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Abstract: In recent years, selecting appropriate learning models has become more important with
the increased need to analyze learning systems, and many model selection methods have been
developed. The learning coefficient in Bayesian estimation, which serves to measure the learning
efficiency in singular learning models, has an important role in several information criteria. The
learning coefficient in regular models is known as the dimension of the parameter space over two,
while that in singular models is smaller and varies in learning models. The learning coefficient is
known mathematically as the log canonical threshold. In this paper, we provide a new rational
blowing-up method for obtaining these coefficients. In the application to Vandermonde matrix-type
singularities, we show the efficiency of such methods.

Keywords: learning coefficient; Kullback function; singular learning machine; resolution of
singularities

1. Introduction

In recent studies, real data associated with, for example, image or speech recognition, psychology,
and economics, have been analyzed by learning systems. Hence, many learning models have been
proposed, and thus, the need for appropriate model selection methods has increased.

In this section, we first introduce the widely-applicable information criterion (WAIC) [1–7] and
cross-validation in Bayesian model selection.

Let q(x) be a true probability density function of variables, x ∈ RN , and let xn := {xi}n
i=1 be n

training samples selected from q(x) independently and identically. Consider a learning model that is
written in probabilistic form as p(x|w), where w ∈W ⊂ Rd is a parameter.

Suppose that the purpose of the learning system is to estimate the unknown true density function
q(x) from xn using p(x|w) in Bayesian estimation. Let ψ(w) be an a priori probability density function
on parameter set W and p(w|xn) be the a posteriori probability density function:

p(w|xn) =
1

Zn(β)
ψ(w)

n

∏
i=1

p(xi|w)β,

where:

Zn(β) =
∫

W
ψ(w)

n

∏
i=1

p(xi|w)βdw,

for inverse temperature β. We typically set β = 1. Define:

Eβ
w[ f (w)] =

∫
dw f (w)ψ(w)∏n

i=1 p(xi|w)β∫
dwψ(w)∏n

i=1 p(xi|w)β
,
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and:
Vβ

w [ f (w)] = Eβ
w[ f (w)2]− Eβ

w[ f (w)]2.

We then have predictive density function p(x|xn) = Eβ
w[p(x|w)], which is the average inference

of the Bayesian density function.
We next introduce Kullback function K(q||p) and empirical Kullback function Kn(q||p) for density

functions p(x), q(x):

K(q||p) =
∫

q(x) log
q(x)
p(x)

dx,

Kn(q||p) =
1
n

n

∑
i=1

log
q(xi)

p(xi)
.

Function K(p||q), which always has a non-negative value and satisfies K(q||p) = 0, if and only if
q(x) = p(x), is a pseudo-distance between density functions p(x), q(x). We define Bayes training loss
Tn and Bayes generalization loss Gn as follows:

Tn = − 1
n

n

∑
i=1

log p(xi|xn),

and:
Gn = −

∫
q(x) log p(x|xn)dx.

Additionally, we define Bayesian generalization error Bg and Bayesian training error Bt as follows:

Bg = K(q(x)‖p(x|xn))

and
Bt = Kn(q(x)‖p(x|xn)).

Then, we have:

E[Tn] = Gn,

Bg = Gn − S,

Bt = Tn − Sn

for average entropy S = −
∫

q(x) log q(x)dx and empirical entropy Sn = − 1
n ∑n

i=1 log q(xi) of the true
density function. Value Bg describes how precisely the predictive function approximates the true
density function.

We define xn\xi = {x1, . . . , xi−1, xi+1, . . . , xn}. The WAIC is denoted by:

Wn = Tn +
β

n

n

∑
i=1

Vβ
w [log p(xi|w)]

and the cross-validation loss is denoted by:

Cn = − 1
n

n

∑
i=1

log p(xi|xn\xi)

for n ≥ 2.
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Watanabe [2,3,6,7] proved the following four relations:

E[Gn] = L(w0) +
1

nβ

(
λ +

β− 1
β

ν

)
+ o(

1
nβ

),

E[Tn] = L(w0) +
1

nβ

(
λ− β + 1

β
ν

)
+ o(

1
nβ

),

E[Wn] = L(w0) +
1

nβ

(
λ +

β− 1
β

ν

)
+ o(

1
nβ

),

E[Cn] = L(w0) +
1

nβ

(
λ +

β− 1
β

ν

)
+ o(

1
nβ

)

for learning coefficient λ ∈ Q and singular fluctuation ν ∈ R, where L(w) = −Ex[log p(x|w)] and
w0 ∈ W0 = {w0 ∈ W‖L(w0) = minw∈W L(w)}. For singular models, the set W0 is typically not a
singleton set. Nevertheless, the WAIC and the cross-validation can estimate the Bayesian generalization
error without any knowledge of the true probability density function.

