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Abstract: One of the most relevant features of musical pieces is the selection and utilization of musical
elements by composers. For connecting the musical properties of a melodic line as a whole with
those of its constituent elements, we propose a representation for musical intervals based on physical
quantities and a statistical model based on the minimization of relative entropy. The representation
contains information about the size, location in the register, and level of tonal consonance of musical
intervals. The statistical model involves expected values of relevant physical quantities that can be
adopted as macroscopic constraints with musical meaning. We studied the occurrences of musical
intervals in 20 melodic lines from seven masterpieces of Western tonal music. We found that all
melodic lines are strictly ordered in terms of the physical quantities of the representation and that the
formalism is suitable for approximately reproducing the final selection of musical intervals made by
the composers, as well as for describing musical features as the asymmetry in the use of ascending
and descending intervals, transposition processes, and the mean dissonance of a melodic line.
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1. Introduction

Many quantitative analyses in music have been carried out using different elements as building
blocks, or “units of context”, which allow the message of a musical piece to be apprehensible at different
time scales [1]. Common choices for these “units of context” are single pitches (ignoring or taking
into account the chroma properties [2,3]), single musical notes (i.e., pitch and rhythm values), pairs of
pitches or musical intervals (either harmonic or melodic), triplets of pitches between contiguous notes,
and chords [1–9]. In the case of musical intervals (from now on referred to as intervals), quantitative
analyses frequently employ parameters that describe their psychoacoustic properties, such as the sizes
of intervals (commonly measured in tones or semitones), the ratio of the fundamental frequencies
of both pitches (commonly measured in units of cents), and the difference between the fundamental
frequencies [10,11].

Analyses based on statistical methods can capture information about musical features, such as
the style of a musical piece, the composer, and even the emotions conveyed [1,3–9,12–20]. Several
statistical analyses employ successive pitches as units of context. George Kingsley Zipf studied the
frequency of occurrences of melodic intervals in masterpieces of Western music, and he reported that
the frequency of occurrences of ascending and descending intervals is almost inversely proportional
to their size [4]. Vos and Trost studied music from 13 great composers of Western academic music,
the Beatles, and folk music, finding that the proportion between musical interval sizes is too complex
to be represented by a simple exponential or power law function. They also reported an asymmetry in
the use of ascending and descending intervals [5]. Gunnar Niklasson and Maria Niklasson studied the
occurrences of melodic intervals as a function of their size, finding long-tailed Levy-stable distributions
that they associated to a “music walk” between successive pitches, in analogy with a random walk [19].
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In the framework of a network analysis, Liu, Small, and Tse studied the connectivity properties of
complex networks representing the successive notes of musical pieces, finding scale-free behavior in
the nodal degree for several sets of academic and popular music [8].

From the information theory perspective, there are many works devoted to analyzing, classifying,
and generating music [21–29]. A seminal work by Cohen establishes the basic concepts for applying
information theory to music [30]. In this approach, entropy has been used to measure the amount
of information conveyed to a listener in a sequence of events organized in time [27]. Many works
have used this concept in music, for example: Pinkerton wondered how entropy must be measured in
melodies and how large it should be [21]; Youngblood [22], and Knopoff and Hutchinson [25] used
entropy in order to identify musical styles. Manzara, Witten, and James used entropy to characterize
the short- and long-term structures in chorales of J. S. Bach. [27]. Dubnov, Assayag, and El-Yaniv used
entropy to characterize sequences of pitches in terms of their statistical source coding, and to generate
aleatoric melodies [26]. Güngör Gündüz and Ufuk Gündüz studied the evolution of the entropy
associated to the transitions between pitches during the progress of a melody, and they found that it
increases up to a limiting value, which is smaller than the entropy of a random melody [28]. Cohen
posted various criticisms about the application of information theory in music [30]. For example:
Markov sources cannot generate some sequences found in music, the assumption concerning that a
probability distribution corresponds to the listener’s expectations is difficult to hold as the expectations
change dynamically through the musical piece, the ergodicity of the source should be considered only
as an approximation, the impossibility of an infinite memory capacity in the listener must be taken into
account, and finally, the assumption concerning the stationarity of the source is difficult to prove [30].

With respect to the melodic interval size, David Huron carried out a study of nearly 10,000 Western
musical themes, finding that the average melodic interval size is slightly smaller in pieces written
in a minor mode than in those written in a major mode. This result was interpreted by the author
as a relation between sadness and small values for the average melodic interval size [6]. Huron also
found that themes in a minor mode have slightly lower pitches on average in comparison with major
ones [14], which suggests that the sizes of intervals and their locations in the register are important for
conveying musical information.

The concept of interval size captures relevant information on musical features. However,
it misses information concerning the locations of intervals in the register and, hence, on the level
of tonal consonance [11] and musical processes, such as the transposition [31]. Here, we propose
a representation of intervals that contains information on their sizes and locations in the register.
This representation utilizes the fundamental frequencies of pitches and relates the tonal consonance
properties of intervals to the work carried out by the composer choosing the intervals for a piece.
This formalism is employed to study melody through the analysis of 20 melodic lines from seven
masterpieces of Western tonal music, including the development of a theoretical model based on the
relative entropy extremalization that reproduces the main features observed in real melodic lines.

This paper is organized as follows. Section 2 presents the microscopic representation of intervals
and describes how to construct their macroscopic observables. Section 3 describes how to measure
levels of tonal consonance using the representation proposed. Section 4 introduces macroscopic
observables in melody. Sections 5 and 6 present an application to real melodic lines and a statistical
model that reproduces the main experimental findings. The final section presents the conclusions.

2. Microscopic Representation and Macroscopic Observables of Intervals

This section presents the microscopic representation of musical intervals using physical quantities,
the expected values of the relevant quantities, the mathematical description of transposition processes
in this representation, and an analysis of distinguishability of intervals.
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2.1. Interval Size and Its Relation to the Fundamental Frequency of Pitches

Many musical systems employ discrete sets of sounds produced by musical instruments, which
are usually grouped into musical scales. Frequently, these sets of sounds are selected in such a way
as to yield a large number of consonant combinations when two or more elements are produced
together [10]. Pythagoras posted the first known mathematical rule to produce musical scales
when he found that two sounds emitted simultaneously by vibrating strings of equal tension and
density produce a pleasant sensation when the ratio between their lengths (li/lj) and, hence, between
their fundamental frequencies ( f j/ fi) corresponds to the ratio between two small natural numbers
li/lj = f j/ fi = n/m [10,32,33]. The frequency ratio is the first known parameterization of consonance
in terms of physical quantities. Two well-known scales based on the Pythagoras rule are the just and
the Pythagorean [10,32].

Ordering the R pitches produced by a musical instrument tuned to a particular musical scale from
the lowest to the highest fundamental frequency leads to a collection of pitches { f1, f2, ..., fi, ..., fR}
with f1 < f2 <, ... < fi < ... < fR. The interval size L associated to a pair of pitches fi and f j is defined
for many musical scales as L ≡ L( fi, f j) = j− i. The magnitude of L determines the plain distance
between pitches, and its sign is meaningful for successive pitches, distinguishing the chronological
order of their appearances. Intervals with the same size L can be produced in different locations of the
register. In analogy with the concept of degeneracy used in physics, this quantity can be considered as
degenerated with a value that is equal to the total number of such intervals. For complex tones, such as
the sounds produced by musical instruments that can be described as a superposition of several pure
tones, Plomp and Levelt found that an interval with a given frequency ratio f j/ fi might be more or less
consonant depending on its location in the register [11]. In many musical cases, there is a one-to-one
correspondence between L and f j/ fi, for example, in an equal-tempered system.

The Pythagoras rule can be expressed as the frequency difference:

f j − fi = [(n−m)/(n + m)]( f j + fi), (1)

where for the just and Pythagorean scales, the quantity (n−m)/(n + m) depends on the size of the
interval L (see Figure 1).

