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Abstract: We study the arbitrarily varying relay channel, which models communication with relaying
in the presence of an active adversary. We establish the cutset bound and partial decode-forward
bound on the random code capacity. We further determine the random code capacity for special
cases. Then, we consider conditions under which the deterministic code capacity is determined as
well. In addition, we consider the arbitrarily varying Gaussian relay channel with sender frequency
division under input and state constraints. We determine the random code capacity, and establish
lower and upper bounds on the deterministic code capacity. Furthermore, we show that as opposed
to previous relay models, the primitive relay channel has a different behavior compared to the
non-primitive relay channel in the arbitrarily varying scenario.

Keywords: arbitrarily varying channel; relay channel; decode-forward; Markov block code; minimax
theorem; deterministic code; random code; symmetrizability.

1. Introduction

The relay channel was first introduced by van der Meulen [1] to describe point-to-point
communication with the help of a relay, which receives a noisy version of the transmitter signal
and transmits a signal of its own to the destination receiver. The relay channel is generally perceived
as a fundamental building block for multihop networks (see e.g., [2,3], Chapter 16), where some nodes
receive and transmit in order to assist the information flow between other nodes. The capacity of the
relay channel is not known in general, however, Cover and El Gamal established the cutset upper
bound, the decode-forward lower bound, and the partial decode-forward lower bound [4]. It was also
shown in [4] that for the reversely degraded relay channel, direct transmission is capacity achieving.
For the degraded relay channel, the decode-forward lower bound and the cutset upper bound coincide,
thus characterizing the capacity for this model [4].

In general, the partial decode-forward lower bound is tighter than both direct transmission and
decode-forward lower bounds. El Gamal and Zahedi [5] determined the capacity of the relay channel
with orthogonal sender components, by showing that the partial decode-forward lower bound and
cutset upper bound coincide. A variation of the relay channel, referred to as the primitive relay channel,
was introduced by Kim [2], and attracted a lot of attention (see e.g., [6–12] and references therein).
Recently, there has also been a growing interest in the Gaussian relay channel, as e.g., in [5,7,9,13–16]
and references therein. In particular, El Gamal and Zahedi [5] introduced the Gaussian relay channel
with sender frequency division (SFD), as a special case of a relay channel with orthogonal sender
components. There are many other relaying scenarios, including secrecy [17,18], networking [15,19–22],
parallel relaying [23–25], diamond channels [26–28], side information [29–33], etc.
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In practice, the channel statistics are not necessarily known in exact, and they may even change
over time. The arbitrarily varying channel (AVC) is an appropriate model to describe such a
situation [34]. In real systems, such variations are caused by fading in wireless communication [35–42],
memory faults in storage [43–47], malicious attacks on identification and authorization systems [48,49],
etc.It is especially relevant to communication in the presence of an adversary, or a jammer, attempting to
disrupt communication. Jamming attacks are not limited to point-to-point communication, and cause
a major security concern for cognitive radio networks [50] and wireless sensor networks [42,51–54],
for instance.

Considering the AVC without a relay, Blackwell et al. determined the random code capacity [34],
i.e., the capacity achieved by stochastic-encoder stochastic-decoder coding schemes with common
randomness. It was also demonstrated in [34] that the random code capacity is not necessarily
achievable using deterministic codes. A well-known result by Ahlswede [55] is the dichotomy property
of the AVC. Specifically, the deterministic code capacity either equals the random code capacity or else,
it is zero. Subsequently, Ericson [56] and Csiszár and Narayan [57] established a simple single-letter
condition, namely non-symmetrizability, which is both necessary and sufficient for the capacity to
be positive. Ahlswede’s Robustification Technique (RT) is a useful technique for the AVC analysis,
developed and applied to classical AVC settings [58,59]. Essentially, the RT uses a reliable code for the
compound channel to construct a random code for the AVC applying random permutations to the
codeword symbols. A continuing line of works on arbitrarily varying networks includes among others
the arbitrarily varying broadcast channel [60–65], multiple-access channel [60,66–75], and wiretap
channel [76–84]. The reference lists here are far from being exhaustive.

In this work, we introduce a new model, namely, the arbitrarily varying relay channel (AVRC).
The AVRC combines the previous models, i.e., the relay channel and the AVC, and we believe that
it is a natural problem to consider, in light of the jamming attacks on current and future networks,
as mentioned above. In the analysis, we incorporate the block Markov coding schemes of [4] in
Ahlswede’s Robustification and Elimination Techniques [55,59]. A straightforward application of
Ahlswede’s RT fails to comply with the strictly causal relay transmission. In a recent work [85,86],
by the authors of this paper, a modified RT technique was presented and applied to the point-to-point
AVC with causal side information under input and state constraints, without a relay. This was the first
time where the application of the RT exploited the structure of the original compound channel code to
construct a random code for the AVC, as opposed to earlier work where the original code is treated as
a “black box”. Here, we present another modification of the RT, which also exploits the structure of the
original compound channel code, but in a different manner. The analysis also requires to redefine the
compound channel, and we refer to the newly defined channel as the block-compound relay channel.

We establish the cutset upper bound and the full/partial decode-forward lower bound on the
random code capacity of the AVRC. The random code capacity is determined in special cases of the
degraded AVRC, the reversely degraded AVRC, and the AVRC with orthogonal sender components.
Then, we give extended non-symmetrizability conditions under which the deterministic code capacity
coincides with the random code capacity. We show by example that the deterministic code capacity
can be strictly lower than the random code capacity of the AVRC. Then, we consider the Gaussian
AVRC with SFD, under input and state constraints. The random code capacity is determined using
the previous results, whereas the deterministic code capacity is lower and upper bounded using an
independent approach. Specifically, we extend the techniques from [87], where Csiszár and Narayan
determine the capacity of the Gaussian AVC under input and state constraint. It is shown that for low
values on the input constraint, the deterministic code capacity can be strictly lower than the random
code capacity, but yet non-zero.

Furthermore, we give similar bounds for the primitive AVRC, where there is a noiseless link
between the relay and the receiver of limited capacity [2]. We find the capacity of the primitive
counterpart of the Gaussian AVRC with SFD, in which case the deterministic and random code
capacities coincide, regardless of the value of the input constraint. We deduce that Kim’s assertion—that
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“the primitive relay channel captures most essential features and challenges of relaying, and thus serves
as a good testbed for new relay coding techniques” [2]—is not true in the arbitrarily varying scenario.

This work is organized as follows. In Section 2, the basic definitions and notation are provided.
In Section 3, we give the main results on the general AVRC. The Gaussian AVRC with SFD is introduced
in Section 4, and the main results are given in Section 5. The definition and results on the primitive
AVRC are in Section 6.

2. Definitions

2.1. Notation

We use the following notation conventions throughout. Calligraphic letters X ,S ,Y , ... are used
for finite sets. Lowercase letters x, s, y, . . . stand for constants and values of random variables, and
uppercase letters X, S, Y, . . . stand for random variables. The distribution of a random variable X is
specified by a probability mass function (pmf) PX(x) = p(x) over a finite set X . The set of all pmfs over
X is denoted by P(X ). We use xj = (x1, x2, . . . , xj) to denote a sequence of letters from X . A random
sequence Xn and its distribution PXn(xn) = p(xn) are defined accordingly. For a pair of integers i and
j, 1 ≤ i ≤ j, we define the discrete interval [i : j] = {i, i + 1, . . . , j}. The notation x = (x1, x2, . . . , xn) is
used when it is understood from the context that the length of the sequence is n, and the `2-norm of x
is denoted by ‖x‖.

2.2. Channel Description

A state-dependent discrete memoryless relay channel (X ,X1,S , WY,Y1|X,X1,S,Y ,Y1) consists of
five sets, X , X1, S , Y and Y1, and a collection of conditional pmfs WY,Y1|X,X1,S. The sets stand for the
input alphabet, the relay transmission alphabet, the state alphabet, the output alphabet, and the relay
input alphabet, respectively. The alphabets are assumed to be finite, unless explicitly said otherwise.
The channel is memoryless without feedback, and therefore

WYn ,Yn
1 |Xn ,Xn

1 ,Sn(yn, yn
1 |xn, xn

1 , sn) =
n

∏
i=1

WY,Y1|X,X1,S(yi, y1,i|xi, x1,i, si) . (1)

Communication over a relay channel is depicted in Figure 1. Following [29], a relay channel WY,Y1|X,X1,S
is called degraded if the channel can be expressed as

WY,Y1|X,X1,S(y, y1|x, x1, s) = WY1|X,X1,S(y1|x, x1, s)WY|Y1,X1,S(y|y1, x1, s) , (2)

and it is called reversely degraded if

WY,Y1|X,X1,S(y, y1|x, x1, s) = WY|X,X1,S(y|x, x1, s)WY1|Y,X1,S(y1|y, x1, s) . (3)

We say that the relay channel is strongly degraded or reversely degraded, if the respective definition
holds such that the sender-relay marginal is independent of the state. That is, WY,Y1|X,X1,S is strongly
degraded if WY,Y1|X,X1,S = WY1|X,X1

WY|Y1,X1,S, and similarly, WY,Y1|X,X1,S is strongly reversely degraded
if WY,Y1|X,X1,S = WY|X,X1,SWY1|Y,X1

. For example, if Y1 = X + Z and Y = Y1 + X1 + S, where Z is an
independent additive noise, then WY,Y1|X,X1,S is strongly degraded. Whereas, if Y = X + X1 + S and
Y1 = Y + Z, then WY,Y1|X,X1,S is strongly reversely degraded.

The arbitrarily varying relay channel (AVRC) is a discrete memoryless relay channel
(X ,X1,S , WY,Y1|X,X1,S,Y ,Y1) with a state sequence of unknown distribution, not necessarily
independent nor stationary. That is, Sn ∼ q(sn) with an unknown joint pmf q(sn) over Sn. In particular,
q(sn) can give mass 1 to some state sequence sn. We use the shorthand notation L = {WY,Y1|X,X1,S} for
the AVRC, where the alphabets are understood from the context.
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To analyze the AVRC, we consider the compound relay channel. Different models of compound relay
channels have been considered in the literature [30,88]. Here, we define the compound relay channel
as a discrete memoryless relay channel (X ,X1,S , WY,Y1|X,X1,S,Y ,Y1) with a discrete memoryless state,
where the state distribution q(s) is not known in exact, but rather belongs to a family of distributionsQ,
with Q ⊆ P(S). That is, Sn ∼ ∏n

i=1 q(si), with an unknown pmf q ∈ Q over S . We use the shorthand
notation LQ for the compound relay channel, where the transition probability WY,Y1|X,X1,S and the
alphabets are understood from the context.

In the analysis, we also use the following model. Suppose that the user transmits B > 0 blocks
of length n, and the jammer is entitled to use a different state distribution qb(s) ∈ Q for every
block b ∈ [1 : B], while the encoder, relay and receiver are aware of this jamming scheme. In other
words, every block is governed by a different memoryless state. We refer to this channel as the
block-compound relay channel, denoted by LQ×B. Although this is a toy model, it is a useful tool for
the analysis of the AVRC.

Encoder WY,Y1|X,X1,S

Relay Encoder

Decoder
M Xi

Y i−1
1

X1,i

Yi M̂

Figure 1. Communication over the arbitrarily varying relay channel L = {WY,Y1|X,X1,S}. Given a
message M, the encoder transmits Xn = f (M). At time i ∈ [1 : n], the relay transmits X1,i based on
all the symbols of the past Yi−1

1 and then receives a new symbol Y1,i. The decoder receives the output
sequence Yn, and finds an estimate of the message M̂ = g(Yn).

2.3. Coding

We introduce some preliminary definitions, starting with the definitions of a deterministic code
and a random code for the AVRC L. Note that in general, the term ‘code’, unless mentioned otherwise,
refers to a deterministic code.

Definition 1 (A code, an achievable rate and capacity). A (2nR, n) code for the AVRC L consists of
the following; a message set [1 : 2nR], where it is assumed throughout that 2nR is an integer, an encoder
f : [1 : 2nR]→ X n, a sequence of n relaying functions f1,i : Y i−1

1 → X1,i, i ∈ [1 : n], and a decoding function
g : Yn → [1 : 2nR].

Given a message m ∈ [1 : 2nR], the encoder transmits xn = f (m). At time i ∈ [1 : n], the relay transmits

x1,i = f1,i(yi−1
1 ) and then receives y1,i. The relay codeword is given by xn

1 = f n
1 (y

n
1 ) ,

(
f1,i(yi−1

1 )
)n

i=1
.

The decoder receives the output sequence yn, and finds an estimate of the message m̂ = g(yn) (see Figure 1).
We denote the code by C =

(
f (·), f n

1 (·), g(·)
)
. Define the conditional probability of error of the code C given a

state sequence sn ∈ Sn by

P(n)
e|sn(C ) =

1
2nR

2nR

∑
m=1

∑
(yn ,yn

1 ) : g(yn) 6=m

[
n

∏
i=1

WY,Y1|X,X1,S(yi, y1,i| fi(m), f1,i(yi−1
1 ), si)

]
. (4)

Now, define the average probability of error of C for some distribution q(sn) ∈ P(Sn),

P(n)
e (q, C ) = ∑

sn∈Sn
q(sn) · P(n)

e|sn(C ) . (5)
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Observe that P(n)
e (q, C ) is linear in q, and thus continuous. We say that C is a (2nR, n, ε) code for the AVRC L

if it further satisfies

P(n)
e (q, C ) ≤ ε , for all q(sn) ∈ P(Sn) . (6)

A rate R is called achievable if for every ε > 0 and sufficiently large n, there exists a (2nR, n, ε) code.
The operational capacity is defined as the supremum of the achievable rates and it is denoted by C(L). We use
the term ‘capacity’ referring to this operational meaning, and in some places we call it the deterministic code
capacity in order to emphasize that achievability is measured with respect to deterministic codes.

We proceed now to define the parallel quantities when using stochastic-encoders stochastic-decoder
triplets with common randomness. The codes formed by these triplets are referred to as random codes.

Definition 2 (Random code). A (2nR, n) random code for the AVRC L consists of a collection of (2nR, n)
codes {Cγ = ( fγ, f n

1,γ, gγ)}γ∈Γ, along with a probability distribution µ(γ) over the code collection Γ. We
denote such a code by C Γ = (µ, Γ, {Cγ}γ∈Γ). Analogously to the deterministic case, a (2nR, n, ε) random code
has the additional requirement

P(n)
e (q, C Γ) = ∑

γ∈Γ
µ(γ)P(n)

e (q, Cγ) ≤ ε , for all q(sn) ∈ P(Sn) . (7)

The capacity achieved by random codes is denoted by C?(L), and it is referred to as the random code capacity.

3. Main Results—General AVRC

We present our results on the compound relay channel and the AVRC.

3.1. The Compound Relay Channel

We establish the cutset upper bound and the partial decode-forward lower bound for the
compound relay channel. Consider a given compound relay channel LQ. Let

RCS(LQ) , inf
q∈Q

max
p(x,x1)

min
{

Iq(X, X1; Y) , Iq(X; Y, Y1|X1)
}

, (8)

and

RPDF(LQ) , max
p(u,x,x1)

min
{

inf
q∈Q

Iq(U, X1; Y) + inf
q∈Q

Iq(X; Y|X1, U) ,

inf
q∈Q

Iq(U; Y1|X1) + inf
q∈Q

Iq(X; Y|X1, U)
}

, (9)

where the subscripts ‘CS’ and ‘DF’ stand for ‘cutset’ and ‘partial decode-forward’, respectively.

Lemma 1. The capacity of the compound relay channel LQ is bounded by

C(LQ) ≥ RPDF(LQ) , (10)

C?(LQ) ≤ RCS(LQ) . (11)

Specifically, if R < RPDF(LQ), then there exists a (2nR, n, e−an) block Markov code over LQ for sufficiently
large n and some a > 0.

The proof of Lemma 1 is given in Appendix A. The achievability proof is based on block
Markov coding interlaced with the partial decode-forward scheme. That is, the encoder sends a
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sequence of messages over multiple blocks. The message in each block consists of two components, a
decode-forward component, and a direct transmission component, where only the former is decoded
by the relay. The name ‘decode-forward component’ stands for the fact that the relay decodes this
message component and sends its estimation forwards, to the destination receiver. Once the decoder
has received all blocks, the decode-forward components are decoded backwards, i.e., starting with the
message in the last block going backwards. Using the estimation of the decode-forward components,
the direct transmission components are decoded forwards, i.e., starting with the message in the first
block going forwards. The ambiguity of the state distribution needs to be dealt with throughout all of
those estimations. In both decoding stages, the receiver performs joint typicality decoding using a set
of types that “quantizes” the set Q of state distributions.

Remark 1. If the set of state distributions Q is convex, then the upper bound expression in the RHS of
Equation (8) has a min max form. On the other hand, in the lower bound expression in the RHS of Equation (9),
the maximum comes first, and then we have multiple min terms, which makes this expression a lot more
complicated than the classical partial decode-forward bound [4] (see also [3], Theorem 16.3), where Markov
properties lead to a simpler expression. We note that this phenomenon (or one might say, disturbance) where
the lower bound has multiple min terms is not exclusive to the AVRC. A noteworthy example is the arbitrarily
varying wiretap channel [76,89], where the lower bound has the form of max[min Iq(U; Y)−max Iq(U; Z)].
While the capacity of the classical wiretap channel is known, the arbitrarily varying counterpart has remained an
open problem for several years.