These values are calculated from training samples xi using learning model p. In real applications
or experiments, we typically do not know the true distribution, but only the values of the training
errors. Our purpose is to show that these methods are effective. We can select a suitable model from
several statistical models by observing these values.

In this paper, we consider the value λ, which is equal to the log canonical threshold introduced in
Definition 1. This coefficient is not needed to evaluate the WAIC and the cross-validation in practice,
while the learning coefficients from our recent results have been used very effectively by Drton and
Plummer [8] for model selection using a method called the “singular Bayesian information criterion
(sBIC)”. The method sBIC even works using the bounds of learning coefficients.

It is known that λ = ν = d/2 holds, where d is the dimension of the parameter space for regular
models. Value λ is obtained by a blowing-up process, which is the main tool in the desingularization
of an algebraic variety. The following theorem is an analytic version of Hironaka’s theorem [9] used by
Atiyah [10].

Theorem 1 (Desingularization [9]). Let f be an analytic function in a neighborhood of w∗ = (w∗1 , · · · , w∗d) ∈
Rd with f (w∗) = 0. There exists an open set U 3 w∗, an analytic manifold M, and a proper analytic map µ

from M to U such that: (1) µ : M− E → U − f−1(0) is an isomorphism, where E = µ−1( f−1(0)), and: (2)
for each u ∈ M, there is a local analytic coordinate system (u1, · · · , un) such that f (µ(u)) = ±us1

1 us2
2 · · · u

sn
n ,

where s1, · · · , sn are non-negative integers.

The theorem establishes the existence of the desingularization map; however, generally, it is still
difficult to obtain such maps for Kullback functions because the singularities of these functions are very
complicated. From learning coefficient λ and its order θ, value ν is obtained theoretically as follows:
Let ξ(u) be an empirical process defined on the manifold obtained by a resolution of singularities and
∑u∗ denote the sum of local coordinates that attain the minimum λ and maximum θ. We then have:

ν =
1
2

Eξ

∫ ∞
0 dt ∑u∗

∫
duξ(u)tλ−1/2e−βt+β

√
tξ(u)∫ ∞

0 dt ∑u∗
∫

dutλ−1/2e−βt+β
√

tξ(u)
, (1)

where ξ(u) is a random variable of a Gaussian process with mean zero, and covariance
Eξ [ξ(w)ξ(u)] = EX [a(x, w)a(x, u)] for the analytic function a(x, w) obtained by the resolution of
singularities using log(q(x)/p(x|w)).

Our purpose in this paper is to obtain λ. In recent studies, we determined the learning coefficients
for reduced rank regression [11], the three-layered neural network with one input unit and one output
unit [12,13], normal mixture models with a dimension of one [14], and the restricted Boltzmann
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machine [15]. Additionally, Rusakov and Geiger [16,17] and Zwiernik [18], respectively, obtained the
learning coefficients for naive Bayesian networks and directed tree models with hidden variables.
Drton et al. [19] considered these coefficients of the Gaussian latent tree and forest models.

The papers [20,21] derived bounds on the learning coefficients for Vandermonde matrix-type
singularities and explicit values under some conditions.

The remainder of this paper is structured as follows: In Section 2, we introduce log canonical
thresholds in algebraic geometry. In Section 3, we summarize key theorems for obtaining learning
coefficients for learning theory. In Section 4, we present our main results. We consider the log canonical
thresholds of Vandermonde matrix-type singularities (Definition 3). We present our conclusions in
Section 5.

2. Log Canonical Threshold

Definition 1. Let f be an analytic function in neighborhood U of w∗. Let ψ be a C∞ function with a compact
support. Define log canonical threshold λw∗( f , ψ) as the largest pole of

∫
U | f |

2zψdw over C or
∫

U | f |
zψdw

over R. Additionally, define θw∗( f , ψ) by its order. If ψ(w∗) 6= 0, then we define λw∗( f ) = λw∗( f , ψ) and
θw∗( f ) = θw∗( f , ψ) because the log canonical threshold and its order are independent of ψ.