The 12-tone equal-tempered (12-TET) scale belongs to the equal tempered system and has been
widely utilized in Western tonal music. This system is based on a different mathematical rule,
fi = f1

h√2i, where h is a natural number (h = 12 for the 12-TET) and f1 is a reference frequency.
In this system, the frequency ratio is given by:

f j/ fi =
h
√

2j−i =
h√

2L, (2)

and an equivalent expression to (1) is:

f j − fi =
2L/h − 1
2L/h + 1

( f j + fi). (3)

Equation (3) approximately holds for the just and Pythagorean scales, taking (n−m)/(n + m) =

(2L/b − 1)/(2L/b + 1) and using the most common values of n and m related to each interval size L in
the just and Pythagorean scales (see Supplementary Table S1) [32], then for a register with 88 pitches,
the obtained fit parameters are as follows:

• In the just scale, b = 12.0040± 6.8× 10−3 with a determination coefficient R2 ≈ 1;
• In the Pythagorean scale, b = 11.9767± 4.9× 10−3 with R2 ≈ 1;
• In the 12-TET, b = 12.
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The expression (2L/b − 1)/(2L/b + 1) can be written as a linear function of L in a broad region,
see Figure 1. The second-order term of the Taylor expansion around L = 0 vanishes, and the first-order
term leads to (2L/b − 1)/(2L/b + 1) ≈ cL, with c = (ln2)/(2b).

In many musical cases, the sizes of intervals are smaller than or equal to two octaves, such as
in the case of melodic intervals in typical melodic lines [31]. For the case that −24 ≤ L ≤ 24, the fit
parameters are given as follows:

• For the just scale, c = 2.632× 10−2 ± 1.52× 10−4 with a determination coefficient R2 = 0.998;
• For the Pythagorean scale, c = 2.642× 10−2 ± 1.55× 10−4 with R2 = 0.998;
• For the 12-TET scale, c = 2.635× 10−2 ± 1.48× 10−4 with R2 = 0.998.
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Figure 1. Relation between musical scale parameters and the interval size for the (a) just,
(b) Pythagorean, and (c) 12-TET scales, with an interval size from –87 to 87 semitones (representing a
typical piano). The linear fit corresponds to interval sizes between –24 and 24 semitones.

With these results, Equations (1) and (3) can be expressed as:

f j − fi ≈ cL( f j + fi) = 2cLX, (4)

where X = ( f j + fi)/2 is the center frequency, which provides information about the location of an
interval in the register [10]. Then, f j − fi is proportional to the product of the interval size L and its
corresponding location in the register X, lifting the degeneration associated to the fact that intervals of
the same size might be produced in different locations of the register.

2.2. Expected Values with Musical Meaning

Let us suppose that in a musical piece, the probability associated to the frequency of occurrence
of each interval of size L is known to be {pL} with ∑L pL = 1. If the probability pL is related to
simultaneous pitches, then L can be defined as |L| ≡ |L( fi, f j)| = |j− i|.

Probability distributions (PD) allow us to obtain macroscopic quantities related to specific
properties of musical pieces. For example, the average magnitude of the interval size is given by:

〈|L|〉 =
Lmax

∑
L=Lmin

|L|pL . (5)
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Frequently, different musical instruments have different registers. However, Equation (5) does
not capture this information, for example, in a transposition process that moves a set of intervals from
one part of the register to another. The expected value of the frequency difference captures information
about the locations of intervals in the register:

〈| f j − fi|〉 =
| f j1 − fi1 |+ | f j2 − fi2 |+ ... + | f jN − fiN |

N
=

∑i′ ,j′ | f j′ − fi′ |
∣∣

Lmin
+... + ∑i′′ ,j′′ | f j′′ − fi′′ |

∣∣
Lmax

N

=
NLmin

〈| f j′ − fi′ |〉Lmin

N
+ ... +

NLmin
〈| f j′′ − fi′′ |〉Lmax

N
,

(6)

where N is the total number of intervals, ∑i′ ,j′ | f j′ − fi′ |
∣∣

Lmin
+... + ∑i′′ ,j′′ | f j′′ − fi′′ |

∣∣
Lmax

is the sum of

the frequency differences of intervals grouped by their size, and NLmin
, ..., NLmax

are the total numbers
of intervals of each size L. Taking pL = NL /N as the probability of finding an interval of size L,
the expected value is:

〈| f j − fi|〉 =
Lmax

∑
L=Lmin

〈| f j′ − fi′ |〉L pL , (7)

where 〈| f j′ − fi′ |〉L is the mean value of the frequency differences for a set of intervals of size L.
The linear approximation leads to:

〈| f j − fi|〉 ≈ 2c
Lmax

∑
L=Lmin

|L|〈X〉L pL = 2c
Lmax

∑
L=Lmin

|L|pL , (8)

where L = L〈X〉L is an effective size containing information about the contribution of the average
location in the register. Equation (8) can be considered as an extension of Equation (5) when the
average position in the register of each type of interval size 〈X〉L is taken into account. Notice that if
all intervals have the same average position in the register XC , then the expected value |〈 f j − fi〉| is
proportional to the expected value 〈|L|〉, being given by 〈| f j − fi|〉 ≈ 2cXC 〈|L|〉. Equation (8) shows
that the expected value associated to the frequency differences takes into account the mean location in
the register of intervals. However, the diversity of locations in the register for the same interval does
not contribute to the expression (8). A quantity that takes into account this diversity can be constructed
from Equation (4) as:

f 2
j − f 2

i = ( f j − fi)( f j + fi) ≈ 4cL
( f j + fi

2

)2

= 4cLX2. (9)

From the physics perspective, this quantity is proportional to the difference in the average energy
densities εj − εi for two harmonic waves with equal amplitudes T propagating in a medium with
density ρ [34]:

εj − εi = 2π2ρT( f 2
j − f 2

i ) . (10)

The expected value of the quantity f 2
j − f 2

i in Equation (9) can be written as:

〈| f 2
j − f 2

i |〉 =
Lmax

∑
L=Lmin

〈| f 2
j′ − f 2

i′ |〉L pL ≈ 4c
Lmax

∑
L=Lmin

|L|〈X2〉L pL = 4c
Lmax

∑
L=Lmin

|L|
(
〈X〉2

L
+ σ2

L

)
pL

= 4c
Lmax

∑
L=Lmin

|L|pL ,

(11)

where the term σL
2 represents the dispersion of the intervals of size L in the register (measured as a

variance) with respect to the average position 〈X〉L , and L = L
(
〈X〉2

L
+ σ2

L

)
is an effective size that
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takes into account the contribution of the average location of intervals in the register as well as their
dispersion. Equation (11) can be considered as an extension of Equation (8), when the contribution
from the dispersion in the locations of the intervals is taken into account. In the case of just one
possible location in the register for each kind of interval of size L, σL

2 = 0. In addition, if the
average positions in the register for intervals of different sizes are close to each other and they are
located around the position XC , then the first-order term of the Taylor expansion around XC leads to
〈X〉2

L
≈ 2XC 〈X〉L − X2

C
≈ XC 〈X〉L . Hence, these approximations lead to 〈| f 2

j − f 2
i |〉 ≈ 2XC 〈| f j − fi|〉.

2.3. Transposition Process

In a transposition process, the set of probabilities {pL} remains unvaried when the location of the
intervals in the register is moved from the original one 〈X〉O

L
to a new one 〈X〉N

L
. These locations are

related as:
〈X〉N

L
= w〈X〉O

L
; w = fN/ fO , (12)

where fO refers to any fundamental frequency in the original location, fN is the corresponding
frequency in the new location, and w is the interval of the transposition. While the observable 〈|L|〉
remains unchanged after the transposition process, 〈| f j − fi|〉 changes as follows:

〈| f j − fi|〉N = w〈| f j′ − fi′ |〉O , (13)

where 〈| f j′ − fi′ |〉O and 〈| f j − fi|〉N denote to the expected values in the original and new locations of
the register, respectively.

In the case of an observable 〈| f 2
j − f 2

i |〉, the variance in the new location (σ2
L
)N changes with

respect to the variance in the original location (σ2
L
)O by the square of the interval of the corresponding

transposition w2:
(σ2

L
)N = w2[(σ2

L
)O]. (14)

Because 〈X〉2
L

also scales with w2, in a transposition process, the ratio 〈X〉2
L
/σ2

L
remains unchanged,

and the expected value 〈| f 2
j − f 2

i |〉 scales as:

〈| f 2
j − f 2

i |〉N = w2〈| f 2
j′ − f 2

i′ |〉O , (15)

where 〈| f 2
j′ − f 2

i′ |〉O and 〈| f 2
j − f 2

i |〉N are the expected values in the original and new
locations, respectively.