Observe that taking U = ∅ in (9) gives the direct transmission lower bound,

C(LQ) ≥RPDF(LQ) ≥ max
p(x,x1)

inf
q∈Q

Iq(X; Y|X1) . (12)

Taking U = X in (9) results in a full decode-forward lower bound,

C(LQ) ≥RPDF(LQ) ≥ max
p(x,x1)

inf
q∈Q

min
{

Iq(X, X1; Y) , Iq(X; Y1|X1)
}

. (13)

This yields the following corollary. The corollary uses the terms of a strongly degraded relay channel,
for which WY,Y1|X,X1,S = WY1|X,X1

WY|Y1,X1,S, and a strongly reversely degraded relay channel, for
which WY,Y1|X,X1,S = WY|X,X1,SWY1|Y,X1

, as defined in Section 2.2.

Corollary 1. Let LQ be a compound relay channel, where Q is a compact convex set.

1. If WY,Y1|X,X1,S is strongly reversely degraded, then

C(LQ) = RPDF(LQ) = RCS(LQ) = min
q∈Q

max
p(x,x1)

Iq(X; Y|X1) . (14)

2. If WY,Y1|X,X1,S is strongly degraded, then

C(LQ) = RPDF(LQ) = RCS(LQ) = max
p(x,x1)

min
{

min
q∈Q

Iq(X, X1; Y) , I(X; Y1|X1)

}
. (15)

The proof of Corollary 1 is given in Appendix B. Part 1 follows from the direct transmission and
cutset bounds, (12) and (8), respectively, while part 2 is based on the full decode-forward and cutset
bounds, (13) and (8), respectively, along with the convexity considerations in the remark below.

Remark 2. On a technical level, there are two purposes for considering the strongly degraded relay channel, for
which the marginal channel to the relay is independent of the state, i.e., WY1|X,X1,S = WY1|X,X1

(see Section 2.2).
First, this ensures that X − (X1, Y1) − Y form a Markov chain, without conditioning on S. Secondly,
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as pointed out in Remark 1, there is a difference between the order of the min and max in the lower and
upper bounds (cf. (8) and (9)). Thereby, proving the capacity results of Corollary 1 above, we apply the
minimax theorem. In general, a pointwise minimum of two convex functions may not necessarily yield a
convex function. Nevertheless, having assumed that the relay channel is strongly degraded, the functional
G(p, q) = min{Iq(X, X1; Y) , I(X; Y1|X1)} is quasi-convex in the state distribution, i.e.,

G(p, (1− α)q1 + αq2)) ≤ max (G(p, q1), G(p, q2)) , (16)

for every p ∈ P(X × X1), q1, q2 ∈ Q, and 0 ≤ α ≤ 1. The quasi-convex shape is illustrated in Figure 2,
which depicts G(p, q) for an example given in the sequel. By [90] (Theorem 3.4), the minimax theorem applies to
quasi-convex functions as well, which alleviates the proof of Corollary 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q

0.5

0.55

0.6

0.65

G
(1

/2
,q

)

Figure 2. The functional G(p, q) = min{Iq(X, X1; Y) , I(X; Y1|X1)}, for S ∼ Bernoulli(q), 0 ≤ q ≤ 1,
as a function of q. The figure corresponds to Example 1, where G(p, q) = min{1− 1

2 h(q) , 1− h(θ)},
for p(x, x1) = p(x)p(x1), with X ∼ Bernoulli( 1

2 ) and X1 ∼ Bernoulli( 1
2 ), and θ = 0.08. Clearly, G(p, q)

is not convex in q, but rather quasi-convex in q.

The following corollary is a direct consequence of Lemma 1 and it is significant for the random
code analysis of the AVRC.

Corollary 2. The capacity of the block-compound relay channel LQ×B is bounded by

C(LQ×B) ≥ RPDF(LQ) , (17)

C?(LQ×B) ≤ RCS(LQ) . (18)

Specifically, if R < RPDF(LQ), then there exists a (2nR, n, e−an) block Markov code over LQ×B for sufficiently
large n and some a > 0.

The proof of Corollary 2 is given in Appendix C.

3.2. The AVRC

We give lower and upper bounds, on the random code capacity and the deterministic code
capacity, for the AVRC L.

3.2.1. Random Code Lower and Upper Bounds

The random code bounds below are obtained through a modified version of Ahlswede’s RT, using
our results on the block-compound relay channel in Corollary 2. Define

R?PDF(L) , RPDF(LQ)
∣∣∣∣
Q=P(S)

, R?CS(L) , RCS(LQ)
∣∣∣∣
Q=P(S)

. (19)
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Theorem 1. The random code capacity of an AVRC L is bounded by

R?PDF(L) ≤ C?(L) ≤ R?CS(L) . (20)

The proof of Theorem 1 is given in Appendix D. To prove Theorem 1 we modify Ahlswede’s
RT. A straightforward application of Ahlswede’s RT fails to comply with the strictly causal relay
transmission. Essentially, the RT uses a reliable code for the compound channel code to construct a
random code for the AVC, applying random permutations to the transmitted codeword. However, the
relay cannot apply permutations to its transmission, since at time i ∈ [1 : n], the relay cannot compute
f1,j(y

j−1
1 ), for j > i, as the relay encoder only knows the past received symbols y1,1, . . . , y1,i−1, and

does not have access to the symbols y1,i, . . . , y1,j−1 which will be received in the future. To resolve this
difficulty, we use a block Markov code for the block compound channel. In a block Markov coding
scheme, the relay sends xn

1,b in block b, using the sequence of symbols yn
1,b−1 received in the previous

block. Since the entire sequence yn
1,b−1 is known to the relay encoder, permutations can be applied

to the transmission in each block separately. Hence, our proof exploits the structure of the original
block-compound channel code to construct a random code for the AVRC, as opposed to classical works
where the RT is used such that the original code is treated as a “black box” [59].

Remark 3. Block Markov coding with partial decode-forward is not a simple scheme by itself, and thus, using
the RT requires careful attention. In particular, by close inspection of the proof of Theorem 1, one may recognize
that the necessity of using the block-compound relay channel, rather than the standard compound channel, stems
from the fact that for the AVRC, the state sequences may have completely different types in each block. For each
block, we use the RT twice. First, the RT is applied to the probability of the backward decoding error, for the
message component which is decoded by the relay. Then, it is applied to the probability of forward decoding error,
for the message component which is transmitted directly.

Together with Corollary 1, the theorem above yields another corollary.

Corollary 3. Let L be an AVRC.

1. If WY,Y1|X,X1,S is strongly reversely degraded,

C?(L) = R?PDF(L) = R?CS(L) = min
q(s)

max
p(x,x1)

Iq(X; Y|X1) . (21)

2. If WY,Y1|X,X1,S is strongly degraded,

C?(L) = R?PDF(L) = R?CS(L) = max
p(x,x1)

min
{

min
q(s)

Iq(X, X1; Y) , I(X; Y1|X1)

}
. (22)

Before we proceed to the deterministic code capacity, we note that Ahlswede’s Elimination
Technique [55] can be applied to the AVRC as well. Hence, the size of the code collection of any reliable
random code can be reduced to polynomial size.

3.2.2. Deterministic Code Lower and Upper Bounds

In the next statements, we characterize the deterministic code capacity of the AVRCL. We consider
conditions under which the deterministic code capacity is positive, and it coincides with the random
code capacity, and conditions under which it is lower. For every x1 ∈ X1, let W1(x1) and W(x1)

denote the marginal AVCs from the sender to the relay and from the sender to the destination receiver,
respectively,

W1(x1) = {WY1|X,X1,S(·|·, x1, ·)} , W(x1) = {WY|X,X1,S(·|·, x1, ·)} . (23)
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See Figure 3.

X

Y1 : X1

Y

W1(x1)

W(x1)

Figure 3. The marginals of the arbitrarily varying relay channel. For every relay transmission x1 ∈ X1,
the marginal sender-relay AVC is denoted by W1(x1) = {WY1|X,X1,S(·|·, x1, ·)}, and the marginal
sender-receiver AVC is denoted byW(x1) = {WY|X,X1,S(·|·, x1, ·). A sufficient condition, under which
the deterministic code capacity is the same as the random code capacity of the AVRC, is given in
Lemma 2. This condition is also a sufficient condition for positive capacity, but as explained in
Remark 4, it is not a necessary condition.

Lemma 2 gives a condition under which the deterministic code capacity is the same as the random
code capacity. The condition is given in terms of the marginal AVCsW1(x1) andW(x1).

Lemma 2. If the marginal sender-relay and sender-reciever AVCs have positive capacities, i.e., C(W1(x1,1)) >

0 and C(W(x1,2)) > 0, for some x1,1, x1,2 ∈ X1, then the capacity of the AVRC L is positive, and it coincides
with the random code capacity, i.e., C(L) = C?(L) > 0.

The proof of Lemma 2 is given in Appendix E, extending Ahlswede’s Elimination Technique [55].
Next, we give a computable sufficient condition, under which the deterministic code capacity

coincides with the random code capacity. For the point to point AVC, this occurs if and only if
the channel is non-symmetrizable [56,57] (Definition 2). Our condition here is given in terms of an
extended definition of symmetrizability, akin to [67] (Definition 3.2).

Definition 3. A state-dependent relay channel WY,Y1|X,X1,S is said to be symmetrizable-X |X1 if for some
conditional distribution J(s|x),

∑
s∈S

WY,Y1|X,X1,S(y, y1|x, x1, s)J(s|x̃) = ∑
s∈S

WY,Y1|X,X1,S(y, y1|x̃, x1, s)J(s|x) ,

∀ x, x̃ ∈ X , x1 ∈ X1 , y ∈ Y , y1 ∈ Y1 . (24)

Equivalently, for every given x1 ∈ X1, the channel WȲ|X,X1,S(·|·, x1, ·) is symmetrizable, where Ȳ = (Y, Y1).

A similar definition applies to the marginals WY|X,X1,S and WY1|X,X1,S. Note that symmetrizability
of each of these marginals can be checked, without reference to whether the channel is degraded or
strongly degraded.

Corollary 4. Let L be an AVRC.

1. If WY|X,X1,S and WY1|X,X1,S are non-symmetrizable-X |X1, then C(L) = C?(L) > 0. In this case,

R?PDF(L) ≤ C(L) ≤ R?CS(L) . (25)

2. If WY,Y1|X,X1,S is strongly reversely degraded, where WY1|X,X1,S is non-symmetrizable-X |X1, then

C(L) = C?(L) = R?PDF(L) = R?CS(L) = min
q(s)

max
p(x,x1)

Iq(X; Y|X1) . (26)
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3. If WY,Y1|X,X1,S is strongly degraded, where WY|X,X1,S is non-symmetrizable-X |X1 and
WY1|X,X1

(y1|x, x1) 6= WY1|X,X1
(y1|x̃, x1) for some x, x̃ ∈ X , x1 ∈ X1 and y1 ∈ Y1, then

C(L) = C?(L) = R?PDF(L) = R?CS(L) = max
p(x,x1)

min
{

min
q(s)

Iq(X, X1; Y) , I(X; Y1|X1)

}
. (27)

The proof of Corollary 4 is given in Appendix F.

Remark 4. By Corollary 4, we have that non-symmetrizability of the marginal AVCs,W1(x1,1) andW(x1,2),
for some x1,1, x1,2 ∈ X1, is a sufficient condition for positive capacity (see Figure 3). This raises the question
whether it is a necessary condition as well. In other words: IfW1(x1) andW(x1) are symmetrizable for all
x1 ∈ X1, does that necessarily imply that the capacity is zero? The answer is no. We show this using a very
simple example. Suppose that Y1 = S and Y = (X1, X + S), where all variables are binary. It is readily seen
that for both Y1 and Y, the input and the state are symmetric, for every given X1 = x1. Hence,W1(x1) and
W(x1) are symmetrizable for all x1 ∈ X1. Nevertheless, we note that since the relay can send X1 = Y1 = S,
this is equivalent to an AVC with state information at the decoder. As the decoder can use X1 to eliminate the
state, the capacity of this AVRC is C(L) = 1. In Lemma 3 below, we give a stronger condition which is a
necessary condition for positive capacity.

Remark 5. Note that there are 4 symmetrizability cases in terms of the sender-relay channel WY1|X,X1,S
and the sender-receiver channel WY|X,X1,S. For the case where WY1|X,X1,S and WY|X,X1,S are both
non-symmetrizable-X |X1, the lemma above asserts that the capacity coincides with the random code capacity.
In other cases, one may expect the capacity to be lower than the random code capacity. For instance, if WY|X,X1,S
is non-symmetrizable-X |X1, while WY1|X,X1,S is symmetrizable-X |X1, then the capacity is positive by direct
transmission. Furthermore, in this case, if the channel is reversely degraded, then the capacity coincides with the
random code capacity. However, it remains in question whether this is true in general, when the channel is not
reversely degraded.

Next, we consider conditions under which the capacity is zero. Observe that if WY,Y1|X,X1,S
is symmetrizable-X |X1 then so are WY|X,X1,S and WY1|X,X1,S. Intuitively, if the AVRC is
symmetrizable-X |X1, then it is a poor channel. For example, say Y1 = X + X1 + S and Y = X · X1 · S,
with S = X . Then, the jammer can confuse the decoder by taking the state sequence Sn to be some
codeword. The following lemma validates this intuition.

Lemma 3. If the AVRC L is symmetrizable-X |X1, then it has zero capacity, i.e., C(L) = 0. Equivalently,
non-symmetrizability-X |X1 of the AVRC L is a necessary condition for positive capacity.

Lemma 3 is proved in Appendix G, using an extended version of Ericson’s technique [56].
For a strongly degraded AVRC, we have a simpler symmetrizability condition under which the
capacity is zero.

Definition 4. Let WY,Y1|X,X1,S = WY1|X,X1
WY|Y1,X1,S be a strongly degraded relay channel. We say that

WY,Y1|X,X1,S is symmetrizable-X1 ×Y1 if for some conditional distribution J(s|x1, y1),

∑
s∈S

WY|Y1,X1,S(y|y1, x1, s)J(s|x̃1, ỹ1) = ∑
s∈S

WY|Y1,X1,S(y|ỹ1, x̃1, s)J(s|x1, y1) ,

∀ x̃1, x1 ∈ X1 , y ∈ Y , y1, ỹ1 ∈ Y1 . (28)

Equivalently, the channel WY|Ȳ1,S is symmetrizable, where Ȳ1 = (Y1, X1).



Entropy 2019, 21, 516 11 of 48

Lemma 4. If the AVRC L is strongly degraded and symmetrizable-X1 × Y1, then it has zero capacity, i.e.,
C(L) = 0.

Lemma 4 is proved in Appendix H. An example is given below.

Example 1. Consider a state-dependent relay channel WY,Y1|X,X1,S, specified by

Y1 =X + Z mod 2 ,

Y =X1 + S ,

where X = X1 = Z = S = Y1 = {0, 1} and Y = {0, 1, 2}, and the additive noise is distributed
according to Z ∼ Bernoulli(θ), 0 ≤ θ ≤ 1. It is readily seen that WY,Y1|X,X1,S is strongly degraded and
symmetrizable-X1 ×Y1, by (2) and (28). In particular, (28) is satisfied with J(s|x1, y1) = 1 for s = x1, and
J(s|x1, y1) = 0 otherwise. Hence, by Lemma 4, the capacity is C(L) = 0. On the other hand, we show that
the random code capacity is given by C?(L) = min

{
1
2 , 1− h(θ)

}
, using Corollary 3. The derivation of the

random code capacity is given in Appendix I.

3.3. AVRC with Orthogonal Sender Components

Consider the special case of a relay channel WY,Y1|X,X1,S with orthogonal sender components [5]; [3]
(Section 16.6.2), where X = (X′, X′′) and

WY,Y1|X′ ,X′′ ,X1,S(y, y1|x′, x′′, x1, s) = WY|X′ ,X1,S(y|x′, x1, s) ·WY1|X′′ ,X1,S(y1|x′′, x1, s) . (29)

Here, we address the case where the channel output depends on the state only through the relay, i.e.,
WY|X′ ,X1,S(y|x′, x1, s) = WY|X′ ,X1

(y|x′, x1).

Lemma 5. Let L = {WY|X′ ,X1
WY1|X′′ ,X1,S} be an AVRC with orthogonal sender components. The random

code capacity of L is given by

C?(L) = R?PDF(L) = R?CS(L) = max
p(x1)p(x′ |x1)p(x′′ |x1)

min
{

I(X′, X1; Y) , min
q(s)

Iq(X′′; Y1|X1) + I(X′; Y|X1)
}

. (30)

If WY1|X′′ ,X1,S is non-symmetrizable-X ′′|X1, and WY|X′ ,X1
(y|x′, x1) 6= WY|X′ ,X1

(y|x̃′, x1) for some x1 ∈ X1,
x′, x̃′ ∈ X ′, y ∈ Y , then the deterministic code capacity is given by C(L) = R?PDF(L) = R?CS(L).

The proof of Lemma 5 is given in Appendix J. To prove Lemma 5, we apply the methods of [5] to
our results. Specifically, we use the partial decode-forward lower bound in Theorem 1, taking U = X′′

(see (9) and (19)).