Applying Hironaka’s Theorem 1 to function f (w), we have the proper analytic map µ

from manifold M to neighborhood U of w∗ that satisfies Hironaka’s Theorems (1) and (2).
Then, integration

∫
U | f |

zψ(w)dw is equal to
∫

M | f ◦ µ|zψ(µ(u))µ′(u)du, which is the sum of∫
UM
|us1

1 us2
2 · · · u

sd
d |

zψ(µ(u))|µ′(u)|du, where (u1, · · · , ud) is a local analytic coordinate system on
UM ⊂ M. Therefore, the poles can be obtained. Note that for each w∗ with f (w∗) 6= 0, there
exists neighborhood U such that f (w) 6= 0 for all w ∈ U. Thus,

∫
U | f |

zψ(w)dw has no poles. The
learning coefficient is the log canonical threshold of the Kullback function (relative entropy) over the
real field.

3. Main Theorems

In this section, several theorems are introduced for obtaining real log canonical thresholds over the
real field. Theorem 2 (the method for determining the deepest singular point), Theorem 3 (the method
to add variables), and Theorem 4 (the rational blowing-up method) are very helpful for obtaining
the log canonical threshold. These theorems over the real field are useful for reducing the number of
changes of coordinates via blow-ups.

We denote constants, such as a∗, b∗, and w∗, by suffix ∗. Define the norm of a matrix C = (cij) as

||C|| =
√

∑i,j |cij|2. Set N+0 = N∪ {0}.

Lemma 1 ([14,22,23]). Let U be a neighborhood of w∗ ∈ Rd. Consider the ring of analytic functions on U.
Let J be the ideal generated by f1, . . . , fn, which are analytic functions defined on U. (1) If g2

1 + . . . + g2
m ≤

f 2
1 + · · ·+ f 2

n , then λw∗(g2
1 + · · ·+ g2

m) ≤ λw∗( f 2
1 + · · ·+ f 2

n).
(2) If g1, . . . , gm ∈ J , then λw∗(g2

1 + · · ·+ g2
m) ≤ λw∗( f 2

1 + · · ·+ f 2
n). In particular, if g1, . . . , gm generate

ideal J , then λw∗( f 2
1 + · · ·+ f 2

n) = λw∗(g2
1 + · · ·+ g2

m).

The following lemma is also used in the proofs.

Lemma 2 ([15]). Let J ,J ′ be the ideals generated by f1(w), . . . , fn(w) and g1(w′), . . . , gm(w′), respectively.
If w and w′ are different variables, then:

λ(w∗ ,w′∗)( f 2
1 + · · ·+ f 2

n + g2
1 + · · ·+ g2

m) = λw∗( f 2
1 + · · ·+ f 2

n) + λw′∗(g2
1 + · · ·+ g2

m).

Theorem 2 (Method for determining the deepest singular point [21]). Let f1(w1, . . . , wd), . . .,
fm(w1, . . . , wd) be homogeneous functions of w1, · · · , wj (j ≤ d). Furthermore, let ψ be a C∞ function
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such that ψ(0, · · · , 0, w∗j+1, · · · , w∗d) ≥ ψ(w∗1 , · · · , w∗d) and ψw is a homogeneous function of w1, · · · , wj in a
small neighborhood of (0, · · · , 0, w∗j+1, · · · , w∗d). Then, we have:

λ(0,··· ,0,w∗j+1,··· ,w∗d)
( f 2

1 + · · ·+ f 2
m, ψ) ≤ λ(w∗1 ,··· ,w∗j ,w∗j+1,··· ,w∗d)

( f 2
1 + · · ·+ f 2

m, ψ)

Theorem 3 (Method to add variables [21]). Let f1(w1, . . . , wd), . . ., fm(w1, . . . , wd) be homogeneous
functions of w1, · · · , wd. Set f ′1(w2, . . . , wd) = f1(1, w2, . . . , wd), . . ., f ′m(w2, . . . , wd) = fm(1, w2, . . . , wd).
If w∗1 6= 0, then we have:

λ(w∗1 ,··· ,w∗d)
( f 2

1 + · · ·+ f 2
m) = λ(w∗2 /w∗1 ,··· ,w∗d/w∗1)

( f ′21 + · · ·+ f ′2m ).

Resolutions of singularities are obtained by constructing the blow-up along the smooth
submanifold. In this paper, we use the blow-up method along some singular varieties as explained
below for obtaining log canonical thresholds.

Theorem 4 (Rational blow-up process). Let m ≤ d and (α1, . . . , αm) ∈ Rm, α1, . . . , αm > 0. Consider the
set U = {w = (w1, . . . , wd) ∈ Rd | 0 ≤ w1, . . . , wd ≤ 1}.