2.4. Distinguishability of Pairs of Pitches

So far, it has been shown that the quantities f j − fi and f 2
j − f 2

i distinguish between intervals of
the same size in different locations in the register (Equations (4) and (9)).

Figure 2 illustrates the dependence of f j − fi and f 2
j − f 2

i on the magnitude of the interval size |L|
for the 12-TET scale tuned with A = 440 Hz. Considering the orders of magnitude of the values and
the relative separations between branches, this figure indicates that the quantity f 2

j − f 2
i has a better

resolution than f j − fi for distinguishing intervals of equal size in different locations of the register.
The distinguishability of intervals of different sizes in different locations of the register is not

evident. The general problem can be formulated independently of the musical scale and the particular
tuning as follows: If two pairs of different pitches { fi, f j} and { fr, fs} produce the same frequency
difference or the same difference in the squares of the frequencies, then:

f j − fi = fs − fr ; f 2
j − f 2

i = f 2
s − f 2

r ; for f j > fi (i.e., j > i) and fs > fr (i.e., s > r). (16)

When f j < fi and fs < fr, Equation (16) can be transformed into a positive equality by changing
the index order i↔ j; s↔ r. Then, both cases are equivalent.
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Figure 2. Relation between the quantities f j − fi and f 2
j − f 2

i and the magnitude of the interval size |L|
in semitones for f j > fi, shown in panels (a,b), respectively. The register corresponds to a typical 88
key piano. The upper branch comes from j = 88 (highest pitch), and i varies from 88 to 1. The tuning
comes from the frequency relation for the 12-TET scale with A = 440 Hz.

The solution of these equations can be formulated in terms of the frequency ratio of the
fundamental frequencies, instead of the specific values of the frequencies. In many cases, as for
example in the just, Pythagorean, and 12-TET musical scales, the frequency ratios α for each musical
scale are known. Taking f j = α(j−i) fi and fs = α(s−r) fr, with α(j−i) > 1 and α(s−r) > 1. Then,
Equation (16) can be written as:

fi
fr

=
α(s−r) − 1
α(j−i) − 1

and
f 2
i

f 2
r
=

α2
(s−r) − 1

α2
(j−i) − 1

. (17)

Then, for i > r and i < r, fi = α(i−r). fr and fr = α(r−i). fi, respectively. Therefore, Equation (17)
can be written for the frequency difference as:

α(s−r) − 1
α(j−i) − 1

= α(i−r) for i > r and
α(j−i) − 1

α(s−r) − 1
= α(r−i) for i < r , (18)

and for the difference between the squares of the frequencies as:

α2
(s−r) − 1

α2
(j−i) − 1

= α2
(i−r) for i > r and

α2
(j−i) − 1

α2
(s−r) − 1

= α2
(r−i) for i < r . (19)

For the frequency difference, if at least one of the equations presented in (18) is satisfied, then there
are several pairs of fundamental frequencies with the same frequency difference. For the difference in
the squares of the frequencies, if at least one of the equations presented in (19) is satisfied, then several
pairs of fundamental frequencies have the same difference in the squares of the frequencies. We call
the set of equations given in (18) and (19) the “degeneracy equations” of musical intervals.

The number of combinations of α ratios satisfying the degeneracy equations depends on the
precision in the measurement of the α ratios.

Table 1 shows the number of combinations of α ratios satisfying the degeneracy equations
as a function of the number of decimal places d used to measure these ratios (1 ≤ d ≤ 10).
See Supplementary Note S1. Two possible situations are considered: Intervals up to two octaves, for
which it is possible to interpret the quantities f j − fi and f 2

j − f 2
i as proportional to the interval sizes;

and the case of all possible intervals on an 88-pitch musical instrument, such as a traditional piano.
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For intervals with size L up to two octaves (Lmax = 24 semitones), the number of possible combinations
of the α and α2 ratios is 24× 24× 23 = 13,248. For intervals with sizes up to 87 semitones (corresponding to
an 88-pitch musical instrument), the number of possible combinations is 87× 87× 86 = 650,934.

Table 1. Number of combinations of the α ratios that satisfy the degeneracy Equations (18) and (19) as
a function of the precision of the α ratios, given in terms of the number of decimal places d. Results for
1 ≤ d ≤ 10.

Scale
Up to 24 Semitones Up to 87 Semitones

fj− fi f 2
j − f 2

i fj− fi f 2
j − f 2

i

Just 52 for d ≥ 4 2 for d ≥ 5 208 for d ≥ 4 5 for d ≥ 8
Pythagorean 8 for d ≥ 4 0 for d ≥ 5 47 for d ≥ 5 2 for d ≥ 8

12-TET 0 for d ≥ 5 0 for d ≥ 4 0 for d ≥ 5 0 for d ≥ 8

In the 12-TET scale, the quantity f j − fi distinguishes each pair of different pitches when the
degeneracy is lifted by rounding the value of the α ratio to d ≥ 5 for the 24 and 87 semitones cases.
The quantity f 2

j − f 2
i lifts the degeneracy for d ≥ 4 in the case of 24 semitones, and for d ≥ 8 in the case

of 87 semitones (see Table 1). In the Pythagorean scale, the degeneracy of the quantity f 2
j − f 2

i can only
be lifted for the 24 semitones case, taking d ≥ 5, and the degeneracy of f j − fi cannot be lifted with up
to 10 decimal places (d = 10) (see Table 1). In the just scale, the degeneracy remains up to d = 10 for
both quantities and in both cases (24 and 87 semitones) (see Table 1).

In some cases, the degeneracy equations are satisfied independently of the precision used to
measure the α ratios. For example, in the case of the quantity f 2

j − f 2
i for the just scale, the combination

of α(s−r) = 5/3 and α(j−i) = 5/4 produces α(i−r) = 16/9, i.e., the major thirds (5/3) produce
equal values to major sixths (5/4) when the lowest pitches of each of these intervals generate minor
sevenths (16/9).

Summarizing, whenever it is possible to lift the degeneracy, this can be done through the precision
of the α ratios, which depends on the precision in the measurement of the fundamental frequencies.
See Supplementary Note S2.

3. Connection with Tonal Consonance

This section shows the connection between the representation of musical intervals previously
presented and the tonal consonance formalism.

3.1. Measuring the Dissonance Levels of Intervals

The consonance and dissonance sensations experienced by listeners are related with the perception
of pleasantness or unpleasantness produced by a combination of sounds. This sensation is fundamental
in music because it is present in timbre, harmony, melody, and musical tuning [35–37].

The frequency difference is widely used to determine the dissonance level of a pair of pure
tones sounded together [11]. In addition, this difference contains information about the interval
size and its corresponding location in the register. Various models have been proposed that use
the frequency difference to determine the dissonance levels of pure and complex tones sounded
together [35,36,38–40]. One of the most recent approaches was developed by Vassilakis [39,40], which
modified a model proposed by Sethares [35,38]. The model includes the dependence of the roughness
on the intensity, amplitude fluctuation degree, and amplitude fluctuation rate [40]. In this model,
the dissonance level δ produced by two pure tones with frequencies fi and f j and amplitudes ai and aj,
respectively, is given by:

δ = (0.5)[(amax)(amin)]
0.1
[

2amin
amax + amin

]3.11 [
e−b1s( fmax− fmin) − e−b2s( fmax− fmin)

]
, (20)
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with fmax = max( fi, f j), fmin = min( fi, f j), amax = max(ai, aj), amin = min(ai, aj), b1 = 3.5, b2 = 5.75,
and s = 0.24/(0.0207 fmin + 18.96).

Musical instruments produce complex tones composed of pure tones. The dissonance level D
of two simultaneous complex tones with the same timbre, as in the case of a harmonic interval,
can be calculated using Equation (20), taking into account the contributions of all individual
dissonances δ generated from all possible combinations of pure tones in the superposition of the
spectra (see Supplementary Note S3 for further details). This procedure for estimating the dissonance
levels of complex tones assumes that the main contribution for the perception of the timbre comes
from the spectrum [35,36,38,39], which is a reasonable assumption taking into account the fact that the
timbre is strongly dependent on the spectrum and weakly dependent on the other physical parameters
of the sound waves [32].

Figure 3 presents the dissonance curves for the intervals within the octave in the case of the
12-TET scale. The spectrum of each complex tone corresponds to six harmonics, with amplitudes
falling at a rate of 0.88, as proposed by Sethares [35]. Explicitly, this is An = A0(0.88)n, where A0 is the
amplitude of the fundamental and An is that of the corresponding harmonic n = 1, 2, 3, 4, 5, 6.