4. Gaussian AVRC with Sender Frequency Division

We give extended results for the Gaussian AVRC with sender frequency division (SFD), which is
a special case of the AVRC with orthogonal sender components [5]. We determine the random code
capacity of the Gaussian AVRC with SFD, and give lower and upper bounds on the deterministic
code capacity. The derivation of the deterministic code bounds is mostly independent of our previous
results, and it is based on the technique by [87]. The Gaussian relay channel WY,Y1|X,X1,S with SFD is a
special case of a relay channel with orthogonal sender components [5], specified by

Y1 =X′′ + Z ,

Y =X′ + X1 + S , (31)

where the Gaussian additive noise Z ∼ N (0, σ2) is independent of the channel state. As opposed
to Lemma 5, the main channel here depends on the state, while the channel to the relay does not.
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In the case of a Gaussian channel, power limitations need to be accounted for, and thus, we consider
the Gaussian relay channel under input and state constraints. Specifically, the user and the relay’s
transmission are subject to input constraints Ω > 0 and Ω1 > 0, respectively, and the jammer is under
a state constraint Λ, i.e.,

1
n

n

∑
i=1

(X′2i + X′′2i ) ≤ Ω ,
1
n

n

∑
i=1

X2
1,i ≤ Ω1 w.p. 1 ,

1
n

n

∑
i=1

S2
i ≤ Λ w.p. 1 . (32)

We note that Ahlswede’s Elimination Technique cannot be used under a state constraint (see [57]).
Indeed, if the jammer concentrates a lot of power on the shared randomness transmission, then this
transmission needs to be robust against a state constraint that is higher than Λ. Thereby, the results
given in Section 3.2.2 do not apply to the Gaussian AVRC under input and state constraints.

For the compound relay channel, the state constraint is in the average sense. That is, we say that
the Gaussian compound relay channel LQ with SFD is under input constraints Ω and Ω1 and state
constraint Λ if

1
n

n

∑
i=1

(X′2i + X′′2i ) ≤ Ω ,
1
n

n

∑
i=1

X2
1,i ≤ Ω1 , w.p. 1 ,

Q = {q(s) : ES2 ≤ Λ} . (33)

Coding definitions and notation are as follows. The definition of a code is similar to that of
Section 2.3. The encoding function is denoted by f = (f′, f′′), with f′ : [1 : 2nR] → Rn and f′′ : [1 :
2nR] → Rn, and the relay encoding function is denoted by f1 : Rn → Rn, where f1,i : Ri−1 → R, for
i ∈ [1 : n]. The boldface notation indicates that the encoding functions produce sequences. Here, the
encoder and the relay satisfy the input constraints ‖f′(m)‖2 + ‖f′′(m)‖2 ≤ nΩ and ‖f1(y1)‖2 ≤ nΩ1

for all m ∈ [1 : 2nR] and y1 ∈ Rn. At time i ∈ [1 : n], given a message m ∈ [1 : 2nR], the encoder
transmits (x′i , x′′i ) = (f′i(m), f′′i (m)), and the relay transmits x1,i = f1,i(y1,1, . . . , y1,i−1). The decoder
receives the output sequence y, and finds an estimate m̂ = g(y). A (2nR, n, ε) code C for the Gaussian
AVRC satisfies P(n)

e|s (C ) ≤ ε, for all s ∈ Rn with ‖s‖2 ≤ nΛ, where

P(n)
e|s (C ) =

1
2nR

2nR

∑
m=1

∫
D(m,s)c

1
(2πσ2)n/2

e−‖z‖
2/2σ2

dz , (34)

with

D(m, s) =
{

z ∈ Rn : g
(

f′(m) + f1
(
f′′(m) + z

)
+ s

)
= m

}
. (35)

Achivable rates, deterministic code capacity and random code capacity are defined as before. Next, we
give our results on the Gaussian compound relay channel and the Gaussian AVRC with SFD.

5. Main Results—Gaussian AVRC with SFD

We give our results on the Gaussian compound and AVRC with SFD. The results on this compound
relay channel and on the random code capacity of this AVRC are obtained through a straightforward
extension of our previous results and derivations. However, the derivation of the deterministic code
bounds is mostly independent of our previous results, and it is based on modifying the technique by
Csiszär and Narayan in their paper on the Gaussian AVC [87].



Entropy 2019, 21, 516 13 of 48

5.1. Gaussian Compound Relay Channel

We determine the capacity of the Gaussian compound relay channel with SFD under input and
state constraints. Let

FG(α, ρ) , min
{

1
2

log

(
1 +

Ω1 + αΩ + 2ρ
√

αΩ
√

Ω1

Λ

)
,

1
2

log
(

1 +
(1− α)Ω

σ2

)
+

1
2

log
(

1 +
(1− ρ2)αΩ

Λ

)}
. (36)

Lemma 6. The capacity of the Gaussian compound relay channel with SFD, under input constraints Ω and Ω1

and state constraint Λ, is given by

C(LQ) = max
0≤α,ρ≤1

FG(α, ρ) , (37)

and it is identical to the random code capacity, i.e., C(LQ) = C?(LQ).

The proof of Lemma 6 is given in Appendix K, based on our results in the previous sections.
The parameter 0 ≤ α ≤ 1 represents the fraction of input power invested in the transmission
of the message component which is decoded by the relay, in the partial decode-forward coding
scheme. Specifically, in the achievability proof in [5], αΩ and (1− α)Ω are the variances of X′ and
X′′, respectively. The parameter ρ stands for the correlation coefficient between the decode-forward
transmission X′ and the relay transmission X1.

5.2. Gaussian AVRC

We determine the random code capacity of the Gaussian AVRC with SFD under constraints.

Theorem 2. The random code capacity of the Gaussian AVRC with SFD, under input constraints Ω and Ω1

and state constraint Λ, is given by

C?(L) = C(LQ) = max
0≤α,ρ≤1

FG(α, ρ) . (38)

The proof of Theorem 2 is given in Appendix L. The proof follows the same considerations as in
our previous results.

Next, we give lower and upper bounds on the deterministic code capacity of the Gaussian AVRC
with SFD under constraints, obtained by generalizing the non-standard techniques by Csiszár and
Narayan in their 1991 paper on the Gaussian AVC [87]. Define

RG,low(L) , max FG(α, ρ)

subject to 0 ≤ α, ρ ≤ 1 ,
(1− ρ2)αΩ > Λ ,
Ω1
Ω (
√

Ω1 + ρ
√

αΩ)2 > Λ + (1− ρ2)αΩ .

(39)

and

RG,up(L) , max FG(α, ρ)

subject to 0 ≤ α, ρ ≤ 1 ,
Ω1 + αΩ + 2ρ

√
αΩ ·Ω1 ≥ Λ .

(40)
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It can be seen that RG,low ≤ RG,up, since

Ω1 + αΩ + 2ρ
√

αΩ ·Ω1 = (1− ρ2)αΩ + (
√

Ω1 + ρ
√

αΩ)2 ≥ (1− ρ2)αΩ . (41)

The analysis is based on the following lemma by [87].

Lemma 7 (see [87] (Lemma 1)). For every ε > 0, 8
√

ε < η < 1, K > 2ε, and M = 2nR, with 2ε ≤ R ≤ K,
and n ≥ n0(ε, η, K), there exist M unit vectors a(m) ∈ Rn, m ∈ [1 : M], such that for every unit vector c ∈ Rn

and 0 ≤ θ, ζ ≤ 1,∣∣{m̃ ∈ [1 : M] : 〈a(m̃), c〉 ≥ θ
}∣∣ ≤ 2n([R+ 1

2 log(1−θ2)]++ε) , (42)

and if θ ≥ η and θ2 + ζ2 > 1 + η − 2−2R, then

1
M

∣∣{m ∈ [1 : M] : |〈a(m̃), a(m)〉| ≥ θ , |〈a(m̃), c〉| ≥ ζ , for some m̃ 6= m
}∣∣ ≤ 2−nε , (43)

where [t]+ = max{0, t} and 〈·, ·〉 denotes inner product.

Intuitively, the lemma states that under certain conditions, a codebook can be constructed with an
exponentially small fraction of “bad” messages, for which the codewords are non-orthogonal to each
other and the state sequence.

Theorem 3. The deterministic code capacity of the Gaussian AVRC with SFD, under input constraints Ω and
Ω1 and state constraint Λ, is bounded by

RG,low(L) ≤ C(L) ≤ RG,up(L) . (44)

The proof of Theorem 3 is given in Appendix M.

Remark 6. Csiszár and Narayan [87] have shown that for the classical Gaussian AVC, reliable decoding
is guaranteed when the input constraint Ω is larger than the state constraint Λ. Here, we use a partial
decode-forward coding scheme, where the message has two components, one which is decoded by the relay, and the
other is transmitted directly. The respective optimization constraints Ω1

Ω (
√

Ω1 + ρ
√

αΩ)2 > Λ + (1− ρ2)αΩ
and (1− ρ2)αΩ > Λ in the RHS of (39), guarantee reliability for each decoding step.

Remark 7. Csiszár and Narayan [87] have further shown that for the classical Gaussian AVC, if Ω ≤ Λ,
the capacity is zero. The converse proof in [87] follows by considering a jammer who chooses the state sequence to
be a codeword. Due to the symmetry between X and S, the decoder cannot distinguish between the transmitted
codeword and the impostor sent by the jammer. Here, we consider a jammer who simulates X′ + X1. Specifically,
The jammer draws a codeword X′ = f′(m̃) uniformly at random, and then, generates a sequence Ỹ1 distributed
according to the conditional distribution PY1|M=m̃. If the sequence S̃ = f′(m̃) + f1(Ỹ1) satisfies the state
constraint Λ, then the jammer chooses S̃ as the state sequence. Defining αΩ, Ω1, and ρ as the empirical
decode-forward transmission power, relay transmission power, and their correlation coefficient, respectively,

we have that the state constraint
∥∥∥S̃
∥∥∥2
≤ nΛ holds with high probability, if Ω1 + αΩ + 2ρ

√
αΩ ·Ω1 < Λ.

The details are in Appendix M.

Figure 4 depicts the bounds on the capacity of the Gaussian AVRC with SFD under input and state
constraints, as a function of the input constraint Ω = Ω1, under state constraint Λ = 1 and σ2 = 0.5.
The top dashed line depicts the random code capacity of the Gaussian AVRC. The solid lines depict the
deterministic code lower and upper bounds RG,low(L) and RG,up(L). For low values, Ω < Λ

4 = 0.25,
we have that RG,up(L) = 0, hence the deterministic code capacity is zero, and it is strictly lower than
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the random code capacity. The dotted lower line depicts the direct transmission lower bound, which is
FG(1, 0) for Ω > Λ, and zero otherwise [57]. For intermediate values of Ω, direct transmission is better
than the lower bound in Theorem 3. Whereas, for high values of Ω, the optimization constraints in (39)
and (40) are inactive, hence, our bounds are tight, and the capacity coincides with the random code
capacity, i.e., C(L) = C?(L) = RG,low(L) = RG,up(L).

0.25 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
Random code capacity

Upper bound

Lower bound

Direct transmission

Figure 4. Bounds on the capacity of the Gaussian AVRC with sender frequency division. The dashed
upper line depicts the random code capacity of the Gaussian AVRC as a function of the input constraint
Ω = Ω1, under state constraint Λ = 1 and σ2 = 0.5. The solid lines depict the deterministic code
lower and upper bounds RG,low(L) and RG,up(L). The dotted lower line depicts the direct transmission
lower bound.

6. The Primitive AVRC

In this section, we give our results on the primitive AVRC [2], and then consider the Gaussian
case. Part of the motivation given in [2] to consider the primitive relay channel was that the overall
behavior and properties are the same as the non primitive (“regular”) relay channel. We show that
this is not true in the arbitrarily varying scenario. In particular, the behavior of the primitive Gaussian
AVRC with SFD is different compared to the non-primitive counterpart considered above.

6.1. Definitions and Notation

Consider a setup where the sender transmits information over state-dependent memoryless
relay channel WY,Y1|X,S, while there is a noiseless link of capacity C1 > 0 between the relay and the
receiver. Communication over a primitive relay channel is depicted in Figure 5. Given a message
M ∈ [1 : 2nR], the encoder transmits Xn = f (M) over the channel WY,Y1|X,S, which is referred to as the
primitive relay channel. The relay receives Yn

1 and sends an index L = f1(Yn
1 ) to the receiver, where

f1 : Yn
1 → [1 : 2nC1 ]. The decoder receives both the channel output sequence Yn and the relay output L,

and finds an estimate of the message M̂ = g(Yn, L). In accordance with the previous definitions, the
primitive AVRC Lprim = {WY,Y1|X,S} has a state sequence of unknown distribution, not necessarily
independent nor stationary. The deterministic code capacity and the random code capacity are defined
as before, and denoted by C(Lprim) and C?(Lprim), respectively.
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Encoder WY,Y1|X,S

Relay Encoder

Decoder
M Xn

Y n
1

L ∈ [1 : 2nC1]

Y n M̂

Figure 5. Communication over the primitive AVRC L. Given a message M, the encoder transmits
Xn = f (M). The relay receives Yn

1 and sends L = f1(Yn
1 ), where f1 : Yn

1 → [1 : 2nC1 ]. The decoder
receives both the channel output sequence Yn and the relay output L, and finds an estimate of the
message M̂ = g(Yn, L).

6.2. Main Results—Primitive AVRC

We give our results on the primitive AVRC below. However, since the proofs are based on the
same arguments as given for the non primitive AVRC, we omit the proofs of the results in this section.
The details are given in [91].

Using similar arguments to those given for the non primitive relay channel, we obtain the
following bounds on the random code capacity,

R?CS ,min
q(s)

max
p(x)

min
{

Iq(X; Y) + C1 , Iq(X; Y, Y1)
}

, (45)

and

R?PDF , max
p(u,x)

min
{

min
q(s)

Iq(U; Y) + min
q(s)

Iq(X; Y|U) + C1 , min
q(s)

Iq(U; Y1) + min
q(s)

Iq(X; Y|U)
}

. (46)

Theorem 4. The random code capacity of a primitive AVRC Lprim is bounded by

R?PDF ≤ C?(Lprim) ≤ R?CS . (47)

Those bounds have the same form as the cutset upper bound and the partical decode-forward
lower bound in Section 3 (cf. (8), (9) and (45), (46)). As in Section 3, we can use the bounds above to
determine the capacity in the strongly degraded and reversely degraded cases, based on the direct
transmission lower bound (for U = ∅), and the full decode-forward lower bound (for U = X).

Corollary 5. Let Lprim be a primitive AVRC.

1. If WY,Y1|X,S is strongly reversely degraded, i.e., WY,Y1|X,S = WY|X,SWY1|Y, then

C?(Lprim) = min
q(s)

max
p(x)

Iq(X; Y) . (48)

2. If WY,Y1|X,X1,S is strongly degraded, i.e., WY,Y1|X,X1,S = WY1|XWY|Y1,S, then

C?(Lprim) = max
p(x)

min
{

min
q(s)

Iq(X; Y) + C1 , I(X; Y1)

}
. (49)

As for the deterministic code capacity, we give the following theorem.

Theorem 5. Let Lprim be a primitive AVRC.
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1. If WY1|X,S is non-symmetrizable, then C(Lprim) = C?(Lprim). In this case,

R?PDF ≤ C(Lprim) ≤ R?CS . (50)

2. If WY,Y1|X,S is strongly reversely degraded, where WY1|X,S is non-symmetrizable, then

C(Lprim) = min
q(s)

max
p(x)

Iq(X; Y) . (51)

3. If WY,Y1|X,S is strongly degraded, such that WY1|X(y1|x) 6= WY1|X(y1|x̃) for some x, x̃ ∈ X , y1 ∈ Y1,
then

C(Lprim) = max
p(x)

min
{

min
q(s)

Iq(X; Y) + C1 , I(X; Y1)

}
. (52)

4. If WỸ|X,S is symmetrizable, where Ỹ = (Y, Y1), then C(Lprim) = 0.

The proof of Theorem 5 is available in [91]. To illustrate our results, we give the following example
of a primitive AVRC.

Example 2. Consider a state-dependent primitive relay channel WY,Y1|X,S, specified by

Y1 =X(1− S) ,

Y =X + S ,

where X = S = Y1 = {0, 1}, Y = {0, 1, 2}, and C1 = 1, i.e., the link between the relay and the receiver is a
noiseless bit pipe. It can be seen that both the sender-relay and the sender-receiver marginals are symmetrizable.
Indeed, WY|X,S satisfies

∑
s∈S

WY|X,S(y1|x, s)J(s|x̃) = ∑
s∈S

WY|X,S(y1|x̃, s)J(s|x) , x, x̃ ∈ X , y ∈ Y , (53)

with J(s|x) = 1 for s = x, and J(s|x) = 0 otherwise, while WY1|X,S satisfies (53) with J(s|x) = 1 for
s = 1− x, and J(s|x) = 0 otherwise. Nevertheless, the capacity of the primitive AVRC Lprim = {WY,Y1|X,S}
is C(Lprim) = 1, which can be achieved using a code of length n = 1, with f (m) = m, f1(y1) = y1,

g(y, `) = g(y, y1) =


0 y = 0

1 y = 2

y1 y = 1

(54)

for m, y1 ∈ {0, 1} and y ∈ {0, 1, 2}. This example shows that even if the sender-relay and sender-receiver
marginals are symmetrizable, the capacity may still be positive. We further note that the condition in part 4
of Theorem 5 implies that WY|X,S and WY1|X,S are both symmetrizable, but not vice versa, as shown by this
example. That is, as the capacity is positive, we have that WỸ|X,S is non-symmetrizable, where Ỹ = (Y, Y1),
despite the fact that the marginals WY|X,S and WY1|X,S are both symmetrizable.