We set gi(ui) = (g1i(ui), . . . , gdi(ui)) for gii(ui) = uii, gji(ui) = ujiu
αi/αj
ii (1 ≤ j ≤ m, j 6= i),

gji(ui) = uji(1 ≤ j ≤ d).
Let f , ψ be analytic functions defined on U and fi(u1i, · · · , udi) = f (gi(ui)). Then, we have:

min
1≤i≤m

{λ0( fi(ui), u
∑m

j=1 αi/αj−1
ii ψ(gi(ui)))} = λ0( f , ψ).

Proof. The proof of this theorem uses a resolution of singularities along a smooth submanifold.
Set w′i = w1/αi

i , and construct the blow-up along the submanifold {w′1 = · · · = w′m = 0}. Then,
we have for 1 ≤ i ≤ m, w′i = v, w′j = vw′′j (1 ≤ j ≤ m, j 6= i), and w′j = w′′j (m + 1 ≤ j ≤ d).

Consider the set Ui = {ui = (u1i, . . . , udi) ∈ Rd | 0 ≤ u1i, . . . , udi ≤ 1} for 1 ≤ i ≤ m.

Set uii = vαi , uji = w′′j
αj(j 6= i), then we have wi = uii, wj = u

αj/αi
ii uji (1 ≤ j ≤ m, j 6= i), and

wj = uji(m + 1 ≤ j ≤ d).

The Jacobian ∂w/∂ui is ∏1≤j≤m,j 6=i u
αj/αi
ii . �

The theorem is simple; however, it is a useful tool for obtaining log canonical thresholds.

4. Main Results

In this section, we apply the theorems in Section 3 to Vandermonde matrix-type singularities,
which are generic and essential in learning theory. Their associated log canonical thresholds provide
the learning coefficients of, for example, three-layered neural networks in Section 4.1, normal mixture
models in Section 4.2, and mixtures of binomial distributions [24].

4.1. Three-Layered Neural Network

Consider the three-layered neural network with N input units, H hidden units, and M output
units, which is trained for estimating the true distribution with r hidden units. Denote an input value
by z = (zj) ∈ RN with a probability density function q(z). Then, an output value y = (yk) ∈ RM of
the three layered neural network is given by yk = fk(z, w) + (noise), where w = {aki, bij}1≤i≤H and:

fk(z, w) =
H

∑
i=1

aki tanh(
N

∑
j=1

bijzj).
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Consider a statistical model:

p(y|z, w) =
1

(2π)M/2 exp(−1
2
||y− f (z, w)||2),

and p(z, y|w) = p(y|z, w)q(z). Assume that the true distribution:

p(y|z, w∗t ) =
1

(2π)M/2 exp(−1
2
||y− f (z, w∗t )||2),

is included in the learning model, where w∗t = {a∗k,H+i, b∗H+i,j}1≤i≤r and fk(z, w∗t ) =

∑r
i=1(−a∗k,H+i) tanh(∑N

j=1 b∗H+i,jxj).
We have:

p(z, y|w) =
1

(2π)M/2 exp(−1
2
||y− f (z, w)||2)q(z),

and the notation (z, y) for the three-layered neural network corresponds to x in Sections 1 and 2.

4.2. Normal Mixture Models

We consider a normal mixture model [14] with identity matrix variances:

p(x|w) =
1

(2π)N/2

H

∑
i=1

ai exp(−
∑N

j=1(zj − bij)
2

2
),

where w = {ai, bij}1≤i≤H and ∑H
i=1 ai = 1, ai ≥ 0.

Set the true distribution by:

p(x|w∗t ) =
1

(2π)N/2

H+r

∑
i=H+1

(−a∗i ) exp(−
∑N

j=1(zj − b∗ij)
2

2
),

where w∗t = {a∗i , b∗ij}H+1≤i≤H+r and ∑H+r
i=H+1 a∗i = −1, a∗i < 0. (In order to simplify the following, we

use the values a∗i < 0, not a∗i > 0.)

4.3. Vandermonde Matrix-Type Singularities

Definition 2. Fix Q ∈ N. Define: [b∗1 , b∗2 , · · · , b∗N ]Q = γi(0, · · · , 0, b∗i , · · · , b∗N) if b∗1 = · · · = b∗i−1 = 0,

b∗i 6= 0, and γi =

{
1 if Q is odd,
sign(b∗i ) if Q is even.