102 103
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0.8

1.0
 L=1 (fj / fi = 21/12)
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 L=11 (fj / fi = 211/12)
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Figure 3. Relation between the dissonance level D and the locations of harmonic intervals in the register
X = ( f j + fi)/2 for the 12-TET scale. The spectrum of each complex tone contains six harmonics with
amplitudes falling at a rate of 0.88. Each possible size L corresponds to a particular frequency ratio
inside the octave in the 12-TET scale. The dissonance level has been normalized to 1 for the typical
register of an 88 key piano.

Figure 3 shows that the same interval of size L is less dissonant in the middle part of the register
than in the lowest part, which is a well-known property of intervals [10,11].

For each interval size L inside the octave, the dissonance level depends on its corresponding
location in the register X = ( f j + fi)/2. The fit to exponential functions is:

D = F(X) = A1exp(−X/γ1) + A2exp(−X/γ2) + A3 , (21)

with fit parameters A1, A2, A3, γ1, and γ2. The values for the fit parameters of each interval size, and
the corresponding determination coefficients R2, are presented in Supplementary Table S2.

In the case of intervals larger than the octave, the chroma property of pitches states that the
consonance values of these intervals can be measured by displacing the highest pitch to the next lower
octave until the resulting interval is smaller than or equal to one octave [10]. With this property, the
plots shown in Figure 3 can be employed to measure the tonal consonance levels of all possible interval
sizes located at any part of the register.
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3.2. Expected Values of the Dissonance Levels Associated to Intervals

Suppose that in a musical piece, the probability associated to the frequency of occurrence of each
harmonic interval size L is known as {pL} with ∑L pL = 1. The average dissonance associated to
harmonic intervals can be defined as:

〈D〉 = 1
H ∑

j
Dj , (22)

where H is the total number of harmonic intervals in the musical score. Grouping by intervals of equal
size, as in Equation (6), we have that:

〈D〉 =
∑i Di

∣∣
Lmin

+... + ∑i′ Di′
∣∣

Lmax

N
=

NLmin〈D〉Lmin

N
+ ... +

NLmax 〈D〉Lmax

N
, (23)

and taking pLi
= NLi

/N as the probability of finding an interval of size Li, the expected value of
dissonance in a musical piece owing to the contribution of harmonic intervals is:

〈D〉 =
Lmax

∑
L=Lmin

〈D〉L pL . (24)

If all harmonic intervals have the same timbre and D can be expressed as in Equation (21), then the
average dissonance for each kind of interval size 〈D〉L can be approximately obtained by expanding
Equation (21) in a Taylor series around the mean position in the register (see Supplementary Note S4
for further details):

〈D〉L ≈ F(〈X〉L) +
1
2

F′′(〈X〉L)σ2
L . (25)

The first term in Equation (25) results from the first-order approximation in the Taylor expansion,
indicating that the mean location in the register for each kind of interval size 〈X〉L corresponds to the
most important contribution to measuring the mean dissonance. The second term in Equation (25)
results from the second-order term in the expansion, indicating that the dispersion of each interval
size σ2

L is necessary to more precisely measure the mean dissonance 〈D〉.
To summarize, by knowing 〈X〉L and the set of probabilities {pL}, it is possible to measure L,

the expected value of 〈| f j − fi|〉, and approximate the mean dissonance level 〈D〉. On the other hand,
by knowing 〈X〉L, σ2

L, and {pL}, it is possible to measure L, the expected value 〈| f 2
j − f 2

i |〉, and the
mean dissonance level 〈D〉 with greater precision.

Traditionally, consonance properties have been associated with simultaneous sounds. However,
there is evidence of the perception of consonance also in the case of successive sounds [33,41,42].
A suitable reason for the production of consonance or dissonance sensations in melody is the short-term
persistence of pitch generated by successive pitches, especially in auditoriums, and the persistence in
the memory of the previous pitch [41,42]. It has been observed that musicians tend to transpose their
knowledge about the consonance of harmonic intervals to judge melodic ones. These results were
found in the case of isolated successive pitches [33]. Under these conditions, the consonance level of
melodic intervals can be approximated using the level of consonance of harmonic ones.

4. Melody and Expected Values of Melodic Intervals

This section presents some concepts about melody and the expected values associated to the
asymmetry in the use of ascending and descending intervals in melodic lines.



Entropy 2019, 21, 532 11 of 25

4.1. Concerning Melody

Melody is defined in the New Grove Dictionary of Music and Musicians as “pitched sounds
arranged in musical time in accordance with given cultural conventions and constraints” [43].
A definition that encompasses music and speech was given by Aniruddh Patel as “an organized
sequence of pitches that conveys a rich variety of information to a listener” [31]. Melodies tend to
meander around a central pitch range, and in many cultures, an asymmetry emerges, in the sense
that large melodic intervals are more likely to ascend than small ones [5,44]. Figure 4 illustrates this
asymmetry with a fragment extracted from the Fugue in D major BWV 850, of The Well-Tempered Clavier,
Book 1 of J. S. Bach. The melody begins and ends with the pitch D (red boxes), and the ascending jump
(blue box) is compensated using small descending intervals.

Figure 4. Asymmetry in the use of ascending and descending intervals in melody. Fragment from
the Fugue in D major BWV 850, of The Well-Tempered Clavier, Book 1 of J. S. Bach that begins and ends
with the pitch D (red boxes), with an ascending jump (blue box) compensated using several small
descending intervals.

So far, the sign of the interval size L has not been considered, as pitches in harmonic intervals are
played simultaneously. However, in the case of melody, pitches are ordered chronologically (melodic
intervals). For fi = fi(t) and f j = f j(t + 1), there are three possible cases: If f j > fi ,then L = j− i > 0
(ascending interval), if f j < fi, then L = j− i < 0 (descending interval), and if fi = f j, then L = 0
(unison). Therefore, the sign of L distinguishes the chronological order of a pair of pitches.

For the case of the quantities f j − fi and f 2
j − f 2

i , the following notation will be employed: If {tz}
represents a collection of times, at each of which one pitch is played in a melody (without rests), then
the quantities ft(z+1) − ftz ≡ ft+1 − ft and f 2

t(z+1)
− f 2

tz
≡ f 2

t+1 − f 2
t symbolize melodic intervals, with

the sign distinguishing between ascending ( ft+1 > ft) and descending ( ft+1 < ft) intervals.
The case of f j > fi and fs > fr, which corresponds to ascending intervals, was analyzed in

the section on the distinguishability of pairs of pitches. The case with f j < fi and fs < fr, which
corresponds to descending intervals, is completely equivalent (see Equation (16)).

4.2. Expected Values of Melodic Intervals

In the case of melody, there are three kinds of melodic intervals, ascending, descending, and
unisons, and the normalization constraint may be stated as p̃a + p̃d + p̃u = 1, where p̃a is the probability
of ascending intervals, p̃d is the probability of descending ones, and p̃u is the probability of unisons.
The average magnitude of the melodic interval size contains the contributions of positive, negative,
and zero values of L in the sum, L ∈ [Lmin, Lmax], and Equation (5) remains unaltered. The average
magnitude of the melodic interval size taking into account the mean location in the register 〈X〉L and
the dispersion σ2

L lead to the same expressions given previously (Equations (8) and (11)). However,
now, these contain the contributions of the ascending, descending, and unison intervals. These
expected values include the average magnitude of the melodic intervals but do not discriminate
between ascending and descending intervals. The average magnitudes of ascending and descending
intervals, 〈L>0〉 and 〈L<0〉, respectively, can be measured by:

〈L>0〉 =
1
p̃a

Lmax

∑
L=1

LpL ; 〈L<0〉 =
1
p̃d

−1

∑
L=Lmin

LpL , (26)



Entropy 2019, 21, 532 12 of 25

where the ratio pi/ p̃a (pi/ p̃d) refers to the probability of the occurrence of an interval of size Li in the
ascending (descending) intervals of a musical piece.