6.3. Primitive Gaussian AVRC

Consider the primitive Gaussian relay channel with SFD,

Y1 =X′′ + Z ,

Y =X′ + S , (55)
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Suppose that input and state constraints are imposed as before, i.e., 1
n ∑n

i=1(X′2i + X′′2i ) ≤ Ω and
1
n ∑n

i=1 S2
i ≤ Λ with probability 1. The capacity of the primitive Gaussian AVRC with SFD, under input

constraint Ω and state constraint Λ is given by

C(Lprim) = C?(Lprim) = max
0≤α≤1

[
1
2

log
(

1 +
αΩ
Λ

)
+ min

{
C1,

1
2

log
(

1 +
(1− α)Ω

Λ

)} ]
. (56)

This result is due to the following. Observe that one could treat this primitive AVRC as two independent
channels, one from X′ to Y and the other from X′′ to Y1, dividing the input power to αΩ and (1− α)Ω,
respectively. Based on this observation, the random code direct part follows from [92]. Next, the
deterministic code direct part follows from part 1 of Theorem 5, and the converse part follows
straightforwardly from the cutset upper bound in Theorem 4.

7. Discussion

We have presented the model of the arbitrarily varying relay channel (AVRC), as a state dependent
relay channel, where jamming attacks result in either a random or a deterministic state sequence,
Sn ∼ q(sn), where the joint distribution q(sn) is unknown and it is not necessarily of a product form.
We have established the cutset upper bound and the partial decode-forward lower bound on the
random code capacity of the AVRC. We have determined the random code capacity in special cases of
the degraded AVRC, the reversely degraded AVRC, and the AVRC with orthogonal sender components.
To do so, we used the direct transmission lower bound and the full decode-forward lower bound,
along with quasi-convexity properties which are required in order to use the minimax theorem.

We have provided generalized symmetrizability conditions under which the deterministic code
capacity coincides with the random code capacity. Specifically, we have shown that if the sender-relay
and sender-receiver marginals are non-symmetrizable for a given relay transmission, then the capacity
is positive. We further noted that this is a sufficient condition for positive capacity, which raises the
question whether it is also a necessary condition. In other words, if those marginals are symmetrizable
for every given relay transmission, does that necessarily imply that the capacity is zero? The answer
is no, and we have refuted this assertion using a simple example, where the relay acts as a source of
state information to the receiver. Then, we provided a stronger symmetrizability condition, which
is necessary for the capacity to be positive. We have shown by example that the deterministic code
capacity can be strictly lower than the random code capacity of the AVRC.

The Gaussian AVRC with sender frequency division (SFD) under input and state constraints
is also addressed in this paper. The random code capacity is determined using the above results,
whereas the deterministic code capacity is lower and upper bounded using an independent approach.
Specifically, we extended the technique by Csiszár and Narayan in their 1991 paper on the Gaussian
AVC [87]. We have shown that the deterministic code capacity can be strictly lower than the random
code capacity, for low values on the input constraint.

Furthermore, we have considered the primitive AVRC, where there is a noiseless link between
the relay and the receiver of limited capacity [2]. We tested Kim’s assertion that “the primitive relay
channel captures most essential features and challenges of relaying, and thus serves as a good testbed
for new relay coding techniques” [2]. We have shown that this assertion is not true in the arbitrarily
varying scenario. Specifically, for the primitive Gaussian AVRC with SFD, the deterministic code
capacity and the random code capacity are always the same, regardless of the value of the input
constraint (see (56)), in contrast to our findings for the non primitive case, as demonstrated in Figure 4.

Author Contributions: Formal analysis, U.P.; Investigation, U.P.; Methodology, U.P.; Supervision, Y.S.; Writing –
original draft, U.P.

Conflicts of Interest: The authors declare no conflict of interest.
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Abbreviations

The following abbreviations are used in this manuscript:

AVC Arbitrarily varying channel
AVRC Arbitrarily varying relay channel
DMC Discrete memoryless channel
pmf probability mass function
RT Robustification technique
SFD Sender frequency division
Eq. Equation
RHS Right hand side
LHS Left hand side

Appendix A. Proof of Lemma 1

Appendix A.1. Partial Decode-Forward Lower Bound

We construct a block Markov code using the partial decode-forward scheme. That is, the encoder
sends a sequence of messages over multiple blocks. The message in each block consists of two
components, a decode-forward component, and a direct transmission component, where only the
former is decoded by the relay. Once the decoder has received all blocks, the decode-forward
components are decoded backwards, i.e., starting with the message in the last block going backwards.
Using the estimation of the decode-forward components, the direct transmission components are
decoded forwards, i.e., starting with the message in the first block going forwards. The ambiguity
of the state distribution needs to be treated throughout all of those estimations. Hence, we use joint
typicality with respect to a state type, which is “close” to some q ∈ Q. Let δ > 0 be arbitrarily small.
Define a set of state types Q̂n by

Q̂n = {P̂sn : sn ∈ Aδ1(q) for some q ∈ Q} , (A1)

where

δ1 ,
δ

2 · |S| . (A2)

Namely, Q̂n is the set of types that are δ1-close to some state distribution q(s) in Q. A code C for the
compound relay channel is constructed as follows.

The encoders use B blocks, each consists of n channel uses to convey (B − 1) independent
messages to the receiver. Furthermore, each message Mb, for b ∈ [1 : B − 1], is divided into two
independent messages. That is, Mb = (M′b, M′′b ), where M′b and M′′b are uniformly distributed, i.e.,

M′b ∼ Unif[1 : 2nR′ ] , M′′b ∼ Unif[1 : 2nR′′ ] , with R′ + R′′ = R , (A3)

for b ∈ [1 : B− 1]. For convenience of notation, set M′0 = M′B ≡ 1 and M′′0 = M′′B ≡ 1. The average
rate B−1

B · R is arbitrarily close to R.
Codebook Generation: Fix the distribution PU,X,X1(u, x, x1), and let

Pq
X,Y,Y1|U,X1

(x, y, y1|u, x1) = PX|U,X1
(x|u, x1) ∑

s∈S
q(s)WY,Y1|X,X1,S(y, y1|x, x1, s) . (A4)
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We construct B independent codebooks. For b ∈ [2 : B− 1], generate 2nR′ independent sequences
xn

1,b(m
′
b−1), m′b−1 ∈ [1 : 2nR′ ], at random, each according to ∏n

i=1 PX1(x1,i). Then, generate 2nR′

sequences,

un
b (m

′
b|m′b−1) ∼

n

∏
i=1

PU|X1
(ui|x1,b,i(m′b−1)) , m′b ∈ [1 : 2nR′ ] , (A5)

conditionally independent given xn
1,b(m

′
b−1). Then, for every m′b ∈ [1 : 2nR′ ], generate 2nR′′ sequences,

xn
b (m

′
b, m′′b |m′b−1) ∼

n

∏
i=1

PX|U,X1
(xi|ub,i(m′b|m′b−1), x1,b,i(m′b−1)) , m′′b ∈ [1 : 2nR′′ ] , (A6)

conditionally independent given (un
b (m

′
b|m′b−1), xn

1,b(m
′
b−1)). We have thus generated B − 2

independent codebooks,

Fb =
{ (

xn
1,b(m

′
b−1), un

b (m
′
b|m′b−1), xn

b (m
′
b, m′′b |m′b−1)

)
: m′b−1, m′b ∈ [1 : 2nR′ ] , m′′b ∈ [1 : 2nR′′ ]

}
, (A7)

for b ∈ [2 : B − 1]. The codebooks F1 and FB are generated in the same manner, with fixed
m′0 = m′B ≡ 1 and m′′0 = m′′B ≡ 1. Encoding and decoding is illustrated in Figure A1.

Encoding: To send the message sequence (m′1, m′′1 , . . . , m′B−1, m′′B−1), transmit xn
b (m

′
b, m′′b |m′b−1) at

block b, for b ∈ [1 : B].
Relay Encoding: In block 1, the relay transmits xn

1,1(1). Set m̃′0 ≡ 1. At the end of block b ∈ [1 :

B− 1], the relay receives yn
1,b, and finds some m̃′b ∈ [1 : 2nR′ ] such that

(un
b (m̃

′
b|m̃′b−1), xn

1,b(m̃
′
b−1), yn

1,b) ∈ Aδ(PU,X1 Pq
Y1|U,X1

) , for some q ∈ Q̂n . (A8)

If there is none or there is more than one such, set m̃′b = 1. In block b + 1, the relay transmits xn
1,b+1(m̃

′
b).

Backward Decoding: Once all blocks (yn
b )

B
b=1 are received, decoding is performed backwards. Set

m̂′B = m̂′′B ≡ 1. For b = B− 1, B− 2, . . . , 1, find a unique m̂′b ∈ [1 : 2nR′ ] such that

(un
b+1(m̂

′
b+1|m̂′b), xn

1,b+1(m̂
′
b), yn

b+1) ∈ Aδ(PU,X1 Pq
Y|U,X1

) , for some q ∈ Q̂n . (A9)

If there is none, or more than one such m̂′b ∈ [1 : 2nR′ ], declare an error.
Then, the decoder uses m̂′1, . . . , m̂′B−1 as follows. For b = B − 1, B − 2, . . . , 1, find a unique

m̂′′b ∈ [1 : 2nR′′ ] such that

(un
b (m̂

′
b|m̂′b−1), xn

b (m̂
′
b, m̂′′b |m̂′b−1), x1,b(m̂′b−1), yn

b ) ∈ Aδ(PU,X,X1 Pq
Y|X,X1

) , for some q ∈ Q̂n . (A10)

If there is none, or more than one such m̂′′b ∈ [1 : 2nR′′ ], declare an error. We note that using the set
of types Q̂n instead of the original set of state distributions Q alleviates the analysis, since Q is not
necessarily finite nor countable.
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Block 1 2 · · · B− 1 B

Encoder xn
1 (m

′
1, m′′1 |1) xn

2 (m
′
2, m′′2 |m′1) · · · xn

B−1(m
′
B−1, m′′B−1|m′B−2) xn

B(1, 1|m′B−1)

Relay Decoder m̃′1 → m̃′2 → · · · m̃′B−1 ∅

Relay Encoder xn
1,1(1) xn

1,2(m̃
′
1) · · · xn

1,B−1(m̃
′
B−2) xn

1,B(m
′
B−1)

Output ∅ m̂′1 · · · ← m̂′B−2 ← m̂′B−1
m̂′′1 m̂′′2 · · · m̂′′B−1 ∅

Figure A1. The partial decode-forward coding scheme. The block index b ∈ [1 : B] is indicated at
the top. In the following rows, we have the corresponding elements: (1) sequences transmitted by
the encoder; (2) estimated messages at the relay; (3) sequences transmitted by the relay; (4) estimated
messages at the destination decoder. The arrows in the second row indicate that the relay encodes
forwards with respect to the block index, while the arrows in the fourth row indicate that the receiver
decodes backwards.

Analysis of Probability of Error: Assume without loss of generality that the user sent (M′b, M′′b ) =
(1, 1), and let q∗(s) ∈ Q denote the actual state distribution chosen by the jammer. The error event is
bounded by the union of the events

E1(b) ={M̃′b 6= 1} , E2(b) = {M̂′b 6= 1} , E3(b) = {M̂′′b 6= 1} , for b ∈ [1 : B− 1] . (A11)

Then, the probability of error is bounded by

P(n)
e (q, C ) ≤

B−1

∑
b=1

Pr (E1(b)) +
B−1

∑
b=1

Pr (E2(b) | E c
1(b)) +

B−1

∑
b=1

Pr (E3(b) | E c
1(b) ∩ E c

2(b) ∩ E c
2(b− 1)) , (A12)

with E2(0) = ∅, where the conditioning on (M′b, M′′b ) = (1, 1) is omitted for convenience of notation.
We begin with the probability of erroneous relaying, Pr (E1(b)). Define

E1,1(b) ={(Un
b (1|M̃′b−1), Xn

1,b(M̃′b−1), Yn
1,b) /∈ Aδ(PU,X1 Pq′

Y1|U,X1
) for all q′ ∈ Q̂n}

E1,2(b) ={(Un
b (m

′
b|M̃′b−1), Xn

1,b(M̃′b−1), Yn
1,b) ∈ Aδ(PU,X1 Pq′

Y1|U,X1
) , for some m′b 6= 1, q′ ∈ Q̂n} . (A13)

For b ∈ [1 : B− 1], the relay error event is bounded as

E1(b) ⊆E1(b− 1) ∪ E1,1(b) ∪ E1,2(b)

=E1(b− 1) ∪ (E1(b− 1)c ∩ E1,1(b)) ∪ (E1(b− 1)c ∩ E1,2(b)) , (A14)

with E1(0) = ∅. Thus, by the union of events bound,

Pr (E1(b)) ≤ Pr (E1(b− 1)) + Pr (E1,1(b) | E1(b− 1)c) + Pr (E1,2(b) | E1(b− 1)c) . (A15)

Consider the second term on the RHS of (A15). We now claim that given that E1(b− 1)c occurred,

i.e., M̃′b−1 = 1, the event E1,1(b) implies that (Un
b (1|1), Xn

1,b(1), Yn
1,b) /∈ Aδ/2(PU,X1 Pq′′

Y1|U,X1
) for all

q′′ ∈ Q. This claim is due to the following. Assume to the contrary that E1,1(b) holds, but

(Un
b (1|1), Xn

1,b(1), Yn
1,b) ∈ A

δ/2(PU,X1 Pq′′

Y1|U,X1
) for some q′′ ∈ Q. Then, for a sufficiently large n, there

exists a type q′(s) such that

|q′(s)− q′′(s)| ≤ δ1 , (A16)
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for all s ∈ S , and by the definition in (A1), q′ ∈ Q̂n. Then, (A16) implies that

|Pq′

Y1|U,X1
(y1|u, x1)− Pq′′

Y1|U,X1
(y1|u, x1)| ≤ |S| · δ1 =

δ

2
, (A17)

for all u ∈ U , x1 ∈ X1 and y1 ∈ Y1 (see (A4) and (A2)). Hence, (Un
b (1|1), Xn

1,b(1), Yn
1,b) ∈

Aδ(PU,X1 Pq′

Y1|U,X1
), which contradicts the first assumption. It follows that

Pr (E1,1(b) | E1(b− 1)c)

≤Pr
(
(Un

b (1|1), Xn
1,b(1), Yn

1,b) /∈ Aδ/2(PU,X1 Pq′′

Y1|U,X1
) for all q′′ ∈ Q | E1(b− 1)c

)
≤Pr

(
(Un

b (1|1), Xn
1,b(1), Yn

1,b) /∈ Aδ/2(PU,X1 Pq∗

Y1|U,X1
) | E1(b− 1)c

)
. (A18)

Since the codebooks F1, . . . ,FB are independent, the sequence (Un
b (1|1), Xn

1,b(1)) from the codebook
Fb is independent of the relay estimate M̃b−1, which is a function of Yn

1,b−1 and the codebook Fb−1.
Thus, the RHS of (A18) tends to zero exponentially as n → ∞ by the law of large numbers and
Chernoff’s bound.

We move to the third term in the RHS of (A15). By the union of events bound, the fact that the
number of type classes in Sn is bounded by (n + 1)|S|, and the independence of the codebooks, we
have that

Pr (E1,2(b) | E1(b− 1)c)

≤(n + 1)|S| · sup
q′∈Q̂n

Pr
(
(Un

b (m
′
b|1), Xn

1,b(1), Yn
1,b) ∈ Aδ(PU,X1 Pq′

Y1|U,X1
) for some m′b 6= 1

)

≤(n + 1)|S| · 2nR′ · sup
q′∈Q̂n

 ∑
un ,xn

1

PUn ,Xn
1
(un, xn

1 ) · ∑
yn

1 : (un ,xn
1 ,yn

1 )∈Aδ(PU,X1 Pq′
Y1 |U,X1

)

Pq∗

Yn
1 |Xn

1
(yn

1 |xn
1 )

 , (A19)

where the last line follows since Un
b (m

′
b|1) is conditionally independent of Yn

1,b given Xn
1,b(1), for every

m′b 6= 1. Let yn
1 satisfy (un, xn

1 , yn
1 ) ∈ Aδ(PU,X1 Pq′

Y1|U,X1
). Then, (xn

1 , yn
1 ) ∈ Aδ2(Pq′

X1,Y1
) with δ2 , |U | · δ.

By Lemmas 2.6 and 2.7 in [93],

Pq∗
Xn

1 ,Yn
1
(xn

1 , yn
1 ) = 2

−n
(

H(P̂xn
1 ,yn

1
)+D(P̂xn

1 ,yn
1
||Pq∗

X1,Y1
)
)
≤ 2

−nH(P̂xn
1 ,yn

1
) ≤ 2−n

(
Hq′ (X1,Y1)−ε1(δ)

)
,

hence,

Pq∗

Yn
1 |Xn

1
(yn

1 |xn
1 ) ≤ 2−n

(
Hq′ (Y1|X1)−ε2(δ)

)
, (A20)

where ε1(δ), ε2(δ)→ 0 as δ→ 0. Therefore, by Equation (A19)−(A20), along with [93] (Lemma 2.13),

Pr (E1,2(b) | E1(b− 1)c) ≤ (n + 1)|S| · sup
q′∈Q

2−n[Iq′ (U;Y1|X1)−R′−ε3(δ)] , (A21)

with ε3(δ)→ 0 as δ→ 0. Using induction, we have by (A15) that Pr (E1(b)) tends to zero exponentially
as n→ ∞, for b ∈ [1 : B− 1], provided that R′ < infq′∈Q Iq′(U; Y1|X1)− ε3(δ).