For simplicity, we use the notation w = {aki, bij}1≤i≤H instead of w = {aki, bij}1≤k≤M,1≤i≤H,1≤j≤N
because we always have 1 ≤ k ≤ M and 1 ≤ j ≤ N in this section.

Definition 3. Fix Q ∈ N and m ∈ N+0.

Let A =


a11 · · · a1H a∗1,H+1 . . . a∗1,H+r
a21 · · · a2H a∗2,H+1 . . . a∗2,H+r

...
...

aM1 · · · aMH a∗M,H+1 . . . a∗M,H+r

,

BI = (
N

∏
j=1

b
`j
1j,

N

∏
j=1

b
`j
2j, · · · ,

N

∏
j=1

b
`j
Hj,

N

∏
j=1

b∗H+1,j
`j , · · · ,

N

∏
j=1

b∗H+r,j
`j)t,
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for I = (`1, . . . , `N) ∈ N+0
N , and:

B = (BI)`1+···+`N=Qn+m,n≥0 = (B(m,0,··· ,0), B(m−1,1,··· ,0), · · · , B(0,0,··· ,m), B(m+Q,0,··· ,0), · · · )

(t denotes the transpose).
aki and bij (1 ≤ k ≤ M, 1 ≤ i ≤ H, 1 ≤ j ≤ N) are the variables in a neighborhood of a∗ki and b∗ij, where

a∗ki and b∗ij are fixed constants.
Let J be the ideal generated by the elements of AB.
We call singularities of J Vandermonde matrix-type singularities.
To simplify, we usually assume that:

(a∗1,H+j, a∗2,H+j, · · · , a∗M,H+j)
t 6= 0, (b∗H+j,1, b∗H+j,2, · · · , b∗H+j,N) 6= 0,

for 1 ≤ j ≤ r and:

[b∗H+j,1, b∗H+j,2, · · · , b∗H+j,N ]Q 6= [b∗H+j′ ,1, b∗H+j′ ,2, · · · , b∗H+j′ ,N ]Q,

for j 6= j′.

Example 1. If m = N = M = r = 1, Q = 2, H = 3, then we have A =
(

a11 a12 a13 a∗14

)
,

B =


b11 b3

11 b5
11 b7

11
b21 b3

21 b5
11 b7

21
b31 b3

31 b5
11 b7

31
b∗41 b∗41

3 b∗41
5 b∗41

7

. These matrices A, B correspond to the three-layered neural network:

p(y|z, w) =
1

(2π)1/2 exp(−1
2
(y− a11 tanh(b11z)− a12 tanh(b21z)− a13 tanh(b31z))2),

and the true distribution:

p(y|x, w∗t ) =
1

(2π)1/2 exp(−1
2
(y + a∗14 tanh(b∗41z))2).

Example 2. If Q = r = M = 1, H = 2, N = 2, then we have A =
(

a11 a12 a∗13

)
,

B =

 b11 b12 b2
11 b11b12 b2

12 b3
11 b11b2

12 b2
11b12 b3

12
b21 b22 b2

21 b21b22 b2
22 b3

21 b21b2
22 b2

21b22 b3
22

b∗31 b∗32 b∗31
2 b∗31b∗32 b∗32

2 b∗31
3 b∗31b∗32

2 b∗31
2b∗32 b∗32

3

.

If a∗13 = −1, these matrices A, B correspond to a normal mixture model with identity matrix variances:

p(x|w) =
a11

2π
exp(− (z1 − b11)

2 + (z2 − b12)
2

2
) +

a12

2π
exp(− (z1 − b21)

2 + (z2 − b22)
2

2
),

∑2
i=1 a1i = 1, a1i ≥ 0, and the true distribution is:

p(x|w∗t ) =
1

2π
(−a∗13) exp(−

(z1 − b∗31)
2 + (z2 − b∗32)

2

2
),−a∗13 = 1.

In this paper, we denote:

AM,H =


a11 a12 · · · a1H
a21 a22 · · · a2H

...
aM1 aM2 · · · aMH

, BH,N,I =


∏N

j=1 b1j
`j

∏N
j=1 b2j

`j

...
∏N

j=1 bHj
`j

and :
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B(Q)
H,N = (BH,N,I)`1+...+`N=Qn+1,0≤n≤H−1.