The asymmetry in the total number of intervals is p̃a− p̃d and the asymmetry between the average
magnitudes of ascending and descending intervals can be obtained as 〈L>0〉+ 〈L<0〉, where 〈L<0〉 < 0.
Because the existing literature reports that in many cultures, large melodic intervals are more likely
to ascend than small ones and that melodies tend to meander around a central pitch range [5,44],
the quantity p̃a − p̃d is expected to be negative, and the quantity 〈L>0〉 + 〈L<0〉 is expected to be
positive, for melodic lines of several musical pieces. See Figure 4.

The asymmetry in the average magnitudes of ascending and descending intervals, taking into
account the mean position in the register 〈X〉L and the dispersion of the intervals σ2

L, can be measured
using 〈( f j − fi)>0〉+ 〈( f j − fi)<0〉 and 〈( f 2

j − f 2
i )>0〉+ 〈( f 2

j − f 2
i )<0〉. These expressions take the form:

〈( ft+1 − ft)>0〉+ 〈( ft′+1 − ft′)<0〉 =
1
p̃a

Lmax

∑
L=1
〈 fτ+1 − fτ〉L pL +

1
p̃d

−1

∑
L=Lmin

〈 fτ′+1 − fτ′〉L pL

≈ 2c

(
1
p̃a

Lmax

∑
L=1

LpL +
1
p̃d

−1

∑
L=Lmin

LpL

)
,

(27)

and:

〈( f 2
t+1 − f 2

t )>0〉+ 〈( f 2
t′+1 − f 2

t′)<0〉 =
1
p̃a

Lmax

∑
L=1
〈 f 2

τ+1 − f 2
τ 〉L pL +

1
p̃d

−1

∑
L=Lmin

〈 f 2
τ′+1 − f 2

τ′〉L pL

≈ 4c

(
1
p̃a

Lmax

∑
L=1
LpL +

1
p̃d

−1

∑
L=Lmin

LpL

)
.

(28)

With respect to the consonance issue, assuming for practical purposes that the results found
for the dissonance level of isolated melodic intervals, in the case of musicians, can be used inside a
melody, the mean dissonance level associated to a melodic line could be measured using (24), taking
into account the contributions of ascending and descending intervals, and melodic unisons. For the
consonance analysis of melodic intervals, the sign of L is irrelevant: Only its magnitude is important.
Then, Figure 3 can be utilized for ascending intervals as well as descending ones.

Up to now, we have developed a representation of musical intervals suitable for analyzing
harmony as well as melody. From now on, we limit the analysis to melody.

5. Materials and Methods: An Application to Melodic Lines

This section shows the analysis of a set of melodic lines using the representation of musical
intervals proposed, and the procedures followed to obtain their corresponding probability and
cumulative distributions.

5.1. Selection of Melodic Lines

Twenty melodic lines from seven vocal and instrumental masterpieces of the Baroque and Classical
periods were analyzed. The selected pieces contain melodic lines characterized by their considerable
length, internal coherence, and rich variety of instruments and registers. The collection of pieces is
as follows:

• Brandenburg Concerto No. 3 in G Major BWV 1048. Johann Sebastian Bach: Polyphonic concerto for
11 musical instruments (three violins, three violas, three cellos, violone, and harpsichord).

• Missa Super Dixit Maria. Hans Leo Hassler: Polyphonic composition for four voices (soprano,
contralto, tenor, and bass).

• First movement of the Partita in A Minor BWV 1013. Johann Sebastian Bach: This piece has just one
melodic line for a flute.
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• Piccolo Concerto RV444. Antonio Vivaldi (arrangement by Gustav Anderson): We selected the
piccolo melodic line, owing to its rich melodic content.

• Sonata KV 545. Wolfgang Amadeus Mozart: We selected the melodic line for the right hand of this
piano sonata, assuming that it drives the melodic content.

• Suite No. 1 in G Major BWV 1007 and Suite No. 2 in D Minor BWV 1008. Johann Sebastian Bach:
The melodic lines of these pieces written for cello contain mainly successive pitches. In the cases of
the few simultaneous pitches, the continuation of the melodic lines was assumed in the direction
of the highest pitch.

5.2. Procedure to Obtain the Probability and the Cumulative Distributions

The PDs for the quantities ft+1 − ft and f 2
t+1 − f 2

t were obtained for each melodic line in
order to gather information concerning the selections of melodic intervals made by the composers.
The procedure for the analysis of melodic lines was as follows:

• The MIDI files were generated from scores. Only successive pitches without rests between them
were considered.

• The MIDI information was transformed into frequencies using the 12-TET scale with A = 440 Hz.
Supplementary Spreadsheet S1 contains the data ft and ft+1 in Hz, corresponding to the melodic
intervals of each melodic line.

• The PDs were obtained in three different cases:

- Case 1: | ft+1 − ft| and | f 2
t+1 − f 2

t | not distinguishing between ascending and descending
intervals. The complementary cumulative distribution (CCD) was also obtained.

- Case 2: | ft+1 − ft| and | f 2
t+1 − f 2

t | for two different sets of intervals: Ascending and unisons,
and descending and unisons. The CCD was also obtained for each set.

- Case 3: f 2
t+1 − f 2

t for the set of ascending, descending, and unison intervals together. In this
case, the sign of the descending intervals was considered as negative. The reason for only
using the quantity f 2

t+1− f 2
t is the quality of the experimental fits obtained in the two previous

analyses for both quantities, and even more relevantly that the distinguishability analysis
shows that f 2

t+1 − f 2
t has the best resolution properties for the case of 24 semitones in the

12-TET scale (see Table 1), which is the relevant range for melodic intervals in the analyzed
melodic lines. The CCD was employed for the branch of the PD that contains the ascending
intervals, and the cumulative distribution (CD) was utilized for the branch that contains the
descending intervals.

Some clarifications are required in order to implement the sketch described above:

• Because the number of melodic intervals in the studied melodic lines is at most one order of
magnitude larger than the total number of possible pairs of successive pitches generated by
the same ambitus (the range between the lowest and highest pitches) of the original melodic
line, the PDs were constructed using histograms, in order to capture significant probabilities.
Supplementary Table S3 shows the number of intervals of each melodic line, the number of
ascending intervals, descending ones, and unisons, and the corresponding ambitus.

• As the number of possible melodic intervals for any melodic line is finite, independently of its
length, the bin width in the histograms will be moderately dependent on the number of melodic
intervals. This condition is satisfied by the Sturges criterion [45], and thus, this criterion was used
to determine the bin width.

• In the third case, when ascending and descending PDs were combined in the same distribution
for the quantity f 2

t+1 − f 2
t , the bin width was taken as the average of those obtained separately

using the Sturges criterion for ascending and descending distributions. The average bins were
symmetrically located to the left and right, starting from the point f 2

t+1 − f 2
t = 0.
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• In the experimental analysis, the contribution of unisons in the histograms is important for
ascending intervals as well as descending ones, with different right-hand and left-hand limits at
0. In addition, if we attempt to split the unisons into the ascending and descending parts, this
procedure reduces the determination coefficient R2 of the fits for the histograms to an exponential
function [46]. Hence, all unisons were included in the ascending part as well as the descending
one, and then a correction of this double count was carried out in the procedure to obtain the
expected values. In the histograms, the descending intervals are contained inside the bins labeled
from 1 to N/2 (from left to right), and the ascending ones inside those labeled from N/2 + 1 to N
(from left to right). Hence, all unisons have been taken into account inside the bin labeled N/2 as
well as that labelled N/2 + 1. Notice that N is an even number.

6. Results and Discussion

This section shows the experimental probability and cumulative distributions of the studied
melodic lines, the Shannon entropy of intervals of two successive pitches in melodic lines, a statistical
model based on the minimization of the Kullback–Leibler divergence that reproduces the main features
of the experimental results, and the connection between the parameters of the statistical model with
the transposition processes, the asymmetry between ascending and descending intervals, and the
mean dissonance level of the studied melodic lines.

6.1. Experimental Results and Analysis

For the first and the second cases, the histograms and CCD for both quantities (| ft+1 − ft| and
| f 2

t+1− f 2
t |) fit to exponential functions. Supplementary Table S4 shows, for each melodic line in the first

and the second case, the determination coefficient R2 for the fits to exponential functions in histograms
and CCD. The average R2 of the CCD is R2 ≈ 0.99, with a standard deviation (SD) of ≈ 0.01. Usually,
the cumulative probability associated to the unison in the CCD is larger than the value predicted
by the exponential behavior. This is not surprising, as the value 0 is degenerated and represents
more than one possible pair of pitches. For histograms, the highest R2 is for the quantity | f 2

t+1 − f 2
t |,

with ascending and descending intervals taken separately. For ascending intervals, R2 = 0.987 with
SD = 0.009, and for descending ones R2 = 0.986 with SD = 0.016.