As for the erroneous decoding of M′b at the receiver, observe that given E1(b)c, the relay sends
Xn

1,b(1) in block b + 1, hence

(Un
b+1(1|1), Xn

b+1(1, 1|1), Xn
1,b+1(1)) ∼ PU,X,X1(u, x, x1) . (A22)
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At the destination receiver, decoding is performed backwards, hence the error events have a different
form compared to those of the relay (cf. (A13) and the events below). Define the events,

E2,1(b) ={(Un
b+1(M̂′b+1|1), Xn

1,b+1(1), Yn
b+1) /∈ Aδ(PU,X1 Pq′

Y|U,X1
) for all q′ ∈ Q̂n}

E2,2(b) ={(Un
b+1(M̂′b+1|m′b), Xn

1,b+1(m
′
b), Yn

b+1) ∈ Aδ(PU,X1 Pq′

Y1|U,X1
) , for some m′b 6= 1, q′ ∈ Q̂n} (A23)

For b ∈ [1 : B− 1], the error event E2(b) is bounded by

E2(b) ⊆E2(b + 1) ∪ E2,1(b) ∪ E2,2(b)

=E2(b + 1) ∪ (E2(b + 1)c ∩ E2,1(b)) ∪ (E2(b + 1)c ∩ E2,2(b)) , (A24)

with E2(B) = ∅. Thus,

Pr (E2(b) | E1(b)c) ≤Pr (E2(b + 1) | E1(b)c) + Pr (E2,1(b) | E1(b)c, E2(b + 1)c)

+ Pr (E2,2(b) | E1(b)c, E2(b + 1)c) . (A25)

By similar arguments to those used above, we have that

Pr (E2,1(b) | E1(b)c, E2(b + 1)c) ≤ Pr
(
(Un

b+1(1|1), Xn
1,b+1(1), Yn

b+1) /∈ Aδ/2(PU,X1 Pq∗

Y|U,X1
) | E1(b)c

)
, (A26)

which tends to zero exponentially as n → ∞, due to (A22), and by the law of large numbers and
Chernoff’s bound. Then, by similar arguments to those used for the bound on Pr (E1,2(b) | E1(b− 1)c),
the third term on the RHS of (A25) tends to zero as n→ ∞, provided that R′ < infq′∈Q Iq′(U, X1; Y)−
ε4(δ), where ε4(δ)→ 0 as δ→ 0. Using induction, we have by (A25) that the second term on the RHS
of (A12) tends to zero exponentially as n→ ∞, for b ∈ [1 : B− 1].

Moving to the error event for M′′b , define

E3,1(b) ={(Un
b (M̂′b|M̂′b−1), Xn

b (M̂′b, 1|M̂′b−1), X1,b(M̂′b−1), Yn
b ) /∈ Aδ(PU,X,X1 Pq′

Y|X,X1
) , for all q′ ∈ Q̂n}

E3,2(b) ={(Un
b (M̂′b|M̂′b−1), Xn

b (M̂′b, m′′b |M̂′b−1), X1,b(M̂′b−1), Yn
b ) ∈ Aδ(PU,X,X1 Pq′

Y|X,X1
) ,

for some m′′b 6= 1, q′ ∈ Q̂n} . (A27)

Given E2(b)c ∩ E2(b− 1)c, we have that M̂′b = 1 and M̂′b−1 = 1. Then, by similar arguments to those
used above,

Pr (E3(b) | E1(b)c ∩ E2(b)c ∩ E2(b− 1)c)

≤Pr (E3,1(b) | E1(b)c ∩ E2(b)c ∩ E2(b− 1)c) + Pr (E3,2(b) | E1(b)c ∩ E2(b)c ∩ E2(b− 1)c)

≤e−a0n + (n + 1)|S| · sup
q′∈Q

∑
m′′b 6=1

Pr
(
(Un

b (1|1), Xn
b (1, m′′b |1), X1,b(1), Yn

b ) ∈ Aδ(PU,X,X1 Pq′

Y|X,X1
) | E1(b)c

)
≤e−a0n + (n + 1)|S| · sup

q′∈Q
2−n[Iq′ (X;Y|U,X1)−R′′−ε5(δ)] (A28)

where a0 > 0 and ε5(δ) → 0 as δ → 0. The second inequality holds by (A22) along with the law of
large numbers and Chernoff’s bound, and the last inequality holds as Xn

b (1, m′′b |1) is conditionally
independent of Yn

b given (Un
b (1|1), Xn

1,b(1)) for every m′′b 6= 1. Thus, the third term on the RHS
of (A12) tends to zero exponentially as n → ∞, provided that R′′ < infq′∈Q Iq′(X; Y|U, X1)− ε5(δ).
Eliminating R′ and R′′, we conclude that the probability of error, averaged over the class of the
codebooks, exponentially decays to zero as n → ∞, provided that R < RPDF(LQ). Therefore, there
must exist a (2nR, n, ε) deterministic code, for a sufficiently large n.
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Appendix A.2. Cutset Upper Bound

This is a straightforward consequence of the cutset bound in [4]. Assume to the contrary that
there exists an achievable rate R > RCS(LQ). Then, for some q∗(s) in the closure of Q,

R > max
p(x,x1)

min
{

Iq∗(X, X1; Y) , Iq∗(X; Y, Y1|X1)
}

. (A29)

By the achievability assumption, we have that for every ε > 0 and sufficiently large n, there exists
a (2nR, n) random code C Γ such that P(n)

e (q, C ) ≤ ε for every i.i.d. state distribution q ∈ Q, and
in particular for q∗. This holds even if q∗ is in the closure of Q but not in Q itself, since P(n)

e (q, C )

is continuous in q. Consider using this code over a standard relay channel WY,Y1|X,X1
without a

state, where WY,Y1|X,X1
(y, y1|x, x1) = ∑s∈S q∗(s)WY,Y1|X,X1,S(y, y1|x, x1, s). It follows that the rate R as

in (A29) can be achieved over the relay channel WY,Y1|X,X1
, in contradiction to [4]. We deduce that the

assumption is false, and R > RCS(LQ) cannot be achieved.

Appendix B. Proof of Corollary 1

This is a straightforward consequence of Lemma 1, which states that the capacity of the compound
relay channel is bounded by RPDF(LQ) ≤ C(LQ) ≤ RCS(LQ). Thus, if WY,Y1|X,X1,S is reversely
degraded such that WY,Y1|X,X1,S = WY|X,X1

WY1|Y,X1,S, then Iq(X; Y, Y1|X1) = Iq(X; Y|X1), and the
bounds coincide by the minimax theorem [90], cf. (8) and (12). Similarly, if WY,Y1|X,X1,S is strongly
degraded, i.e., WY,Y1|X,X1,S = WY1|X,X1

WY|Y1,X1,S, then Iq(X; Y, Y1|X1) = I(X; Y1|X1), and by (8)
and (13),

RCS(LQ) = min
q(s)∈Q

max
p(x,x1)

min
{

Iq(X, X1; Y) , I(X; Y1|X1)
}

, (A30)

RPDF(LQ) = max
p(x,x1)

min
q(s)∈Q

min
{

Iq(X, X1; Y) , I(X; Y1|X1)
}

. (A31)

Observe that min
{

Iq(X, X1; Y) , I(X; Y1|X1)
}

is concave in p(x, x1) and quasi-convex in q(s) (see e.g., [94]
(Section 3.4])), hence the bounds (A30) and (A31) coincide by the minimax theorem [90].

Appendix C. Proof of Corollary 2

Consider the block-compound relay channel LQ×B, where the state distribution qb ∈ Q varies
from block to block. Since the encoder, relay and receiver are aware of this jamming scheme, they can
use a block coding scheme that is synchronized with the jammer block strategy. Thus, the capacity is the
same as that of the ordinary compound channel, i.e., C(LQ×B) = C(LQ) and C?(LQ×B) = C?(LQ).
Hence, (17) and (18) follow from Lemma 1. As for the second part of Corollary 2, observe that the block
Markov coding scheme used in the proof of the partial decode-forward lower bound can be applied as
is to the block-compound relay channel, since the relay and the destination receiver do not estimate
the state distribution while decoding the messages (see Appendix A). Furthermore, the analysis also
holds, where the actual state distribution q∗, in (A18)–(A20) and (A26), is now replaced by the state
distribution q∗b which corresponds to block b ∈ [1 : B].

Appendix D. Proof of Theorem 1

First, we explain the general idea. We modify Ahlswede’s Robustification Technique (RT) [59] to
the relay channel. Namely, we use codes for the compound relay channel to construct a random code
for the AVRC using randomized permutations. However, in our case, the strictly causal nature of the
relay imposes a difficulty, and the application of the RT is not straightforward.

In [59], there is noncausal state information and a random code is defined via permutations of the
codeword symbols and the received sequence. Here, however, the relay cannot apply permutations
to its transmission xn

1 , because it depends on the received sequence yn
1 in a strictly causal manner.
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We resolve this difficulty using block Markov codes for the block-compound relay channel to construct
a random code for the AVRC, applying B in-block permutations to the relay transmission, which
depends only on the sequence received in the previous block. The details are given below.

Appendix D.1. Partial Decode-Forward Lower Bound

We show that every rate R < R?PDF(L) (see (19)) can be achieved by random codes over the AVRC
L, i.e., C(L) ≥ R?PDF(L). We start with Ahlswede’s RT [59], stated below. Let h : Sn → [0, 1] be a
given function. If, for some fixed αn ∈ (0, 1), and for all q(sn) = ∏n

i=1 q(si), with q ∈ P(S),

∑
sn∈Sn

q(sn)h(sn) ≤ αn , (A32)

then,

1
n! ∑

π∈Πn

h(πsn) ≤ βn , for all sn ∈ Sn , (A33)

where Πn is the set of all n-tuple permutations π : Sn → Sn, and βn = (n + 1)|S| · αn.
According to Corollary 2, for every R < R?PDF(L), there exists a (2nR(B−1), nB, e−2θn) block

Markov code for the block-compound relay channel LP(S)×B for some θ > 0 and sufficiently large n,
where B > 0 is arbitrarily large. Recall that the code constructed in the proof in Appendix A has the
following form. The encoders use B > 0 blocks to convey B− 1 messages mb, b ∈ [1 : B− 1]. Each
message consists of two parts, i.e., mb = (m′b, m′′b ), where m′b ∈ [1 : 2nR′ ] and m′′b ∈ [1 : 2nR′′ ]. In block
b ∈ [1 : B], the encoder sends xn

b = fb(m′b, m′′b |m′b−1), with fixed m0 and mB, and the relay transmits
xn

1,b = f1,b(yn
1,b−1), using the sequence received in the previous block. After receiving the entire output

sequence (yn
b )

B
b=1, the decoder finds an estimate for the messages. Set m̂′B = 1. The first part of

each message is decoded backwards as m̂′b = g′b(y
n
b+1, m̂′b+1), for b = B− 1, B− 2, . . . , 1. Then, the

second part of each message is decoded as m̂′′b = g′′b (y
n
b , m̂′1, . . . , m̂′B−1), for b ∈ [1 : B− 1]. The overall

blocklength is then n · B and the average rate is B−1
B (R′ + R′′).

Given such a block Markov code CBM for the block-compound relay channel LP(S)×B,
we have that

PrCBM

(
E ′b | (E ′b+1)

c) ≤ e−2θn , PrCBM

(
E ′′b | E ′c1 , . . . , E ′cb−1

)
≤ e−2θn (A34)

for b = B− 1, . . . , 1, where E ′0 = E ′B = ∅, and E ′b = {M̂′b 6= M′b}, E ′′b = {M̂′′b 6= M′′b }, b ∈ [1 : B− 1].
That is, for every sequence of state distributions q1, . . . , qb+1, where qt(sn

t ) = ∏n
i=1 qt(st,i) for t ∈ [1 :

b + 1],

∑
sn

1∈Sn
q1(sn

1 ) ∑
sn

2∈Sn
q2(sn

2 ) · · · ∑
sn

b+1∈Sn
qb+1(sn

b+1) · h′b(sn
1 , sn

2 , . . . , sn
b+1) ≤ e−2θn , (A35)

and

∑
sn

1∈Sn
q1(sn

1 ) ∑
sn

2∈Sn
q2(sn

2 ) · · · ∑
sn

b∈Sn
qb(sn

b ) · h′′b (sn
1 , sn

2 , . . . , sn
b ) ≤ e−2θn , (A36)
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where

h′b(s
n
1 , sn

2 , . . . , sn
b+1) =

1
2n(b+1)(R′+R′′) ∑

(m′1,m′′1 ),...,(m
′
b+1,m′′b+1)

∑
yn

1,b∈Yn
1

Pr
(

Yn
1,b = yn

1,b | (M′1, M′′1 ) = (m′1, m′′1 ), . . . , (M′b, M′′b ) = (m′b, m′′b ), Sn
1 = sn

1 , . . . , Sn
b = sn

b

)
× ∑

yn
b+1 :g′b(y

n
b+1,m′b+1) 6=m′b

WYn |Xn ,Xn
1 ,Sn(yn

b+1| fb+1(m′b+1, m′′b+1|m′b), f1,b+1(yn
1,b), sn

b+1) (A37)

and

h′′b (s
n
1 , sn

2 , . . . , sn
b ) =

1
2nR′′

2nR′′

∑
m′′b =1

1
2nR′(B−1) ∑

m′1,...,m′B−1

∑
yn

1,b−1∈Yn
1

Pr
(

Yn
1,b−1 = yn

1,b−1
∣∣(M′1, M′′1 ) = (m′1, m′′1 ), . . . , (M′b−1, M′′b−1) = (m′b−1, m′′b−1),

Sn
1 = sn

1 , . . . , Sn
b−1 = sn

b−1

)
× ∑

yn
b ,yn

1,b :g′′b (y
n
b ,m′1,...,m′B−1) 6=m′′b

WYn |Xn ,Xn
1 ,Sn(yn

b | fb(m′b, m′′b |m′b−1), f1,b(yn
1,b−1), sn

b ) . (A38)

The conditioning in the equations above can be explained as follows. In (A37), due to the code
construction, the sequence Yn

1,b received at the relay in block b ∈ [1 : B] depends only on the messages
(M′t, M′′t ) with t ≤ b. The decoded message M̂′b, at the destination receiver, depends on messages M′t
with t > b, since the receiver decodes this part of the message backwards. In (A38), since the second
part of the message M′′b is decoded after backward decoding is complete, the estimation of M′′b at the
decoder depends on the entire sequence M̂′1, . . . , M̂′B−1. By (A35)–(A36), for every t ∈ [1 : b], h′b and h′′b
as functions of sn

t+1 and sn
t , respectively, satisfy (A32) with αn = e−2θn, given that the state sequences

in the other blocks are fixed. Hence, applying Ahlswede’s RT recursively, we obtain

1
(n!)b+1 ∑

π1,π2,...,πb+1∈Πn

h′b(π1sn
1 , π2sn

2 , . . . , πb+1sn
b+1) ≤ (n + 1)B|S|e−2θn ≤ e−θn , ,

1
(n!)b ∑

π1,π2,...,πb∈Πn

h′′b (π1sn
1 , π2sn

2 , . . . , πbsn
b ) ≤ (n + 1)B|S|e−2θn ≤ e−θn , (A39)

for all (sn
1 , sn

2 , . . . , sn
b+1) ∈ S (b+1)n and sufficiently large n, such that (n + 1)B|S| ≤ eθn.