Furthermore, we denote: a∗ =


a∗1,H+1
...
a∗M,H+1

 and:

(AM,H , a∗) =


a11 a12 · · · a1H a∗1,H+1
a21 a22 · · · a2H a∗2,H+1

...
aM1 aM2 · · · aMH a∗M,H+1


Theorem 5 ([14]). Consider sufficiently small neighborhood U of:

w∗ = {a∗ki, b∗ij}1≤i≤H

and variables w = {aki, bij}1≤i≤H in set U. Set (b∗∗01 , b∗∗02 , · · · , b∗∗0N) = (0, . . . , 0). Let each (b∗∗11 , b∗∗12 , · · · , b∗∗1N),
. . ., (b∗∗r′1, b∗∗r′2, · · · , b∗∗r′N) be a different real vector in:

[b∗i1, b∗i2, · · · , b∗iN ]Q 6= 0, for i = 1, . . . , H + r;

that is,
{(b∗∗11 , · · · , b∗∗1N), . . . , (b∗∗r′1, · · · , b∗∗r′N) ; [b∗i1, · · · , b∗iN ]Q 6= 0, i = 1, . . . , H + r}.

Then, r′ is uniquely determined, and r′ ≥ r by the assumption in Definition 3. Set
(b∗∗i1 , · · · , b∗∗iN) = [b∗H+i,1, · · · , b∗H+i,N ]Q, for 1 ≤ i ≤ r. Assume that [b∗i1, · · · , b∗iN ]Q =

0, 1 ≤ i ≤ H0

(b∗∗11 , · · · , b∗∗1N), H0 + 1 ≤ i ≤ H0 + H1,
(b∗∗21 , · · · , b∗∗2N), H0 + H1 + 1 ≤ i ≤ H0 + H1 + H2,

...
(b∗∗r′1, · · · , b∗∗r′N), H0 + · · ·+ Hr′−1 + 1 ≤ i ≤ H0 + · · ·+ Hr′ ,

and H0 + · · ·+ Hr′ = H. We then have:

λw∗(||AB||2) = Mr′

2
+ λ

w(0)
1

∗(||AM,H0 B(Q)
H0,N ||

2)

+
r

∑
α=1

λ
w(α)

1

∗(||(AM,Hα−1, a(α)
∗
)B(1)

Hα ,N ||
2) +

r′

∑
α=r+1

λ
w(α)

1

∗(||AM,Hα−1B(1)
Hα−1,N ||

2),

where w(0)
1

∗
= {a∗k,i, 0}1≤i≤Hα

,

w(α)
1

∗
= {a∗k,H0+···+Hα−1+i, 0}2≤i≤Hα

and a(α)
∗
=


a∗1,H+α
...
a∗M,H+α

 for α ≥ 1.

Theorem 6. We use the same notation as in Theorem 5. Set λ = λ0(||AM,H B(Q)
H,N ||2).

We have the following:

1. H = 1. λ = min{M
2

,
N
2
}.

2. H = 2. λ = min{ βN + (2− β)M
2

, β = 0, 1, 2,
2N + Q(N − 1 + M)

2Q + 2
}.

3. H = 3.

λ = min{ βN + (3− β)M
2

, β = 0, 1, 2, 3,
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βN + (3− β)M + Q(α(N + α− β) + (3− α)M)

2(Q + 1)
, α = 1, · · · , β− 1, β = 2, 3,

3N + Q(3N − 3 + 3M)

2(2Q + 1)
}

4. H = 4.

λ = min{ βN + (4− β)M
2

, β = 0, 1, 2, 3, 4,

βN + (4− β)M + Q(α(N + α− β) + (4− α)M)

2(Q + 1)
, α = 1, · · · , β− 1, β = 2, 3, 4,

4N + Q(αN − α− 1 + (8− α)M)

2(2Q + 1)
, α = 2, 3, 4,

4N + Q(5N − 5 + 3M)

2(2Q + 1)
,

3N + M + Q(αN − α + (8− α)M)

2(2Q + 1)
, α = 2, 3,

4N + Q(6N − 6 + 6M)

2(3Q + 1)
}.

Its proof appears in Appendix A.
In paper [22], we had exact values for N = 1:

λ0(||AM,H B(Q)
H,1 ||

2) =
MQk(k + 1) + 2H

4(1 + kQ)

where: k = max{i ∈ Z : 2H ≥ M(i(i− 1)Q + 2i)}, and we had:

θ =

{
1, if 2H > M(k(k− 1)Q + 2k)
2, if 2H = M(k(k− 1)Q + 2k)

5. Conclusions

In this paper, we proposed a new method of “rational blowing-up” (Theorem 4), and we applied
the method to Vandermonde matrix-type singularities and demonstrated its effectiveness. Theorem 6
determines the explicit values of log canonical thresholds for H = 1, 2, 3, 4. Our future research aim is
to improve our methods and obtain explicit values for the general model.