For the third case, with the left and right branches of the PD combined in the same histogram,
the PD can be written as:

P(ε) =

{
FH
+ e−ε/GH

+ for ε > 0

FH
− eε/GH

− for ε < 0
, (29)

where the notation ε emphasizes that these distributions are constructed over bins. Figure 5 shows a
set of probability distributions of melodic intervals for the quantity ε, panel (a), and for the melodic
interval size L measured in semitones, panel (b). Notice that the traditional interval size does not
distinguish the register of the musical instruments.

In the case of the cumulative distributions, the CCD and CD conserve the same functional form of
the PD (as the PDs are exponential):

P( f 2
t+1 − f 2

t ) =

{
FC
+e−( f 2

t+1− f 2
t )/GC

+ for ( f 2
t+1 − f 2

t ) > 0

FC
−e( f 2

t+1− f 2
t )/GC

− for ( f 2
t+1 − f 2

t ) < 0
. (30)
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Figure 5. Probability distributions of melodic intervals for the following melodic lines: Violin 1, viola 1,
cello 1, and violone from the Brandenburg Concerto No. 3 in G Major BWV 1048, the first movement of the
Partita in A Minor BWV 1013, and the Suite No. 1 in G Major BWV 1007. (a) Quantity f 2

t+1 − f 2
t measure

using bins (ε). (b) Traditional melodic interval size L in semitones.

Supplementary Table S5 contains the values of FH
+ , FH

− , GH
+ , GH

− , FC
+, FC

−, GC
+, GC

−, and R2 for the fits.
These PDs resemble the asymmetric Laplace PD, with different amplitudes for positive and negative
branches leading to a discontinuity at the origin (Figure 6) [47].

Figure 6. General forms of the probability and cumulative distributions P(ε) and P( f 2
t+1 − f 2

t ),
respectively. In the symmetric case, P1 = P2 and α1 = α2.

Figure 7a shows the histogram of the PD for the first movement of the Partita in A minor BWV
1013, as well as the PD for the bin degeneration in the corresponding ambitus, which originates from
the structure of the musical scale and represents the melodic line with the highest diversity of melodic
intervals in different locations of the register. The bin degeneration PD is equivalent to that of a long
random melodic line (see Supplementary Note S5 for further details). In order to explain the effect of
bin degeneration, notice that the distance in Hz2 between pairs of differences f 2

j − f 2
i for the 12-TET

scale varies in such a manner that the number of differences inside an arbitrary bin ε, representing its
degeneracy, decreases when | f 2

j − f 2
i | increases.

The comparison between the distributions of real melodic lines and those from bin degeneration
for the corresponding ambitus indicates that the scale contributes to the observed results but does not
explain them. In addition, the PD for bin degeneration fits better to a power law function (R2 = 0.963)
than to an exponential function (R2 = 0.934). Supplementary Table S6 contains the determination
coefficient R2 for the fit to a power law and an exponential function, in the case of each melodic line.
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Figure 7. (a) Comparison between the Probability distributions (PDs) for the real melodic line of
the first movement of the Partita in A minor BWV 1013 by J. S. Bach and for the corresponding bin
degeneration for the same ambitus. (b) Comparison between histogram for the melodic line of Suite No.
2 BWV 1008 by J. S. Bach and that produced by the statistical model.

The quantitative difference between the PD for a real melodic line and its corresponding random
one (the bin degeneration PD) provides information on the order introduced into the system by
the composer, stemming from the selection of successive pairs of pitches. A mathematical tool for
comparing two PDs is provided by the Kullback–Leibler divergence, or relative entropy [48]:

DKL =
N

∑
k=1

pk ln
(

pk
qk

)
, (31)

where pk is the PD for the real melodic line to be compared with the a priori distribution qk coming
from the degeneration of the kth bin, and N is the number of bins in the ambitus with N/2 bins for each
branch (ascending and descending). The PD qk has been formally related to the probability associated
with the number of distinguishable subcategories in the category k, representing its degeneracy [49].

The minimization of the relative entropy under constraints is useful to describe the form of the
PD, as is explained in the next section.

6.2. Shannon Entropy of Melodic Intervals in Melodic Lines

Assuming that each possible melodic interval generated from the ambitus of a melodic line
corresponds to a possible state, an analysis of the evolution of the entropy of melodic intervals in the
progression of the melodic line can be performed in a similar manner as in the work by G. Gündüz
and U. Gündüz [28]. For the A different pitches inside the ambitus of a melodic line, the number of
different melodic intervals is A2. Following [28], we used the Shannon entropy:

S (bits) = −
M

∑
m=1

pmlog2 pm , (32)

where M refers to the final melodic interval appearing in the progression of the melodic line, and pm is
the probability that the interval m has already appeared in the sequence. The final Shannon entropy S f
is reached when M is equal to the total number of melodic intervals in the melodic line.

Figure 8 illustrates the evolution of the Shannon entropy of melodic intervals in melodic lines,
from now on entropy. Panel (a) shows several melodic lines. Panel (b) shows the melodic lines of
the Suite No. 2 BWV 1008, and the soprano in the Missa Super Dixit Maria, with their corresponding
random melodies constructed using the same ambitus. The maximum entropy Smax corresponds to the
maximum possible value of the entropy in a long random melodic line with the same ambitus as the
original one, namely Smax = log2(A2).

Figure 8a,b shows that the entropy increases with each new melodic interval in the progression
until it reaches a limiting value, which is smaller than the entropy of a random melodic line with the
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same ambitus. Some fluctuations appear in this process. However, the entropy tends to be stabilized at
the final section of the melodic line. This result is similar to the findings of G. Gündüz and U. Gündüz
analyzing the entropy evolution associated to the connectivity of pitches in different melodies [28].

For each melodic line, Table 2 presents the final entropy S f , the maximum entropy reached by the
melodic line S∗max, and the maximum entropy generated by the ambitus of the corresponding melodic
line Smax.
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Figure 8. (a) Evolution of the Shannon entropy of melodic intervals for different melodic lines.
(b) Evolution of the Shannon entropy of melodic intervals for the melodic lines of the soprano,
in the Missa Super Dixit Maria, and Suite 2 BWV 1008 with the corresponding random melodies
constructed using the same ambitus. The maximum Shannon entropy of melodic intervals Smax

corresponds to the maximum possible value of the Shannon entropy of melodic intervals in a long
random melodic line with the same ambitus as the original one.

Table 2. Final Shannon entropy of melodic intervals S f , maximum Shannon entropy of melodic intervals
reached by each melodic line S∗max, maximum Shannon entropy of melodic intervals generated by the
ambitus of the corresponding melodic line Smax, Lagrange multipliers λ1 and λ2, mean dissonance level 〈D〉,
and mean dissonance level approximated using the Taylor expansion up to second order (Equation (25))
〈D〉∗. Melodic lines marked with “?” do not satisfy a linear relation between λ1 and 〈D〉.

