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We observe the same behaviour in the curvature of the spectra of the 6-h time series of the healthy
subjects when they are awake (Figure 8b). Therefore, although these spectra were slightly left skewed,
their curvature is like the average curvature of healthy subjects. Summarizing: although these spectra
are slightly left skewed and we can think that they have cardiac problems, the curvature values are in
the same range that the average for healthy subjects. Therefore, we have three criteria to say if a person
is healthy, (a) their spectrum is wide, (b) their spectrum is loaded to the right and (c) the curvature
around the maximum is small compared to the curvature of the CHF patient spectra. In contrast, for a
CHF patient (a) the spectrum is narrow, (b) it is loaded to the left or slightly loaded to the right and (c)
the curvature around the maximum is large.
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Figure 8. (a) Comparison of the average curvature for the 24 h time series of the healthy subjects with
the average curvature values of the 5 spectra skewed to the left. (b) Comparison of the maxima of the
average curvature for 24 h-time series of healthy persons with the maxima of the average curvature
values of the 9 spectra skewed to the left in healthy people when they were awake.

4.4. The Curvature and the NYHA Classification

In this section, we study the average curvature of CHF patients according to the NYHA index.
We use 24 h time series and 6 h-time series of two types: awake or asleep. In the previous section we
obtained the average curvature for all the CHF patients. The average curvature was calculated for 24 h
time series and we also calculated the average curvature for two groups (awake or asleep) of 6 h time
series. We grouped the curvature values according to the NYHA index. These calculations were made
to look for possible correlations between the curvature and the NYHA index.

Firstly, we classified the curvature data of the CHF patients of 24 h and 6 h (when they were
asleep or awake) time series for each one of the NYHA classification and we found their maximum
curvature values and we did a graph with these values of the average curvature. Then we compared
the maximum values of the average curvature of each NYHA classification with the maximum values
of the average curvature of the 24 h time series for healthy persons and for CHF patients.

In Figure 9a, we show the average curvature of the 24 h time series of the CHF patients for each
NYHA classification. The vertical axis represents the average curvature values. It seems to be that the
maximum curvature increases as the NYHA index increases, that is, it increases as the disease worsens.
The average curvature maximum value in NYHA I is 278 ± 49 (see Figure 9a blue line). It is close to the
maximum average curvature 506 ± 92 of the healthy subjects (see Figure 9a yellow line) in the 24 h time
series. The maximum curvature values that follow are NYHA II 1175 ± 317 (see Figure 9a green line),
NYHA III 1478 ± 270 (see Figure 9a black line), and NYHA III-IV 2680 ± 532 (see Figure 9a magenta
line). These values are close to the average curvature maximum value 1724 ± 330 of the CHF patients
in the 24 h time series (see Figure 9a red line). In 24 h tachograms, comparing the data of the curvature
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around the spectra maxima of healthy subjects with NYHA I CHF patients, no significant difference
is obtained. The same happens when comparing the data of NYHA II CHF patients with NYHA
III, but the difference between patients with NYHA I and NYHA II is significant (p ≈ 7.1 × 10−11),
the difference between NYHA III and NYHA III-IV is also statistically significant (p ≈ 1.7× 10−6).
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Figure 9. Comparison of the maximum values of the average curvature for: (a) 24 h-time series of
the CHF patients with healthy persons with the maximum values of the average curvature according
each NYHA classification. We observed that the curvature values increase with the damage in the
heart, as average curvature maximum values in NYHA II, NYHA III and NYHA III-IV classification are
close to the average curvature maximum values the CHF patients. In contrast, NYHA I classification
has almost the value of healthy persons. (b) 6 h time series of the CHF patients and healthy persons
with the average curvature maximum values of the 6 h time series of the CHF patients for NYHA
classification when they are awake. We can see that the average curvature values increase with damage
in the CHF heart disease. Also NYHA II, NYHA III, and NYHA III-IV average curvature maxima
values are similar to CHF patient values and NYHA I has a similar value with healthy subjects. (c) 6 h
time series of the CHF patients and healthy persons with the average curvature maximum values of
the 6-h time series of the CHF patients followed NYHA classification when they are asleep. We can
see that the average curvature values increasing with hurt in the CHF heart disease. Also, NYHA II,
NYHA III, and NYHA III-IV average curvature maximum values are similar with CHF patients’ values,
and NYHA I have similar values with healthy subjects.