On the other hand, for every π1, π2, . . . , πb+1 ∈ Πn, we have that

h′b(π1sn
1 , π2sn

2 , . . . , πb+1sn
b+1) = E h′b(π1sn

1 , π2sn
2 , . . . , πb+1sn

b+1|M′t, M′′t , t = 1, . . . , b + 1) , (A40)

with

h′b(π1sn
1 , π2sn

2 , . . . , πb+1sn
b+1|m′t, m′′t , t = 1, . . . , b + 1)

= ∑
y1,1,...,y1,b

b−1

∏
t=0

WYn
1 |Xn ,Xn

1 ,Sn (yn
1,t+1| ft+1(m′t+1, m′′t+1|m′t), f1,t+1(yn

1,t), πt+1sn
t+1)

× ∑
yn

b+1 :g′b(y
n
b+1,m′b+1) 6=m′b

WYn |Xn ,Xn
1 ,Sn (yn

b+1| fb+1(m
′
b+1, m′′b+1|m′b), f1,b+1(y

n
1,b), πb+1sn

b+1)

(a)
= ∑

y1,1,...,y1,b

b−1

∏
t=0

WYn
1 |Xn ,Xn

1 ,Sn (πt+1yn
1,t+1| ft+1(m′t+1, m′′t+1|m′t), f1,b+1(πtyn

1,t), πt+1sn
t+1)
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× ∑
yn

b+1 :g′b(πb+1yn
b+1,m′b+1) 6=m′b

WYn |Xn ,Xn
1 ,Sn (πb+1yn

b+1| fb+1(m
′
b+1, m′′b+1|m′b), f1,b+1(πbyn

1,b), πb+1sn
b+1)

(b)
= ∑

y1,1,...,y1,b

b−1

∏
t=0

WYn
1 |Xn ,Xn

1 ,Sn (yn
1,t+1|π−1

t+1 ft+1(m′t+1, m′′t+1|m′t), π−1
t+1 f1,b+1(πtyn

1,t), sn
t+1)

× ∑
yn

b+1 :g′b(πb+1yn
b+1,m′b+1) 6=m′b

WYn |Xn ,Xn
1 ,Sn (yn

b+1|π−1
b+1 fb+1(m

′
b+1, m′′b+1|m′b), π−1

b+1 f1,b+1(πbyn
1,b), sn

b+1) , (A41)

where (a) is obtained by changing the order of summation over yn
1,1, . . . , yn

1,b and yn
b+1; and (b) holds

because the relay channel is memoryless. Similarly,

h′′b (π1sn
1 , π2sn

2 , . . . , πbsn
b ) = Eh′′b (π1sn

1 , π2sn
2 , . . . , πbsn

b |M′1, . . . , M′B−1, M′′t , t = 1, . . . , b) , (A42)

with

h′′b (π1sn
1 , π2sn

2 , . . . , πbsn
b |m′1, . . . , m′B−1, m′′t , t = 1, . . . , b)

= ∑
y1,1,...,y1,b−1

b−1

∏
t=1

WYn
1 |Xn ,Xn

1 ,Sn(yn
1,t| ft(m′t, m′′t |m′t−1), f1,t(yn

1,t), πtsn
t )

× ∑
yn

b :g′′b (y
n
b ,m′1,...,m′B−1) 6=m′′b

WYn |Xn ,Xn
1 ,Sn(yn

b | fb(m′b, m′′b |m′b−1), f1,b(yn
1,b−1), πbsn

b )

(a)
= ∑

y1,1,...,y1,b−1

b−1

∏
t=1

WYn
1 |Xn ,Xn

1 ,Sn(πtyn
1,t| ft(m′t, m′′t |m′t−1), f1,t(πt−1yn

1,t−1), πtsn
t )

× ∑
yn

b :g′′b (πbyn
b ,m′1,...,m′B−1) 6=m′′b

WYn |Xn ,Xn
1 ,Sn(πbyn

b | fb(m′b, m′′b |m′b−1), f1,b(πb−1yn
1,b−1), πbsn

b )

(b)
= ∑

y1,1,...,y1,b−1

b−1

∏
t=1

WYn
1 |Xn ,Xn

1 ,Sn(yn
1,t|π−1

t ft(m′t, m′′t |m′t−1), π−1
t f1,t(πt−1yn

1,t−1), sn
t )

× ∑
yn

b :g′′b (πbyn
b ,m′1,...,m′B−1) 6=m′′b

WYn |Xn ,Xn
1 ,Sn(yn

b |π−1
b fb(m′b, m′′b |m′b−1), π−1

b f1,b(πb−1yn
1,b−1), sn

b ) . (A43)

Then, consider the (2nR(B−1), nB) random Markov block code C Π
BM, specified by

fb,π(m′b, m′′b |m′b−1) = π−1
b fb(m′b, m′′b |m′b−1) , f1,b,π(yn

1,b−1) = π−1
b f1,b(πb−1yn

1,b−1) , (A44a)

and

g′b,π(y
n
b+1, m̂′b+1) = g′b(πb+1yn

b+1, m̂′b+1) , g′′b,π(y
n
b , m̂′1, . . . , m̂′B−1) = g′′b (πyn

b , m̂′1, . . . , m̂′B−1) , (A44b)

for π1, . . . , πB ∈ Πn, with a uniform distribution µ(π1, . . . , πB) = 1
|Πn |B = 1

(n!)B . That is, a set of B
independent permutations is chosen at random and applied to all blocks simultaneously, while the
order of the blocks remains intact. As we restricted ourselves to a block Markov code, the relaying
function in a given block depends only on symbols received in the previous block, hence, the relay
can implement those in-block permutations, and the coding scheme does not violate the causality
requirement.

From (A41) and (A43), we see that using the random code C Π
BM, the error probabilities for the

messages M′b and M′′b are given by

Pr C Π
BM

(
E ′b | (E ′b+1)

c, Sn
1 = sn

1 , . . . , Sn
b+1 = sn

b+1
)
= ∑

π1,...,πB∈Πn

µ(π1, . . . , πB)h′b(π1sn
1 , π2sn

2 , . . . , πb+1sn
b+1) ,

Pr C Π
BM

(
E ′′b | E ′c1 , . . . , E ′cB−1, Sn

1 = sn
1 , . . . , Sn

b = sn
b
)
= ∑

π1,...,πB∈Πn

µ(π1, . . . , πB)h′′b (π1sn
1 , π2sn

2 , . . . , πbsn
b ) , (A45)
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for all sn
1 , . . . , sn

b+1 ∈ Sn, b ∈ [1 : B− 1], and therefore, together with (A39), we have that the probability

of error of the random code C Π
BM is bounded by P(n)

e (q, C Π
BM) ≤ e−θn, for every q(snB) ∈ P(SnB). That

is, C Π
BM is a (2nR(B−1), nB, e−θn) random code for the AVRC L, where the overall blocklength is nB, and

the average rate B−1
B · R tends to R as B→ ∞. This completes the proof of the partial decode-forward

lower bound.

Appendix D.2. Cutset Upper Bound

The proof immediately follows from Lemma 1, since the random code capacity of the AVRC is
bounded by the random code capacity of the compound relay channel, i.e., C?(L) ≤ C?(LP(S)).

Appendix E. Proof of Lemma 2

We use the approach of [55], with the required adjustments. We use the random code constructed
in the proof of Theorem 1. Let R < C?(L), and consider the case where the marginal sender-relay and
sender-receiver AVCs have positive capacity, i.e.,

C(W1(x1,1)) > 0 , and C(W(x1,2)) > 0 , (A46)

for some x1,1, x1,2 ∈ X1 (see (23)). By Theorem 1, for every ε > 0 and sufficiently large n, there exists a
(2nR, n, ε) random code C Γ =

(
µ(γ) = 1

k , Γ = [1 : k], {Cγ}γ∈Γ
)
, where Cγ = ( f n

γ , f1,γ, gγ), for γ ∈ Γ.
Following Ahlswede’s Elimination Technique [55], it can be assumed that the size of the code collection
is bounded by k = |Γ| ≤ n2. By (A46), we have that for every ε′ > 0 and sufficiently large ν′, the code
index γ ∈ [1 : k] can be sent through the relay channel WY1|X,X1,S using a (2ν′ R̃′ , ν′, ε′) deterministic
code C ′i = ( f̃ ν′ , g̃′), where R̃′ > 0, while the relay repeatedly transmits the symbol x1,1. Since k is at
most polynomial, the encoder can reliably convey γ to the relay with a negligible blocklength, i.e.,
ν′ = o(n). Similarly, there exists (2ν′′ R̃′′ , ν′′, ε′′) code C ′′i = ( f̃ ν′′ , g̃′′) for the transmission of γ ∈ [1 : k]
through the channel WY|X,X1,S to the receiver, where ν′′ = o(n) and R̃′′ > 0, while the relay repeatedly
transmits the symbol x1,2.

Now, consider a code formed by the concatenation of C ′i and C ′′i as consecutive prefixes to
a corresponding code in the code collection {Cγ}γ∈Γ. That is, the encoder first sends the index
γ to the relay and the receiver, and then it sends the message m ∈ [1 : 2nR] to the receiver.
Specifically, the encoder first transmits the (ν′ + ν′′)-sequence ( f̃ ν′(γ), f̃ ν′′(γ)) to convey the index
γ, while the relay transmits the (ν′ + ν′′)-sequence (x̃ν′

1 , x̃ν′′
1 ), where x̃ν′

1 = (x1,1, x1,1, . . . , x1,1) and
x̃ν′′

1 = (x1,2, x1,2, . . . , x1,2). At the end of this transmission, the relay uses the first ν′ symbols it received
to estimate the code index as γ̂′ = g̃′(ỹν′

1 ).
Then, the message m is transmitted by the codeword xn = fγ(m), while the relay transmits

xn
1 = f n

1,γ̂′(y
n
1 ). Subsequently, decoding is performed in two stages as well; the decoder estimates the

index at first, with γ̂′′ = g̃′′(ỹν′′), and the message is then estimated by m̂ = gγ̂′′(yn). By the union of
events bound, the probability of error is then bounded by εc = ε + ε′ + ε′′, for every joint distribution
in P(Sν′+ν′′+n). That is, the concatenated code is a (2(ν

′+ν′′+n)R̃n , ν′ + ν′′ + n, εc) code over the AVRC
L, where the blocklength is n + o(n), and the rate R̃n = n

ν′+ν′′+n · R approaches R as n→ ∞.

Appendix F. Proof of Corollary 4

Consider part 1. By Definition 3, if WY1|X,X1,S and WY|X,X1,S are not symmetrizable -X |X1

then there exist x1,1, x1,2 ∈ X1 such that the DMCs WY1|X,X1,S(·|·, x1,1, ·) and WY|X,X1,S(·|·, x1,2, ·)
are non-symmetrizable in the sense of [57] (Definition 2). This, in turn, implies that C(W1(x1,1)) > 0
and C(W(x1,2)) > 0, due to [57] (Theorem 1). Hence, by Lemma 2, C(L) = C?(L), and by Theorem 1,
R?PDF(L) ≤ C(L) ≤ R?CS(L).

Part 3 immediately follows from part 1 and Corollary 3. As for part 2, consider a strongly
reversely degraded relay channel. We claim that if WY|X,X1,S is symmetrizable-X |X1, then WY1|X,X1,S
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is also symmetrizable-X |X1. Indeed, suppose that WY|X,X1,S is symmetrized by some J(s|x, x1) (see
Definition 24). Then, for every x, x̃ ∈ X , x1 ∈ X1, and y1 ∈ Y1,

∑
s∈S

J(s|x̃, x1)WY1|X,X1,S(y1|x, x1, s) = ∑
s∈S

J(s|x̃, x1) ∑
y∈Y

WY,Y1|X,X1,S(y, y1|x, x1, s)

(a)
= ∑

y∈Y
WY1|Y,X1

(y1|y, x1) ∑
s∈S

J(s|x̃, x1)WY|X,X1,X(y|x, x1, s)

(b)
= ∑

y∈Y
WY1|Y,X1

(y1|y, x1) ∑
s∈S

J(s|x, x1)WY|X,X1,X(y|x̃, x1, s)

(c)
= ∑

s∈S
J(s|x, x1) ∑

y∈Y
WY,Y1|X,X1,S(y, y1|x̃, x1, s)

= ∑
s∈S

J(s|x, x1)WY1|X,X1,S(y1|x̃, x1, s) , (A47)

where (a) and (c) hold since WY,Y1|X,X1,S is strongly reversely degraded, and (b) holds since WY|X,X1,S
is symmetrized by J(s|x, x1). This means that WY1|X,X1,S is also symmetrizable-X |X1. It can be deduced
that given the conditions of part 2, both WY|X,X1,S and WY1|X,X1,S are non-symmetrizable-X |X1. Hence,
the proof follows from part 1 and Corollary 3.

Appendix G. Proof of Lemma 3

The proof is based on generalizing the technique by [56]. Let L be a symmetrizable-X |X1. Assume
to the contrary that a positive rate R > 0 can be achieved. That is, for every ε > 0 and sufficiently large
n, there exists a (2nR, n, ε) code C = ( f , f1, g). Hence, the size of the message set is at least 2, i.e.,

M , 2nR ≥ 2 . (A48)

We now show that there exists a distribution q(sn) such that the probability of error P(n)
e (q, C ) is

bounded from below by a positive constant, in contradiction to the assumption above.
By Definition 3, there exists a conditional distribution J(s|x) that satisfies (24). Then, consider

the state sequence distribution q(sn) = 1
M ∑M

m=1 Jn(sn|xn(m)), where Jn(sn|xn) = ∏n
i=1 J(si|xi) and

xn(m) = f (m). For this distribution, the probability of error is given by

P(n)
e (q, C ) = ∑

sn∈Sn

[
1
M

M

∑
m̃=1

Jn(sn|xn(m̃))

]
· 1
M

M

∑
m=1

∑
(yn ,yn

1 ):g(y
n) 6=m

Wn(yn, yn
1 |xn(m), f n

1 (y
n
1 ), sn)

=
1

2M2

M

∑
m=1

M

∑
m̃=1

∑
(yn ,yn

1 ):g(y
n) 6=m

∑
sn∈Sn

Wn(yn, yn
1 |xn(m), f n

1 (y
n
1 ), sn)Jn(sn|xn(m̃))

+
1

2M2

M

∑
m=1

M

∑
m̃=1

∑
(yn ,yn

1 ):g(y
n) 6=m̃

∑
sn∈Sn

Wn(yn, yn
1 |xn(m̃), f n

1 (y
n
1 ), sn)Jn(sn|xn(m)) (A49)

with Wn ≡WYn ,Yn
1 |Xn ,Xn

1 ,Sn for short notation, where in the last sum we interchanged the summation
indices m and m̃. Then, consider the last sum, and observe that by (24), we have that

∑
sn∈Sn

Wn(yn, yn
1 |xn(m̃), f n

1 (y
n
1 ), sn)Jn(sn|xn(m)) =

n

∏
i=1

[
∑

si∈S
W(yi, y1,i|xi(m̃), f1,i(yi−1

1 ), si)J(si|xi(m))

]

=
n

∏
i=1

[
∑

si∈S
W(yi, y1,i|xi(m), f1,i(yi−1

1 ), si)J(si|xi(m̃))

]
= ∑

sn∈Sn

Wn(yn, yn
1 |xn(m), f n

1 (y
n
1 ), sn)Jn(sn|xn(m̃)) . (A50)
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Substituting (A50) in (A49), we have

P(n)
e (q, C ) =

1
2M2

M

∑
m=1

M

∑
m̃=1

∑
sn∈Sn

[
∑

(yn ,yn
1 ):g(y

n) 6=m
Wn(yn, yn

1 |xn(m), f n
1 (y

n
1 ), sn)Jn(sn|xn(m̃))

+ ∑
(yn ,yn

1 ):g(y
n) 6=m̃

Wn(yn, yn
1 |xn(m), f n

1 (y
n
1 ), sn)Jn(sn|xn(m̃))

]

≥ 1
2M2

M

∑
m=1

∑
m̃ 6=m

∑
sn∈Sn

∑
yn ,yn

1

Wn(yn, yn
1 |xn(m), f n

1 (y
n
1 ), sn)Jn(sn|xn(m̃))

=
M(M− 1)

2M2 ≥ 1
4

, (A51)

where the last inequality follows from (A48), hence a positive rate cannot be achieved.

Appendix H. Proof of Lemma 4

Let L = {WY1|X,X1
WY|Y1,X1,S} be a symmetrizable-X1 × Y1 degraded AVRC. The proof follows

similar lines as in Appendix G. First, assume to the contrary that there exists a (2nR, n, ε) code C =

( f , f1, g), with M , 2nR ≥ 2. By Definition 4, there exists J(s|x1, y1) that satisfies (28). Hence, defining

q(sn) =
1
M

M

∑
m=1

∑
yn

1∈Y1

WYn
1 |Xn ,Xn

1
(yn

1 | f (m), f n
1 (y

n
1 ))Jn(sn| f n

1 (y
n
1 ), yn

1 ) , (A52)

where Jn(sn|xn
1 , yn

1 ) = ∏n
i=1 J(si|x1,i, y1,i), we have that

∑
sn∈Sn

Wn(yn|ỹn
1 , f n

1 (ỹ
n
1 ), sn)Jn(sn| f n

1 (y
n
1 ), yn

1 ) = ∑
sn∈Sn

Wn(yn|yn
1 , f n

1 (y
n
1 ), sn)Jn(sn| f n

1 (ỹ
n
1 ), ỹn

1 ) . (A53)

By similar manipulations as in Appendix G, we obtain

P(n)
e (q, C ) =

1
2M2

M

∑
m=1

M

∑
m̃=1

∑
yn

1 ,ỹn
1

WYn
1 |Xn ,Xn

1
(ỹn

1 | f (m̃), f n
1 (ỹ

n
1 ))WYn

1 |Xn ,Xn
1
(yn

1 | f (m), f n
1 (y

n
1 ))

× ∑
sn∈Sn

[
∑

yn :g(yn) 6=m
Wn(yn|yn

1 , f n
1 (y

n
1 ), sn)Jn(sn| f n

1 (ỹ
n
1 ), ỹn

1 )

+ ∑
yn :g(yn) 6=m̃

Wn(yn|yn
1 , f n

1 (y
n
1 ), sn)Jn(sn| f n

1 (ỹ
n
1 ), ỹn

1 )

]

≥M(M− 1)
2M2 ≥ 1

4
, (A54)

hence a positive rate cannot be achieved.

Appendix I. Analysis of Example 1

We show that the random code capacity of the AVRC in Example 1 is given by C?(L) =

min
{

1
2 , 1− h(θ)

}
. As the AVRC is degraded, the random code capacity is given by

C?(L) = R?PDF(L) = R?CS(L) = max
p(x,x1)

min
{

min
0≤q≤1

Iq(X, X1; Y) , I(X; Y1|X1)

}
, (A55)
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due to part 2 of Corollary 3, where q ≡ q(1) = 1− q(0). Now, consider the direct part. Set p(x, x1) =

p(x)p(x1), where X ∼ Bernoulli(1/2) and X1 ∼ Bernoulli(1/2). Then,

I(X; Y1|X1) = 1− h(θ) ,

Hq(Y) =
1
2

[
−q log

(
1
2

q
)
− (1− q) log

(
1
2
(1− q)

)]
− 1

2
log
(

1
2

)
= 1 +

1
2

h(q) ,

Hq(Y|X, X1) = h(q) . (A56)

Hence,

C?(L) ≥min
{

min
0≤q≤1

[
1− 1

2
h(q)

]
, 1− h(θ)

}
= min

{
1
2

, 1− h(θ)
}

. (A57)

As for the converse part, we have the following bounds,

C?(L) ≤ max
p(x,x1)

I(X; Y1|X1) = 1− h(θ) , (A58)

and

C?(L) ≤ max
p(x,x1)

min
0≤q≤1

Iq(X, X1; Y) ≤ max
p(x,x1)

[Hq(Y)− Hq(Y|X, X1)]
∣∣∣
q= 1

2

= max
0≤p≤1

[
1 +

1
2

h(p)
]
− 1 =

1
2

, (A59)

where p , Pr (X1 = 1).