Melodic Line S f S∗max Smax
λ1(×10−5)[

Hz−2] λ2(×10−7)[
Hz−2] 〈D〉

(×10−1)
〈D〉∗

(×10−1)

Violin 1 7.358 7.378 10.089 0.550 −1.870 1.282 1.278
Violin 2 7.213 7.234 10.000 0.570 −0.189 1.215 1.211
Violin 3 7.253 7.285 10.000 0.660 −0.895 1.242 1.240
Viola 1 6.941 6.953 9.615 1.330 −1.860 1.339 1.333
Viola 2 6.935 6.944 9.510 1.500 −1.280 1.381 1.375
Viola 3 7.022 7.053 9.716 1.540 −2.200 1.364 1.357
? Cello 1 6.888 6.904 9.716 6.300 −18.700 2.795 2.788
? Cello 2 6.884 6.899 9.716 6.400 −17.200 2.797 2.790
? Cello 3 6.862 6.879 9.716 6.500 −15.100 2.816 2.812
Violone 6.779 6.796 9.716 30.000 −34.000 4.900 4.917

? Harpsichord 6.779 6.796 9.716 7.400 −4.200 2.596 2.598
Soprano 5.055 5.082 8.340 1.940 −2.850 1.470 1.470

Contralto 5.247 5.313 8.644 3.250 −6.800 1.591 1.591
Tenor 5.443 5.491 7.615 5.100 −6.500 1.893 1.893
Bass 5.723 5.787 8.644 7.300 6.450 2.219 2.218

? Suite 1 7.069 7.073 10.000 3.500 −5.100 2.528 2.509
? Suite 2 7.235 7.248 10.000 3.700 −5.800 2.653 2.631

Mozart sonata 6.923 6.935 10.644 0.490 −1.520 1.353 1.357
First mov. Partita 7.145 7.145 10.000 0.295 −1.760 1.293 1.294
? Piccolo concerto 7.087 7.182 9.288 0.056 0.175 0.749 0.747
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6.3. Statistical Model for Melodic Lines: Relative Entropy Minimization under Macroscopic Constraints

From the previously presented definitions of melody [31,43] and the results in Figure 8a,b and
Table 2, we infer that the composer creates a melodic line among the richest in terms of the use of
melodic intervals, but in accordance with musical constraints. Because each melodic interval in the
12-TET scale corresponds to a particular value of f 2

t+1− f 2
t (except for unisons), and the expected value

of this quantity contains musical information, the work carried out by the composer can be modeled
as a procedure in which the relative entropy is minimized (the closest pk to qk) under constraints with
musical meaning.

Different musical constraints can be proposed in order to reduce the entropy value of a melodic
line away from that of a random one, and we propose the following ones.

Assuming that the total numbers of ascending and descending intervals and unisons are known,
the first two constraints measured from histograms are:

p̃d + p̃u =
N/2

∑
k=1

pk and p̃a + p̃u =
N

∑
k=( N

2 +1)

pk , (33)

where p̃a is the probability of an ascending interval, p̃d is that of a descending one, p̃u is the probability
of a unison, and p̃a + p̃d + p̃u = 1. Here, the unisons contribute to the ascending part as well as the
descending part, as was explained in the methods section.

The next constraint comes from the best estimation of the average magnitude of the melodic
intervals using histograms (Equation (11)):

〈|ε|〉 =
N

∑
k=1

pk · |εk| −
1
2
[ p̃u|εN/2|+ p̃u|ε(N/2)+1|] =

N

∑
k=1

pk · |εk| − p̃u|εN/2|, (34)

where the quantity − p̃u|εN/2| corrects the double counting of unisons.
The asymmetry in the magnitudes of ascending and descending intervals is the final constraint.

This asymmetry is present in the difference between the coefficients for the left and right branches in
Equations (29) and (30). Using histograms, the best estimate that we can obtain for Equation (28) is:

〈ε>0 〉+ 〈ε<0〉 =
1
p̃d

N/2

∑
k=1

pkεk +
1
p̃a

N

∑
k=N/2+1

pkεk + |εN/2|
(

p̃u

p̃d
− p̃u

p̃a

)
, (35)

where the quantity |εN/2|
(

p̃u
p̃d
− p̃u

p̃a

)
removes the contribution of unisons.

Supplementary Table S7 contains the values of the quantities shown in Equations (11) and (28)
and their corresponding approximations using histograms through Equations (34) and (35).

Minimizing the relative entropy subject to Equations (33)–(35) (in a similar procedure to that
shown in [47]) produces the following PD (see Supplementary Note S6 for further details):

pk =



( p̃d + p̃u)qke
(
−λ1|εk |−

λ2
p̃d

εk

)
N/2
∑

m=1

[
qme

(
−λ1|εm |−

λ2
p̃d

εm

)] for k ∈ [1, N/2]

( p̃a + p̃u)qke
(
−λ1|εk |−

λ2
p̃a εk

)
N
∑

m= N
2 +1

[
qme

(
−λ1|εm |−

λ2
p̃a εm

)] for k ∈ [N
2 + 1, N],

(36)

where λ1 and λ2 are the Lagrange multipliers for Equations (34) and (35), respectively. The values of
λ1 and λ2 were obtained using the expected values 〈|ε|〉 and 〈ε〉 from the histograms of the empirical
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distributions for the selected melodic lines, and allowing the relative error between the expected
values from the statistical model and those from the real data to be smaller than 1.0%. Supplementary
Table S7 contains the expected values used in the statistical model, and Table 2 presents the values of
the Lagrange multipliers generated from them. While the values of λ1 are positive, those of λ2 can be
positive or negative, exhibiting possible asymmetries in the use of ascending and descending intervals.
In addition, λ1 is between one and two orders of magnitude larger than λ2.

Figure 7b presents a comparison between the statistical model and the empirical results in the
case of Suite No. 2 BWV 1008. Some differences between the empirical data and the results from the
statistical model are expected, because there are patterns in real melodic lines that cannot be captured
by this simple model.

The CCD (ascending branch) and CD (descending branch) can be utilized to compare different
melodic lines that are either experimental or obtained from the statistical model. The CCD and CD
were obtained from the histograms produced by the statistical model, randomly distributing the
probability assigned to a bin between all the possible melodic intervals inside it, which were generated
using the ambitus of the corresponding melodic line. Because p̃u is known, the probability assigned to
0 inside the bins containing unisons was taken as p̃u, and the remaining probability of the bin was
distributed randomly in the other possible melodic intervals. Figure 9 depicts the CCD and CD for the
empirical data and the corresponding results from the statistical model for most melodic lines. In this
figure, and taking into account the values in Table 2, the following features can be inferred:

1. Different registers of musical instruments and human voices can be distinguished using the
Lagrange multiplier λ1, allowing, for example, to discriminate between the same melodic line
played in different parts of the register (a transposition). An example of a transposition is given
in the Brandenburg Concerto No. 3 BWV 1048 by J. S. Bach, in which the harpsichord plays the
same melodic line as the violone but transposed one octave higher (the fundamental frequency
ratio of the transposition is equal to 2): While the entropy evolution in these melodic lines is the
same, there is a change in the exponential decay parameters, characterized by the values of the
Lagrange multipliers (see Table 2), and the numerical values of the expected values are related as:

〈|ε|〉Harpsichord = 22〈|ε|〉Violone

〈| f 2
t+1 − f 2

t |〉Harpsichord = 22〈| f 2
t+1 − f 2

t |〉Violone

[〈ε>0 〉+ 〈ε<0〉]Harpsichord = 22 [〈ε>0 〉+ 〈ε<0〉]Violone[
〈( f 2

t+1 − f 2
t )>0〉+ 〈( f 2

t′+1 − f 2
t′)<0〉

]
Harpsichord

= 22
[
〈( f 2

t+1 − f 2
t )>0〉+ 〈( f 2

t′+1 − f 2
t′)<0〉

]
Violone

,

(37)

in agreement with the properties derived above for transposition processes (Equation (15)).
2. With respect to the quantitative results of the model, the orders of magnitude of the fit parameters

of the statistical model are in agreement with the corresponding results of the experimental
fits. For each melodic line, Supplementary Table S8 contains the fit parameters to discontinuous
asymmetric Laplace distributions, generated from the statistical model results. The average
relative error in the histograms for the amplitude of the exponential distributions is 17.1%, and
that for the decay coefficient is 20.6%. In the cases of the CD and CCD, the average errors of the
amplitude and the decay coefficient are 7.2% and 11.8%, respectively. Supplementary Table S9
contains the values of these errors for each melodic line.

3. In most cases (90% of the melodic lines), Equation (35) takes positive values (corresponding
to negative values of λ2), and p̃a − p̃d takes negative values (see Supplementary Table S3).
This behavior is consistent with the asymmetry represented in Figure 4, in the sense that the
magnitudes of ascending intervals are expected to be larger than those of descending ones, and
the total number of descending intervals must be larger than that of ascending ones. Negative
values of p̃a − p̃d and λ2 lead to different decay coefficients and different intercept points with
the ordinate axis for the ascending and descending branches, which can be observed in the



Entropy 2019, 21, 532 20 of 25

experimental fits of the CD and CCD through the comparison of the corresponding coefficients,
FC
+ < FC

− and GC
+ > GC

− (see Supplementary Table S5). Figure 6 was created with the purpose of
magnifying these particular asymmetries: P1 > P2 and α1 > α2 (implying that λ2 < 0). The two
exceptions are the Piccolo Concerto RV444 of Antonio Vivaldi, where λ2 > 0 and p̃a − p̃d > 0, and
the melodic line of the tenor voice in Missa Super Dixit Maria, where λ2 > 0 and p̃a − p̃d < 0.