In Figure 9b,c, we show the results that we have obtained in the 6 h time series when the CHF
subjects are awake or asleep for each NYHA classification. As previously mentioned, the horizontal
value represents the number of data that is obtained when we calculate the curvature numerically,
i.e., it is a new horizontal axis with 199 points. We noted the same behaviour in these time series that
for the 24 h time series. In Table 5 we show the average curvature maximum values that we obtained
for all-time series, we noticed that the biggest curvature values correspond to NYHA II, NYHA III and
NYHA III-IV. However, the average curvature maximum value in NYHA I classification has almost the
same value that healthy persons, this is so because in the NYHA I CHF-patients the symptoms are
present, but do not present discomfort and they can do almost anything as the healthy persons. In the 6
h awake tachograms, again there are statistically significant differences between NYHA I and NYHA II
(p ≈ 7.4× 10−5), and NYHA III and NYHA III-IV (p ≈ 2.6× 10−7). And the same situation is repeated in
the tachograms of 6 sleeping hours, there are statistically significant differences between NYHA I and
NYHA II (p ≈ 1.6× 10−5) and between NYHA III and NYHA III-IV (p ≈ 1.3× 10−9). We did not find
significant differences between the tachograms of patients with NYHA II and patients with NYHA III.
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Table 5. Average curvature maxima values of 6 h in CHF patients when they are awake and asleep for
each NYHA classification.

Time Series of 6 h Awake Asleep

NYHA I 325 ± 57 706 ± 131
NYHA II 1434 ± 270 1442 ± 276
NYHA III 1649 ± 304 1651 ± 300

NYHA III-IV 3419 ± 890 3054 ± 801
healthy people 587 ± 108 1177 ± 220
CHF patients 1986 ± 380 1971 ± 377

Figure 10 shows a bar diagram in which much of the information described in the previous
paragraphs is summarized, as can be seen there is an important difference between the values of
the average K between healthy and congestive. The differences already described between NYHA I
and NYHA II and between NYHA III and NYHA III-IV can also be visualized in all cases. It is also
observed that the heights of the bars of NYHA II and NYHA III cases are similar in all cases.

Entropy 2019, 21, x FOR PEER REVIEW 13 of 16 

 

In Figures 9b,c, we show the results that we have obtained in the 6 h time series when the CHF 
subjects are awake or asleep for each NYHA classification. As previously mentioned, the horizontal 
value represents the number of data that is obtained when we calculate the curvature numerically, 
i.e., it is a new horizontal axis with 199 points. We noted the same behaviour in these time series that 
for the 24 h time series. In Table 5 we show the average curvature maximum values that we obtained 
for all-time series, we noticed that the biggest curvature values correspond to NYHA II, NYHA III 
and NYHA III-IV. However, the average curvature maximum value in NYHA I classification has 
almost the same value that healthy persons, this is so because in the NYHA I CHF-patients the 
symptoms are present, but do not present discomfort and they can do almost anything as the healthy 
persons. In the 6 h awake tachograms, again there are statistically significant differences between 
NYHA I and NYHA II (𝑝 ≈ 7.4 × 10 ), and NYHA III and NYHA III-IV (𝑝 ≈ 2.6 × 10 ). And the 
same situation is repeated in the tachograms of 6 sleeping hours, there are statistically significant 
differences between NYHA I and NYHA II (𝑝 ≈ 1.6 × 10 ) and between NYHA III and NYHA III-
IV (𝑝 ≈ 1.3 × 10 ). We did not find significant differences between the tachograms of patients with 
NYHA II and patients with NYHA III. 

Table 5. Average curvature maxima values of 6 h in CHF patients when they are awake and asleep 
for each NYHA classification. 