Appendix J. Proof of Lemma 5

The proof follows the lines of [5]. Consider an AVRC L = {WY|X′ ,X1
WY1|X′′ ,X1,S} with orthogonal

sender components. We apply Theorem 1, which states that R?PDF(L) ≤ C?(L) ≤ R?CS(L).

Appendix J.1. Achievability Proof

To show achievability, we set U = X′′ and p(x′, x′′, x1) = p(x1)p(x′|x1)p(x′′|x1) in the partial

decode-forward lower bound R?PDF(L) , RPDF(LQ)
∣∣∣∣
Q=P(S)

. Hence, by (9),

R?PDF(L2) ≥ max
p(x1)p(x′ |x1)p(x′′ |x1)

min
{

I(X′, X′′, X1; Y) , min
q(s)

Iq(X′′; Y1|X1) + I(X′; Y|X1, X′′)
}

. (A60)

Now, by (29), we have that (X′′, Y1) − (X′, X1) − Y form a Markov chain. As (X1, X′, X′′) ∼
p(x1)p(x′|x1)p(x′′|x1), it further follows that (X′′, Y1) − X1 − Y form a Markov chain, hence
I(X′, X′′, X1; Y) = I(X′, X1; Y) and I(X′; Y|X1, X′′) = I(X′; Y|X1). Thus, (A60) reduces to the
expression in the RHS of (30). If WY1|X′′ ,X1,S is non-symmetrizable-X ′′|X1, then (A60) is achievable by
deterministic codes as well, due to Corollary 4.

Appendix J.2. Converse Proof

By (8) and (19), the cutset upper bound takes the following form,

R?CS(L) =min
q(s)

max
p(x′ ,x′′ ,x1)

min
{

I(X′, X′′, X1; Y) , Iq(X′, X′′; Y, Y1|X1)
}

= max
p(x′ ,x′′ ,x1)

min
{

I(X′, X′′, X1; Y) , min
q(s)

Iq(X′, X′′; Y, Y1|X1)
}

, (A61)
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where the last line is due to the minimax theorem [90]. For the AVRC with orthogonal sender
components, as specified by (29), we have the following Markov relations,

Y1 − (X′′, X1)− (X′, Y) , (A62)

(X′′, Y1)− (X′, X1)−Y . (A63)

Hence, by (A63), I(X′, X′′, X1; Y) = I(X′, X1; Y). As for the second mutual information in the RHS
of (A61), by the mutual information chain rule,

Iq(X′, X′′; Y, Y1|X1) =Iq(X′′; Y1|X1) + Iq(X′; Y1|X′′, X1) + Iq(X′, X′′; Y|X1, Y1)

(a)
= Iq(X′′; Y1|X1) + Iq(X′, X′′; Y|X1, Y1)

(b)
= Iq(X′′; Y1|X1) + Hq(Y|X1, Y1)− H(Y|X′, X1)

(c)
≤ Iq(X′′; Y1|X1) + I(X′; Y|X1) (A64)

where (a) is due to (A62), (b) is due to (A63), and (c) holds since conditioning reduces entropy.
Therefore,

R?CS(L) ≤ max
p(x′ ,x′′ ,x1)

min
{

I(X′, X1; Y) , min
q(s)

Iq(X′′; Y1|X1) + I(X′; Y|X1)

}
. (A65)

Without loss of generality, the maximization in (A65) can be restricted to distributions of the form
p(x′, x′′, x1) = p(x1)· p(x′|x1)· p(x′′|x1).

Appendix K. Proof of Lemma 6

Consider the Gaussian compound relay channel with SFD under input constraints Ω and Ω1 and
state constraint Λ, i.e., Q = {q(s) : ES2 ≤ Λ}.

Appendix K.1. Achievability Proof

Consider the direct part. Although we previously assumed that the input, state and output
alphabets are finite, our results for the compound relay channel can be extended to the continuous case
as well, using standard discretization techniques [3] (Section 3.4.1); [55,95]. In particular, Lemma 1 can
be extended to the compound relay channel LQ under input constraints Ω and Ω1 and state constraint
Λ, by choosing a distribution p(x′, x′′, x1) such that E(X′2 + X′′2) ≤ Ω and EX2

1 ≤ Ω1. Then, the
capacity of LQ is bounded by

C(LQ) ≥ RPDF(LQ) ≥ max
p(x′′)p(x,x1) :

E(X′2+X′′2)≤Ω ,
EX2

1≤Ω1

min
{

min
q(s) : ES2≤Λ

Iq(X1; Y) + min
q(s) : ES2≤Λ

Iq(X′; Y|X1) ,

I(X′′; Y1) + min
q(s) : ES2≤Λ

Iq(X′; Y|X1)
}

, (A66)

which follows from the partial decode-forward lower bound by taking U = X′′. Lemma 1 further
states that there exists a block Markov code that achieves this rate such that the probability of error
decays exponentially as the blocklength increases.

Let 0 ≤ α, ρ ≤ 1, and let (X′, X′′, X1) be jointly Gaussian with

X′ ∼ N (0, αΩ) , X′′ ∼ N (0, (1− α)Ω) , X1 ∼ N (0, Ω1) , (A67)
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where the correlation coefficient of X′ and X1 is ρ, while X′′ is independent of (X′, X1). Hence,

I(X′′; Y1) =
1
2

log
(

1 +
(1− α)Ω

σ2

)
. (A68)

Since Gaussian noise is the worst additive noise under variance constraint [96] (Lemma II.2), and as
Var(X′|X1 = x1) = (1− ρ2)αΩ for all x1 ∈ R, we have that

min
q(s) : ES2≤Λ

Iq(X′; Y|X1) =
1
2

log
(

1 +
(1− ρ2)αΩ

Λ

)
. (A69)

It is left for us to evaluate the first term in the RHS of (A66). Then, by standard whitening
transformation, there exist two independent Gaussian random variables T1 and T2 such that

X′ + X1 = T1 + T2 , (A70)

T1 ∼ N (0, (1− ρ2)αΩ) , T2 ∼ N (0, Ω1 + ρ2αΩ + 2ρ
√

αΩ ·Ω1) . (A71)

Hence, Y = T1 + T2 + S, and as Var(X′|X1 = x1) = Var(T1) for all x1 ∈ R, we have that

Iq(X1; Y) =Hq(Y)− Hq(X′ + S|X1)

=Hq(Y)− Hq(T1 + S) = Iq(T2; Y) (A72)

Let S̄ , T1 + S. Then, since Gaussian noise is the worst additive noise under variance constraint [96]
(Lemma II.2),

min
q(s) : ES2≤Λ

Iq(X1; Y) = min
q(s) : ES2≤Λ

Iq(T2; T2 + S̄) =
1
2

log
(

1 +
Var(T2)

Var(T1) + Λ

)
=

1
2

log
(

Ω1 + ρ2αΩ + 2ρ
√

αΩ ·Ω1 + Λ
(1− ρ2)αΩ + Λ

)
. (A73)

Substituting (A68), (A69) and (A73) in the RHS of (A66), we have that

C(LQ) ≥ max
0≤α,ρ≤1

min
{

1
2

log
(

Ω1 + ρ2αΩ + 2ρ
√

αΩ ·Ω1 + Λ
(1− ρ2)αΩ + Λ

)
+

1
2

log
(

1 +
(1− ρ2)αΩ

Λ

)
,

1
2

log
(

1 +
(1− α)Ω

σ2

)
+

1
2

log
(

1 +
(1− ρ2)αΩ

Λ

)}
. (A74)

Observe that the first sum in the RHS of (A74) can be expressed as

1
2

log
(

Ω1 + ρ2αΩ + 2ρ
√

αΩ ·Ω1 + Λ
(1− ρ2)αΩ + Λ

)
+

1
2

log
(
(1− ρ2)αΩ + Λ

Λ

)
=

1
2

log
(

Ω1 + ρ2αΩ + 2ρ
√

αΩ ·Ω1 + Λ
Λ

)
=

1
2

log
(

1 +
Ω1 + ρ2αΩ + 2ρ

√
αΩ ·Ω1

Λ

)
. (A75)

Hence, the direct part follows from (A74).
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Appendix K.2. Converse Proof

By Lemma 1, C?(LQ) ≤ RCS(LQ). Now, observe that

RCS(LQ) = min
q(s) : ES2≤Λ

max
p(x′′)p(x,x1) :

E(X′2+X′′2)≤Ω ,
EX2

1≤Ω

min
{

Iq(X′, X1; Y) , I(X′′; Y1) + Iq(X′; Y|X1)
}

≤ max
p(x′′)p(x,x1) :

E(X′2+X′′2)≤Ω ,
EX2

1≤Ω

min
{

Iq(X′, X1; Y) , I(X′′; Y1) + Iq(X′; Y|X1)
} ∣∣∣∣

S∼N (0,Λ)

= max
0≤α,ρ≤1

min
{

1
2

log
(

1 +
Ω1 + ρ2αΩ + 2ρ

√
αΩ ·Ω1

Λ

)
,

1
2

log
(

1 +
(1− α)Ω

σ2

)
+

1
2

log
(

1 +
(1− ρ2)αΩ

Λ

)}
, (A76)

where the last equality is due to [5].

Appendix L. Proof of Theorem 2

Appendix L.1. Achievability Proof

To show that C?(L) ≥ C(LQ), we follow the steps in the proof of Theorem 1, where we replace
Ahlswede’s original RT with the modified version in [85,86] (Lemma 9), plugging ln(sn) = 1

n ∑n
i=1 s2

i .
Then, by Lemma 6, it follows that

C?(L) ≥ max
0≤α,ρ≤1

min
{

1
2

log
(

1 +
(1 + α + 2ρ

√
α)Ω

Λ

)
,

1
2

log
(

1 +
(1− α)Ω

σ2

)
+

1
2

log
(

1 +
(1− ρ2)αΩ

Λ

)}
. (A77)

The details are omitted.

Appendix L.2. Converse Proof

Assume to the contrary that there exists an achievable rate R such that

R > max
0≤α,ρ≤1

min
{

1
2

log
(

1 +
(1 + α + 2ρ

√
α)Ω

Λ− δ

)
,

1
2

log
(

1 +
(1− α)Ω

σ2

)
+

1
2

log
(

1 +
(1− ρ2)αΩ

Λ− δ

)}
(A78)

using random codes over the Gaussian AVRC L, under input constraints Ω and Ω1 and state constraint
Λ, where δ > 0 is arbitrarily small. That is, for every ε > 0 and sufficiently large n, there exists a
(2nR, n) random code C Γ = (µ, Γ, {Cγ}γ∈Γ) for the Gaussian AVRC L, under input constraints Ω and
Ω1 and state constraint Λ, such that

Pe|s(C
Γ) ≤ ε , (A79)

for all m ∈ [1 : 2nR] and s ∈ Rn with ‖s‖2 ≤ nΛ.
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Consider using the random code C Γ over the Gaussian compound relay channel LQ under state
constraint (Λ− δ), i.e., with

Q = {q(s) : ES2 ≤ Λ− δ} , (A80)

under input constraints Ω and Ω1. Let q(s) ∈ Q be a given state distribution. Then, define a sequence
of i.i.d. random variables S1, . . . , Sn ∼ q(s). Letting q(sn) , ∏n

i=1 q(si), the probability of error is
bounded by

P(n)
e (q, C Γ) ≤ ∑

sn : ln(sn)≤Λ
qn(sn)P(n)

e|sn(C
Γ) + Pr

(
1
n

n

∑
i=1

S2
i > Λ

)
. (A81)

Then, the first sum is bounded by (A79), and the second term vanishes as well by the law of large
numbers, since q(s) is in (A80). Hence, the rate R in (A78) is achievable for the Gaussian compound
relay channel LQ, in contradiction to Lemma 6. We deduce that the assumption is false, and (A78)
cannot be achieved.

Appendix M. Proof of Theorem 3

Consider the Gaussian AVRC L with SFD under input constraints Ω and Ω1 and state constraint
Λ. In the proof, we modify the techniques by Csiszár and Narayan [87]. In the direct part, we use their
correlation binning technique within the decode-forward coding scheme, and in the converse part, we
consider a jamming scheme which simulates the transmission sum by the encoder and the relay.

Appendix M.1. Lower Bound

We construct a block Markov code using backward minimum-distance decoding in two steps.
The encoders use B blocks, each consists of n channel uses, to convey (B− 1) independent messages
to the receiver, where each message Mb, for b ∈ [1 : B− 1], is divided into two independent messages.
That is, Mb = (M′b, M′′b ), where M′b and M′′b are uniformly distributed, i.e.,

M′b ∼ Unif[1 : 2nR′ ] , M′′b ∼ Unif[1 : 2nR′′ ] , with R′ + R′′ = R , (A82)

for b ∈ [1 : B− 1]. For convenience of notation, set M′0 = M′B ≡ 1 and M′′0 = M′′B ≡ 1. The average
rate B−1

B · R is arbitrarily close to R.
Codebook Construction: Fix 0 ≤ α, ρ ≤ 1 with

(1− ρ2)αΩ > Λ , (A83)
Ω1

Ω
(
√

Ω1 + ρ
√

αΩ)2 > Λ + (1− ρ2)αΩ . (A84)

We construct B codebooks Fb of the following form,

Fb =
{ (

x1(m′b−1), x′(m′b, m′′b |m′b−1), x′′(m′b)
)

: m′b−1, m′b ∈ [1 : 2nR′ ] , m′′b ∈ [1 : 2nR′′ ]
}

, (A85)

for b ∈ [2 : B − 1]. The codebooks F1 and FB have the same form, with fixed m′0 = m′B ≡ 1 and
m′′0 = m′′B ≡ 1.

The sequences x′′(m′b), m′b ∈ [1 : 2nR′ ] are chosen as follows. Observe that the channel from the
sender to the relay, Y1 = X′′ + Z, does not depend on the state. Thus, by Shannon’s well-known result
on the point-to-point Gaussian channel [97], the message m′b can be conveyed to the relay reliably,

under input constraint (1− α)Ω, provided that R′ < 1
2 log

(
1 + (1−α)Ω

σ2

)
− δ1, where δ1 is arbitrarily

small (see also [98] (Chapter 9)). That is, for every ε > 0 and sufficiently large n, there exists a (2nR′ , n, ε)

code C ′′ = (x′′(m′b), g1(y1,b)), such that
∥∥x′′(m′b)

∥∥2 ≤ n(1− α)Ω for all m′b ∈ [1 : 2nR′ ].
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Next, we choose the sequences x1(m′b−1) and x′(m′b, m′′b | m′b−1), for m′b−1, m′b ∈ [1 : 2nR′ ], m′′b ∈
[1 : 2nR′′ ]. Applying Lemma 7 by [87] repeatedly yields the following.

Lemma A1. For every ε > 0, 8
√

ε < η < 1, K > 2ε, 2ε ≤ R′ ≤ K, 2ε ≤ R′′ ≤ K, and n ≥ n0(ε, η, K),

1. there exist 2nR′ unit vectors,

a(m′b−1) ∈ Rn , m′b−1 ∈ [1 : 2nR′ ] , (A86)

such that for every unit vector c ∈ Rn and 0 ≤ θ, ζ ≤ 1,∣∣∣{m̃′b−1 ∈ [1 : 2nR′ ] : 〈a(m̃′b−1), c〉 ≥ θ
}∣∣∣ ≤ 2n([R′+ 1

2 log(1−θ2)]++ε) , (A87)

and if θ ≥ η and θ2 + ζ2 > 1 + η − 2−2R′ , then

1
2nR′

∣∣{m′b−1 ∈ [1 : 2nR′ ] : |〈a(m̃′b−1), a(m′b−1)〉| ≥ θ , |〈a(m̃′b−1), c〉| ≥ ζ ,

for some m̃′b−1 6= m′b−1
}∣∣ ≤ 2−nε . (A88)

2. Furthermore, for every m′b ∈ [1 : 2nR′ ], there exist 2nR′′ unit vectors,

v(m′b, m′′b ) ∈ Rn , m′′b ∈ [1 : 2nR′′ ] , (A89)

such that for every unit vector c ∈ Rn and 0 ≤ θ, ζ ≤ 1,∣∣∣{m̃′′b ∈ [1 : 2nR′′ ] : 〈v(m′b, m̃′′b ), c〉 ≥ θ
}∣∣∣ ≤ 2n([R′′+ 1

2 log(1−θ2)]++ε) , (A90)

and if θ ≥ η and θ2 + ζ2 > 1 + η − 2−2R′′ , then

1
2nR′′

∣∣{m′′b ∈ [1 : 2nR′′ ] : |〈v(m′b, m̃′′b ), v(m′b, m′′b )〉| ≥ θ , |〈v(m′b, m̃′′b ), c〉| ≥ ζ ,

for some m̃′′b 6= m′′b
}∣∣ ≤ 2−nε . (A91)

Then, define

x1(m′b−1) =
√

nγ(Ω− δ) · a(m′b−1) ,

x′(m′b, m′′b |m′b−1) = ρ
√

αγ−1 · x1(m′b−1) + β · v(m′b, m′′b ) , (A92)

where

β ,
√

n(1− ρ2)α(Ω− δ) , γ , Ω1/Ω . (A93)

Note that
∥∥x1(m′b−1)

∥∥2
= nγ(Ω − δ) < nΩ1, for all m′b−1 ∈ [1 : 2nR′ ]. On the other hand,∥∥x′(m′b, m′′b |m′b−1)

∥∥2 could be greater than nαΩ due to the possible correlation between x1(m′b−1)

and v(m′b, m′′b ).
Encoding: Let (m′1, m′′1 , . . . , m′B−1, m′′B−1) be a sequence of messages to be sent. In block b ∈ [1 : B],

if
∥∥x′(m′b, m′′b |m′b−1)

∥∥2 ≤ nαΩ, transmit (x′(m′b, m′′b |m′b−1), x′′(m′b)). Otherwise, transmit (0, x′′(m′b)).
Relay Encoding: In block 1, the relay transmits x1(1). At the end of block b ∈ [1 : B− 1], the relay

receives y1,b, and finds an estimate m̄′b = g1(y1,b). In block b + 1, the relay transmits x1(m̄′b).
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Backward Decoding: Once all blocks (yb)
B
b=1 are received, decoding is performed backwards.