4. Because the difference between λ1 and λ2 is between one and two orders of magnitude
(i.e., the decay coefficients have the same order of magnitude), and the bin width selection
affects the measure of the decay parameters, the asymmetry in the values of the decay coefficients
is better observed in the cumulative distributions than in the histograms.

5. Because in Figure 6, the limit P1 of the CD (constructed for descending intervals) when
f 2
t+1 − f 2

t → 0− represents the probability of a value slightly smaller than 0, and in the CCD
(constructed for ascending intervals), P2 when f 2

t+1 − f 2
t → 0+ represents the probability of a

value slightly larger than 0, the asymmetry p̃a − p̃d ≈ P2 − P1. This result can be observed in
Figure 9 and represents the difference in the amplitudes of the exponential decay for the CD and
CCD. In most cases, except for the Piccolo Concerto RV444, p̃a < p̃d, implying that P1 > P2. In the
case of the Piccolo Concerto RV444, it holds that p̃a > p̃d, implying that P1 < P2.
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Figure 9. Complementary cumulative distribution (CCD) (ascending branches) and cumulative
distribution (CD) (descending branches) for the empirical distributions (a,c,e) and the corresponding
statistical model results (b,d,f). (a,b) Brandenburg Concerto No. 3 in G Major BWV 1048 by J. S. Bach,
(c,d) Missa Super Dixit Maria by Hans Leo Hassler, and (e,f) Piccolo Concerto RV444 by Antonio Vivaldi;
First movement of the Partita in A Minor BWV 1013 by J. S. Bach; Sonata KV 545 by W. A. Mozart; Suite
No. 1 in G Major BWV 1007 by J. S. Bach and Suite No. 2 in D Minor BWV 1008 by J. S. Bach.
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6.4. Transposition Processes and Mean Dissonance Level of Melodic Lines

As explained in the section on melody, tonal consonance properties can be formally associated to
melodic intervals in the case of musicians. Because the musical instruments analyzed in this study use
vibrating strings and air columns, the main consonance properties may be captured using the model
of the harmonic spectrum presented in the tonal consonance section.

For each melodic line, the mean dissonance level 〈D〉 was measured using the curves shown in
Figure 3 for intervals inside the octave, and the chroma properties of pitch for intervals wider than one
octave. Table 2 lists the values of the mean dissonance 〈D〉 and their corresponding approximations
〈D〉∗ using 〈X〉L and σ2

L in Equation (25). Comparing 〈D〉∗ with 〈D〉, the observed relative error is less
than 1.0% for all melodic lines.

From the results in Table 2, melodic lines tend to be more dissonant for instruments with lower
registers, which is a well-known phenomenon in music theory [10]. An interesting case is that
of transposition, as the same melodic lines played in different parts of the register have different
dissonance levels. For example, the melodic line of the violone in the Brandenburg Concerto BWV 1048 is
perceived as more dissonant than that of the harpsichord.

Low registers are associated with small values of L, and therefore of 〈| f 2
t+1 − f 2

t |〉 and
consequently also 〈|ε|〉. For all melodic lines, a power law relation was observed between the quantity
〈|ε|〉 and the Lagrange multiplier λ1 (see Figure 10a):

λ1 = A〈|ε|〉B, (38)

where the magnitude of A is 9.423× 10−1 ± (9.76× 10−2), and B = −1.033± (1.26× 10−2), with
R2 = 0.998. If B is taken as −1, then A is dimensionless. Low values of 〈|ε|〉 correspond to high values
of λ1, and vice versa, and λ1 scales in a transposition process as:

λN
1 ≈ ω2BλO

1 , (39)

where λO
1 and λN

1 denote the first Lagrange multiplier in the original and new locations of the

register, respectively. For the transposition between the violone and the harpsichord, λ
Harpsichord
1 ≈

ω2(−1.033)λViolone
1 , with a 3% relative error (see Table 2).

For 13 of the melodic lines studied, a linear relation was observed between the mean dissonance
levels of melodic lines and the first Lagrange multiplier (see Figure 10b):

〈D〉 = C+Dλ1 , (40)

where C = 1.122× 10−1 ± (1.7× 10−3) and D = (1236.29± 19.81) Hz2, with R2 = 0.997.
The Lagrange multiplier λ1 locates the approximate region of exponential decay, and for these

13 melodic lines, this geometrical parameter can be employed as an indicator of the mean dissonance
properties. Strong exponential decays correspond to low registers with high dissonance levels, and
vice versa. The seven pieces that do not follow a linear relation (marked with “?” in Table 2 and dot
circles in Figure 10b) correspond to five cellos and a harpsichord, characterized by mean dissonance
values between 0.25 and 0.30, and the piccolo of Concerto RV444 with a mean dissonance level of 0.0749.

The results show that the model proposed is suitable for the classification and generation of music.
In the case of melody, the expected values can be used to classify melodic lines by their location in the
register and the asymmetry in the use of ascending and descending intervals. For music generation,
the expected values and the relevant PDs can be used as constraints for a melodic line, which is
equivalent to providing full sets of intervals to be used in the musical piece.
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Figure 10. (a) Power law relation between the quantity 〈|ε|〉 and the Lagrange multiplier λ1. (b) Relation
between the mean dissonance 〈D〉 and the Lagrange multiplier λ1. For 13 of the 20 melodic lines,
a linear relation was observed.

7. Conclusions

The concept of the musical interval size was extended using two physical quantities: The difference
between the fundamental frequencies of pitches and the difference in the squares of the fundamental
frequencies. We explored the characteristics of these quantities in three different musical scales:
The just, Pythagorean, and 12-TET. We found that both quantities contain information on the size
of the interval and its location in the register, owing to the existence of a relationship between the
construction rules of the scales and the sizes of intervals, which becomes linear in the most relevant
regime for utilization in music. These quantities can be measured with different precision levels,
allowing us in many cases to lift a degeneracy associated with the traditional musical interval size
concept, in the sense that it cannot distinguish intervals of the same size located in different locations
of the register.

The expected values of the two physical quantities were shown to be macroscopic quantities
that contain relevant musical information. Specifically, they correspond to a generalization of the
traditional mean musical interval size, as the expected values also take into account the mean location
and the dispersion of the intervals in the register.

A link between the theory of tonal consonance and the expected values of the two considered
physical quantities was developed. Specifically, knowing the mean location of musical intervals with a
given size in the register, and the corresponding variance, it is possible to measure both the expected
values and the mean dissonance properties of a musical piece, owing to the use of musical intervals
produced by an instrument with a particular timbre.

In order to verify the usefulness of this formalism, it was applied to melodies. The frequency
of occurrences of melodic intervals in 20 melodic lines from seven masterpieces of Western tonal
music was measured, and the probability distributions of both quantities were obtained. In all cases,
we obtained noncontinuous asymmetric Laplace distributions. In addition, the Shannon entropy
associated with the appearances of melodic intervals during the progression of a melodic line increases
up to a limiting value, which is smaller than the corresponding entropy for a random composition.
In order to explain these empirical findings, a statistical model based on the minimization of the
relative entropy under constraints was proposed for the difference in the squares of the fundamental
frequencies. Two constraints are associated with the number of ascending, descending, and unison
intervals, and the two other constraints correspond to expected values arising from the average
magnitude of the physical quantity, and the asymmetry in the magnitudes of ascending and descending
intervals. The model includes two Lagrange multipliers. The first locates the region in the register
where the melody is played, giving information on musical processes such as transposition. The second
captures asymmetry patterns between ascending and descending intervals. For 13 of the 20 studied
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melodic lines, the first Lagrange multiplier is related to the mean dissonance level of the melodic line,
connecting macroscopic statistical properties with psychoacoustic features of the system.

The presented findings show that for the studied musical pieces, the selection of melodic intervals
made by the composers, including their locations in the register, can be modeled as a tight compromise
between order and disorder, with a principle of entropy extremalization constrained by macroscopic
quantities with musical meanings, which embed microscopic musical rules, as well as the composer’s
preferences. While many complex systems exhibit emergent properties associated to nonphysical
quantities, this work employed physical parameters to trace a connection between the properties of a
musical piece as a whole and the psychoacoustic properties of its individual elements.
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