These theoretical values introduce a mathematical measure of preciseness for numerical
calculations in information criteria in Section 1. Furthermore, our theoretical results will be helpful
in numerical experiments such as the Markov chain Monte Carlo (MCMC). In the papers [25,26],
the mathematical foundation for analyzing and developing the precision of the MCMC method was
constructed by using the theoretical values of marginal likelihoods.

We will also consider these applications in the future.

Funding: This research was funded by the Ministry of Education, Culture, Sports, Science, and Technology in
Japan, Grant-in-Aid for Scientific Research 18K11479.

Acknowledgments: We thank Maxine Garcia, PhD, from Edanz Group for editing a draft of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We demonstrate Theorem 6 by blowing-up processes.
Let j[α], j[α, β] ∈ {1, · · · , N} and i[α], i[α, β] ∈ {1, · · · , H}.
By constructing the blow-up along {bij = 0, 1 ≤ i ≤ H, 1 ≤ j ≤ N} and by choosing one branch

of the blow-up process, we assume that bij = v1b′ij for i, j ≥ 1, j[1] = 1 and b′1j[1] 6= 0. We also set

b′ij = b′′ij +
b′ij[1]
b′1j[1]

b′1j (i ≥ 2, j 6= j[1]), b′′1j = b′1j, b′′ij[1] = b′ij[1] (i, j ≥ 1) and a′k1 = ∑H
i=1 akibij[1].
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Then, we have:

fkI =
H

∑
i=1

aki

N

∏
j=1

b
`j
ij ,

= v|I|1 (ak1

N

∏
j=1

b′1j
`j +

H

∑
i=2

akib′ij[1]
`j[1] ∏

j 6=j[1]
(b′′ij +

b′ij[1]
b′1j[1]

b′1j)
`j),

for I = (`1, · · · , `N).

J =
〈

fkI | I = (`1, . . . , `N) ∈ N+0
N , |I| = nQ + 1, n ∈ N+0, 1 ≤ k ≤ M

〉
=

〈
vnQ+1

1

H

∑
i=1

akib′′ij[1]
nQ+1, v|I|1

H

∑
i=2

aki

N

∏
j=1

b′′ij
`j

〉
.

=

〈
v1a′k1, v(n+1)Q+1

1

H

∑
i=2

akib′′ij[1]
nQ+1

(b′′ij[1]
Q − b′′1j[1]

Q
), v|I|1

H

∑
i=2

aki

N

∏
j=1

b′′ij
`j

〉
.

For simplicity, we set b′′ij = bij and a′k1 = ak1 again.
By constructing the blow-up along {bij = 0, 2 ≤ j ≤ N, 2 ≤ i ≤ H} and by choosing one branch

of the blow-up process, set bij = v21b′ij for i, j ≥ 2 and b′2j[2] 6= 0.

1. If j[1] 6= j[2], then set b′ij = b′′ij +
b′ij[2]
b′2j[2]

b′2j (i ≥ 3, j 6= j[2]), b′′2j = b′2j, b′′ij[2] = b′ij[2] (i, j ≥ 2), and

a′k2 = ∑H
i=2 akibij[2].

J =
〈

fkI | I = (`1, . . . , `N) ∈ N+0
N , |I| = nQ + 1, n ∈ N+0, 1 ≤ k ≤ M

〉
=

〈
v1ak1, v(n+1)Q+1

1

H

∑
i=2

akibij[1]
nQ+1(bij[1]

Q − b1j[1]
Q), v|I|1

H

∑
i=2

aki

N

∏
j=1

bij
`j

〉

=

〈
v1ak1, v1v2a′k2, v(n+1)Q+1

1 vnQ+1
21

H

∑
i=3

akib′′ij[1]
nQ+1

(b′′ij[1]
QvQ

21 − b′′1j[1]
Q
),

v|I|1 v|I|21

H

∑
i=3

aki

N

∏
j=1

b′′ij
`j , v(n+1)Q+1

1 v(n+1)Q+1
21

H

∑
i=3

akib′′ij[2]
nQ+1

(b′′ij[2]
Q − b′′2j[2]

Q
),

〉
.

For simplicity, we set b′′ij = bij and a′k1 = ak1 again.
2. If j[1] = j[2], then, by constructing the blow-up along {bij = 0, 2 ≤ i ≤ H, 2 ≤ j ≤ N, j 6= j[2]}

and by choosing one branch of the blow-up process, we set b′ij = v22b′′ij for i, j ≥ 2, j 6= j[2].
Assume that b′′i[2,2],j[2,2] 6= 0.