Time Series of 6 h Awake Asleep 
NYHA I 325 ± 57 706 ± 131 
NYHA II 1434 ± 270 1442 ± 276 
NYHA III 1649 ± 304 1651 ± 300 

NYHA III-IV 3419 ± 890 3054 ± 801 
healthy people  587 ± 108 1177 ± 220 
CHF patients  1986 ± 380 1971 ± 377 

Figure 10 shows a bar diagram in which much of the information described in the previous 
paragraphs is summarized, as can be seen there is an important difference between the values of the 
average K between healthy and congestive. The differences already described between NYHA I and 
NYHA II and between NYHA III and NYHA III-IV can also be visualized in all cases. It is also 
observed that the heights of the bars of NYHA II and NYHA III cases are similar in all cases. 

 
Figure 10. Bar chart for the values of the curvature around the maximum of the spectra of the 
tachograms of 24 h, 6 h awake and 6 h asleep. The significant differences between healthy and CHF 
are evident in all cases (24 h, 6 h awake and 6 h asleep). Also, between NYHA I and II and NYHA III 
and NYHA III-IV. And it is also observed that there are no significant differences between NYHA I 
and healthy and between NYHA II and NYHA III. 

5. Conclusions 

Figure 10. Bar chart for the values of the curvature around the maximum of the spectra of the
tachograms of 24 h, 6 h awake and 6 h asleep. The significant differences between healthy and CHF are
evident in all cases (24 h, 6 h awake and 6 h asleep). Also, between NYHA I and II and NYHA III and
NYHA III-IV. And it is also observed that there are no significant differences between NYHA I and
healthy and between NYHA II and NYHA III.

5. Conclusions

It has been reported that the multifractal spectra of healthy subjects tend to be wide and that
the spectra tend to narrow with the diseases. We propose in this work that the spectra of healthy
subjects tend to be right skewed and the curvature around the maximum of the spectra is small.
Although different skewness of the multifractal spectra in healthy and CHF subjects was already
shown in references [11,12], the focus of those articles was different. The multifractal spectra of the
tachograms of healthy subjects have curvature values around the maxima (q = 0) that are much lower
than the curvature values around the maximum of seen for CHF patients. On the other hand, most of
the multifractal spectra of the tachograms of healthy subjects tend to be right skewed; in the 24 h
tachograms, 49 of 54 are right skewed, and in those of 6 h awake, 45 of 54 are right skewed and in those
of 6 h asleep, all the spectra are right skewed. The parameters r and K can complement each other,
as mentioned in the article (see Figure 8), there are several spectra of healthy people whose spectra are
a little charged to the left, but their curvature around the maximum is small, in the same order as the
curvature average of all healthy subjects.
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The curvature K around the maxima of the spectra is another parameter that we introduced
because we have noted that the multifractal spectra of the CHF patients are spiky around the maxima.
The average values of the curvature maxima of the 24 h and 6 h interbeat time series (when the
healthy persons and CHF patients are asleep or awake) show a difference between their curvature
values; that is, the average curvature values are bigger in CHF patients than in healthy persons and
these values increase with the severity of the damage in the heart as a result of the CHF condition.
Amaral et al. [4] reported that the width of the multifractal spectra decreases when a beta-blocking
drug is administered to healthy subjects producing a diminution of the effects of the sympathetic branch
of the neuroautonomic control mechanisms and they found that the width of the spectra decreased,
although the healthy condition was recovered after a certain time interval. That is, seemingly the
CHF spectra reflect a dynamical behaviour analogous to the case with the blocking of the sympathetic
branch. These authors also reported an experiment with a drug that blocks the parasympathetic branch
with more dramatic results in the dynamic behaviour of the heart (see Figure 3b of reference [4]);
that is similar to the observed spectra of the more severe cases of CHF patients. Our results have no
inconsistencies with the very important findings of Amaral et al. [4], because we have found that the
curvature around the maxima is growing with the severity of the CHF condition in the NYHA III-IV
cases where there is a severe impairment of the parasympathetic branch. On the other hand, with
the stochastic models of references [2,30], we obtained (see Figure 6 of reference [20]) a reasonable
reproduction of multifractal spectra of both healthy and CHF cases including the narrowing of CHF
spectra, and some clues of the asymmetry properties of multifractal spectra of healthy subjects and CHF
patients reported in the present article. In addition, curvature helps us to discriminate each NYHA
classification. In conclusion, the r symmetry parameter and the curvature K parameter calculated
around the multifractal spectra maxima can give us information about the heart health conditions in
many people.
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