(a) By constructing the rational blow-up along {vQ
1 = 0, v22 = 0}, we have the following (i)

and (ii).

i. Set v22 = vQ
1 v′22.

b′ij = b′′ij +
b′ij[2](b

′
ij[2]

Q − b′1j[2]
Q)

b′2j[2](b
′
2j[2]

Q − b′1j[2]
Q)

b′2j for i ≥ 3, j 6= j[2], b′′2j = b′2j, b′′ij[2] = b′ij[2] for i, j ≥ 2,

and a′k2 = ∑H
i=2 akibij[2](b

Q
ij[2]v

Q
2 − bQ

1j[2]).
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J =
〈

fkI | I = (`1, . . . , `N) ∈ N+0
N , |I| = nQ + 1, n ∈ N+0, 1 ≤ k ≤ M

〉
=

〈
v1ak1, v(n+1)Q+1

1

H

∑
i=2

akibij[1]
nQ+1(bij[1]

Q − b1j[1]
Q), v|I|1

H

∑
i=2

aki

N

∏
j=1

bij
`j

〉

=

〈
v1ak1, v(n+1)Q+1

1 vnQ+1
21

H

∑
i=2

akib′′ij[1]
nQ+1

(b′′ij[1]
QvQ

2 − b′′1j[1]
Q
),

v|I|1 v|I|21 v
|I|−`j[2]
22

H

∑
i≥2

aki

N

∏
j=1

b′ij
`j , for |I| − `j[2] > 0

〉

=

〈
v1ak1, v(n+2)Q+1

1 v(n+1)Q+1
21

H

∑
i=3

akib′′ij[1]
nQ+1

(b′′ij[1]
QvQ

2 − b′′1j[1]
Q
)(b′′ij[1]

Q − b′′2j[2]
Q
),

vQ+1
1 v21a′k2, v

|I|(Q+1)−Q`j[2]
1 v|I|21 v′22

|I|−`j[2]
H

∑
i≥3

aki

N

∏
j=1

b′ij
`j , for |I| − `j[2] > 0

〉
.

ii. Set v1 = v1/Q
22 v′1.

Set b′ij = b′′ij +
b′ij[2,2]

b′i[2,2]j[2,2]
b′i[2,2]j for i ≥ 2, i 6= [2, 2], j 6= j[2, 2], j[2]. and

a′ki[2,2] = ∑H
i=2 akibij[2,2].

J =
〈

fkI | I = (`1, . . . , `N) ∈ N+0
N , |I| = nQ + 1, n ∈ N+0, 1 ≤ k ≤ M

〉
v|I|/Q

22 v′1
|I|v|I|21

H

∑
i=2

aki

N

∏
j=1

bij
`j

〉

=

〈
v′1v1/Q

22 ak1, v(n+1)+1/Q
22 v′1

(n+1)Q+1
H

∑
i=2

akibij[1]
nQ+1(bij[1]

Q − b1j[1]
Q),

v|I|/Q
22 v′1

|I|v|I|21 v
|I|−`j[2]
22

H

∑
i=2

akib′ij[2]
`j[2]b′ij[2,2]

`j[2,2] , for |I| = `j[2] + `j[2,2], `j[2,2] > 0,

v|I|/Q
22 v′1

|I|v
|I|−`j[2]
22

H

∑
i≥2,i 6=i[2,2]

aki

N

∏
j=1

b′ij
`j , for |I| − `j[2] − `j[2,2] > 0

〉

=

〈
v′1v1/Q

22 ak1, v′1v1/Q
22 v22v21aki[2,2], v(n+1)+1/Q

22 v′1
(n+1)Q+1

H

∑
i=2

akibij[1]
nQ+1(bij[1]

Q − b1j[1]
Q),

v|I|/Q
22 v′1

|I|v|I|21 v
|I|−`j[2]
22

H

∑
i=2

akib′ij[2]
`j[2]b′ij[2,2]

`j[2,2] , for |I| = `j[2] + `j[2,2], `j[2,2] > 0,

v|I|/Q
22 v′1

|I|v|I|21 v
|I|−`j[2]
22

H

∑
i≥2,i 6=i[2,2]

aki

N

∏
j=1

b′′ij
`j , for |I| − `j[2] − `j[2,2] > 0

〉
.

By constructing blow-ups, we have the theorem.
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