Set m̂′0 = m̂′′0 ≡ 1. For b = B− 1, B− 2, . . . , 1, find a unique m̂′b ∈ [1 : 2nR′ ] such that∥∥∥∥yb+1 − (1 + ρ
√

αγ−1)x1(m̂′b)
∥∥∥∥ ≤ ∥∥∥∥yb+1 − (1 + ρ

√
αγ−1)x1(m′b)

∥∥∥∥ , for all m′b ∈ [1 : 2nR] . (A94)

If there is more than one such m̂′b ∈ [1 : 2nR′ ], declare an error.
Then, the decoder uses m̂′1, . . . , m̂′B−1 as follows. For b = B − 1, B − 2, . . . , 1, find a unique

m̂′′b ∈ [1 : 2nR′′ ] such that∥∥yb − x1(m̂′b−1)− x′(m̂′b, m̂′′b |m̂′b−1)
∥∥ ≤ ∥∥yb − x1(m̂′b−1)− x′(m̂′b, m′′b |m̂′b−1)

∥∥ , for all m′′b ∈ [1 : 2nR′′ ] . (A95)

If there is more than one such m̂′′b ∈ [1 : 2nR′′ ], declare an error.
Analysis of Probability of Error: Fix s ∈ Sn, and let

c0 ,
s
‖s‖ . (A96)

The error event is bounded by the union of the following events. For b ∈ [1 : B− 1], define

E1(b) = {M̄′b 6= M′b} , E2(b) = {M̂′b 6= M′b} , E3(b) = {M̂′′b 6= M′′b } . (A97)

Then, the conditional probability of error given the state sequence s is bounded by

Pe|s(C ) ≤
B−1

∑
b=1

Pr (E1(b)) +
B−1

∑
b=1

Pr (E2(b) ∩ E c
1(b)) +

B−1

∑
b=1

Pr (E3(b) ∩ E c
1(b− 1) ∩ E c

2(b) ∩ E c
2(b− 1)) , (A98)

with E1(0) = E2(0) = ∅, where the conditioning on S = s is omitted for convenience of notation. Recall
that we have defined C ′′ as a (2nR′ , n, ε) code for the point-to-point Gaussian channel Y1 = X′′ + Z.
Hence, the first sum in the RHS of (A98) is bounded by B · ε, which is arbitrarily small.

To be more concise, we only give the details for erroneous decoding of M′b at the receiver. Consider
the following events,

E2(b) = {
∥∥∥∥Yb+1 − (1 + ρ

√
αγ−1)x1(m̃′b)

∥∥∥∥ ≤ ∥∥∥∥Yb+1 − (1 + ρ
√

αγ−1)x1(M′b)
∥∥∥∥ , for some m̃′b 6= M′b} ,

E2,1(b) = {|〈a(M′b), c0〉| ≥ η} ,

E2,2(b) = {|〈a(M′b), v(Mb+1)〉| ≥ η}
E2,3(b) = {|〈v(Mb+1), c0〉| ≥ η}
Ẽ2(b) = E2(b) ∩ E c

1(b) ∩ E c
2,1(b) ∩ E c

2,2(b) ∩ E c
2,3(b) , (A99)

where Mb+1 = (M′b+1, M′′b+1). Then,

E2(b) ∩ E c
1(b) ⊆E2,1(b) ∪ E2,2(b) ∪ E2,3(b) ∪ (E2(b) ∩ E c

1(b))

=E2,1(b) ∪ E2,2(b) ∪ E2,3(b) ∪ Ẽ2(b) . (A100)

Hence, by the union of events bound, we have that

Pr (E2(b) ∩ E c
1(b)) ≤Pr (E2,1(b)) + Pr (E2,2(b)) + Pr (E2,3(b)) + Pr

(
Ẽ2(b)

)
. (A101)
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By Lemma A1, given R′ > − 1
2 log(1− η2), the first term is bounded by

Pr (E2,1(b)) =Pr
(
〈a(M′b), c0〉 ≥ η

)
+ Pr

(
〈a(M′b),−c0〉 ≥ η

)
≤2 · 1

2nR′ · 2
n(R′+ 1

2 log(1−η2)+ε) ≤ 2 · 2n(− 1
2 η2+ε) , (A102)

since log(1 + t) ≤ t for t ∈ R. As η2 ≥ 8ε, the last expression tends to zero as n → ∞. Similarly,
Pr (E2,2(b)) and Pr (E2,3(b)) tend to zero as well. Moving to the fourth term in the RHS of (A101),
observe that for a sufficiently small ε and η, the event E c

2,2(b) implies that
∥∥x′(Mb+1|M′b)

∥∥2 ≤ nαΩ,
while the event E c

1(b) means that M̄′b = M′b. Hence, the encoder transmits (x′(Mb+1|M′b), x′′(M′b+1)),
the relay transmits x1(M′b), and we have that∥∥∥∥Yb+1 − (1 + ρ

√
αγ−1)x1(m̃′b)

∥∥∥∥2
−
∥∥∥∥Yb+1 − (1 + ρ

√
αγ−1)x1(M′b)

∥∥∥∥2

=

∥∥∥∥(1 + ρ
√

αγ−1)x1(M′b) + βv(Mb+1) + s− (1 + ρ
√

αγ−1)x1(m̃′b)
∥∥∥∥2
− ‖βv(Mb+1) + s‖2

=2(1 + ρ
√

αγ−1)2
(

1
2

∥∥x1(M′b)
∥∥2

+
1
2

∥∥x1(m̃′b)
∥∥2 − 〈x1(m̃′b), x1(M′b)〉

)
+ 2(1 + ρ

√
αγ−1)

(
〈x1(M′b), βv(Mb+1) + s〉 − 〈x1(m̃′b), βv(Mb+1) + s〉

)
(A103)

Then, since
∥∥x1(m′b)

∥∥2
= nγ(Ω− δ) for all m′b ∈ [1 : 2nR′ ], we have that

E2(b) ∩ E c
1(b) ∩ E c

2,2(b) ⊆{(1 + ρ
√

αγ−1)〈x1(m̃′b), x1(M′b)〉+ 〈x1(m̃′b), βv(Mb+1) + s〉 ≥

n(1 + ρ
√

αγ−1)γ(Ω− δ) + 〈x1(M′b), βv(Mb+1) + s〉 , for some m̃′b 6= M′b} . (A104)

Observe that for sufficiently small ε and η, the event E c
2,1(b) ∩ E c

2,2(b) ∩ E c
2,3(b) implies that

〈x1(M′b), βv(Mb+1) + s〉 ≥ −δ , (A105)

and

‖βv(Mb+1) + s‖2 ≤ n[(1− ρ2)αΩ + Λ] . (A106)

Hence, by (A104) and (A105),

Ẽ2(b) = E2(b) ∩ E c
1(b) ∩ E c

2,1(b) ∩ E c
2,2(b) ∩ E c

2,3(b)

⊆{(1 + ρ
√

αγ−1)〈x1(m̃′b), x1(M′b)〉+ 〈x1(m̃′b), βv(Mb+1) + s〉 ≥ n(1 + ρ
√

αγ−1)γ(Ω− 2δ) ,

for some m̃′b 6= M′b} . (A107)

Dividing both sides of the inequality by n(1 + ρ
√

αγ−1), we obtain

Ẽ2(b) ⊆
{

1
n
〈x1(m̃′b), x1(M′b)〉+

〈x1(m̃′b), βv(Mb+1) + s〉
n(1 + ρ

√
αγ−1)

≥ γ(Ω− 2δ) , for some m̃′b 6= M′b

}
. (A108)
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Next, we partition the set of values of 1
n 〈x1(m̃′b), x1(M′b)〉 to K bins. Let τ1 < τ2 < · · · < τK be such

partition, where

τ1 = γ(Ω− 2δ)−
√
(Ω− δ)[(1− ρ2)αΩ + Λ]

1 + ρ
√

αγ−1
, τK = γ(Ω− 3δ) ,

τk+1 − τk ≤ γ · δ , for k = [1 : K− 1] , (A109)

where K is a finite constant which is independent of n, as in Lemma A1. By (A106) and (A108), given
the event Ẽ2(b), we have that

1
n
〈x1(m̃′b), x1(M′b)〉 ≥ τ1 > 0 , (A110)

where the last inequality is due to (A84), for sufficiently small δ > 0. To see this, observe that the
inequality in (A84) is strict, and it implies that

√
γ · (

√
γΩ + ρ

√
αΩ) >

√
(1− ρ2)αΩ + Λ . (A111)

Hence, for sufficiently small δ > 0, τ1 > 0 as

τ1 =

√
Ω− 2δ

1 + ρ
√

αγ−1
·
(
√

γ(
√

γ(Ω− 2δ) + ρ
√

α(Ω− 2δ))−
√

Ω− δ

Ω− 2δ
[(1− ρ2)αΩ + Λ]

)
. (A112)

Furthermore, if τk ≤ 1
n 〈x1(m̃′b), x1(M′b)〉 < τk+1, then

〈x1(m̃′b), βv(Mb+1) + s〉
n(1 + ρ

√
αγ−1)

≥ γ(Ω− 2δ)− τk+1 ≥ γ(Ω− 3δ)− τk . (A113)

Thus,

Pr
(
Ẽ2(b)

)
≤

K−1

∑
k=1

Pr
(

1
n
|〈x1(m̃′b), x1(M′b)〉| ≥ τk ,

|〈x1(m̃′b), βv(Mb+1) + s〉|
n(1 + ρ

√
αγ−1)

≥ γ(Ω− 3δ)− τk ,

for some m̃′b 6= M′b

)
+ Pr

(
1
n
|〈x1(m̃′b), x1(M′b)〉| ≥ τK , for some m̃′b 6= M′b

)
. (A114)

By (A106), this can be further bounded by

Pr
(
Ẽ2(b)

)
≤

K

∑
k=1

Pr
(
|〈a(m̃′b), a(M′b)〉| ≥ θk , |〈a(m̃′b), c′(Mb+1)〉| ≥ µk , for some m̃′b 6= M′b

)
, (A115)

where

c′(mb+1) ,
βv(mb+1) + s
‖βv(mb+1) + s‖ , (A116)

and

θk ,
τk

γ(Ω− δ)
, ζk ,

(1 + ρ
√

αγ−1) (γ(Ω− 3δ)− τk)√
γ(Ω− δ)((1− ρ2)αΩ + Λ)

, for k ∈ [1 : K− 1] ; θK ,
τK

Ω− δ
, ζK = 0 . (A117)

By Lemma A1, the RHS of (A115) tends to zero as n→ ∞ provided that

θk ≥ η and θ2
k + ζ2

k > 1 + η − e−2R′ , for k = [1 : K] . (A118)
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For sufficiently small ε and η, we have that η ≤ θ1 = τ1
γ(Ω−δ)

, hence the first condition is met. Then,

observe that the second condition is equivalent to G(τk) > 1 + η − e−2R′ , for k ∈ [1 : K− 1], where

G(τ) = (Aτ)2 + D2(L− τ)2 , (A119)

with

A =
1

γ(Ω− δ)
, D =

1 + ρ
√

αγ−1√
γ(Ω− δ)((1− ρ2)αΩ + Λ)

, L = γ(Ω− 3δ) . (A120)

By differentiation, we have that the minimum value of this function is given by minτ1≤τ≤τK G(τ) =
A2D2L2

A2+D2 = D2

A2+D2 − δ1, where δ1 → 0 as δ → 0. Thus, the RHS of (A115) tends to zero as n → ∞,
provided that

R′ <− 1
2

log
(

1 + η − D2

A2 + D2 + δ1

)
=− 1

2
log

(
η + δ1 +

(1− ρ2)αΩ + Λ

(γ + α + 2ρ
√

αγ)Ω + Λ− δγ(1 + ρ
√

αγ−1)2

)
. (A121)

This is satisfied for R′ = R′α(L)− δ′, with

R′α(L) =
1
2

log
(
(γ + α + 2ρ

√
αγ)Ω + Λ

(1− ρ2)αΩ + Λ

)
= −1

2
log
(

(1− ρ2)αΩ + Λ
(γ + α + 2ρ

√
αγ)Ω + Λ

)
. (A122)

and arbitrary δ′ > 0, if η and δ are sufficiently small.
As for the error event for M′′b , a similar derivation shows that the probability term in the last sum

in (A98) exponentially tends to zero as n→ ∞, provided that

R′′ <− 1
2

log
(

1 + η − β2(1− 2δ)2

β2 + nΛ

)
< −1

2
log
(

η +
Λ

(1− ρ2)α(Ω− δ) + Λ

)
. (A123)

This is satisfied for R′′ = R′′α (L)− δ′′, with

R′′α (L) =
1
2

log
(
(1− ρ2)αΩ + Λ

Λ

)
= −1

2
log
(

Λ
(1− ρ2)αΩ + Λ

)
(A124)

for an arbitrary δ′′ > 0, if η and δ are sufficiently small.
We have thus shown achievability of every rate

R < min
{
R′α(L) + R′′α (L),

1
2

log
(

1 +
(1− α)Ω

σ2

)
+ R′′α (L)

}
, (A125)

where

R′α(L) + R′′α (L) =
1
2

log
(
(γ + α + 2ρ

√
αγ)Ω + Λ

(1− ρ2)αΩ + Λ

)
+

1
2

log
(
(1− ρ2)αΩ + Λ

Λ

)
=

1
2

log
(

1 +
Ω1 + αΩ + 2ρ

√
αΩ ·Ω1

Λ

)
(A126)

(see (A93)). This completes the proof of the lower bound.
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Appendix M.2. Upper Bound

Let R > 0 be an achievable rate. Then, there exists a sequence of (2nR, n, ε∗n) codes Cn = (f, f1, g)
for the Gaussian AVRC L with SFD such that ε∗n → 0 as n→ ∞, where the encoder consists of a pair
f = (f′, f′′), with f′ : [1 : 2nR] → Rn and f′′ : [1 : 2nR] → Rn. Assume without loss of generality that
the codewords have zero mean, i.e.,

1
2nR

2nR

∑
m=1

1
n

n

∑
i=1

fi(m) = 0 ,

∫ ∞

−∞
dy1 ·

1
2nR ∑

m∈[1:2nR ]

PY1|M(y1|m) · 1
n

n

∑
i=1

f1,i(y1,1, y1,2, . . . , y1,i−1) = 0 , (A127)

where PY1|M(y1|m) = 1
(2πσ2)n/2 e−‖y1−f′′(m)‖2/2σ2

. If this is not the case, redefine the code such that the
mean is subtracted from each codeword. Then, define

α ,
1

nΩ
· 1

2nR ∑
m∈[1:2nR ]

∥∥f′(m)
∥∥2 ,

α1 ,
1

nΩ1
· 1

2nR ∑
m∈[1:2nR ]

∫ ∞

−∞
dy1 · PY1|M(y1|m) · ‖f1(y1)‖2 .

ρ ,
1

n
√

αΩ · α1Ω1

∫ ∞

−∞
dy1 ·

1
2nR ∑

m∈[1:2nR ]

PY1|M(y1|m) · 〈f′(m), f1(y1)〉 , (A128)

Since the code satisfies the input constraints Ω and Ω1, we have that α, α1 and ρ are in the interval
[0, 1].

First, we show that if

Λ > Ω1 + αΩ + 2ρ
√

αΩ ·Ω1 + δ , (A129)

then the capacity is zero, where δ > 0 is arbitrarily small. Consider the following jamming strategy.
The jammer draws a message M̃ ∈ [1 : 2nR] uniformly at random, and then, generates a sequence

Ỹ1 ∈ Rn distributed according to PY1|M(ỹ1|m̃). Let S̃ = f′(M̃) + f1(Ỹ1). If 1
n

∥∥∥S̃
∥∥∥2
≤ Λ, the jammer

chooses S̃ to be the state sequence. Otherwise, let the state sequence consist of all zeros. Observe that

E
∥∥∥S̃
∥∥∥2

=E
∥∥∥f′(M̃) + f1(Ỹ1)

∥∥∥2

=E
∥∥∥f′(M̃)

∥∥∥2
+E

∥∥∥f1(Ỹ1)
∥∥∥2

+ 2E〈f(M̃), f1(Ỹ1)〉

=n(αΩ + α1Ω1 + 2ρ
√

αΩ · α1Ω1)

≤n(αΩ + Ω1 + 2ρ
√

αΩ ·Ω1) < n(Λ− δ) . (A130)

where the second equality is due to (A128), and the last inequality is due to (A129). Thus, by
Chebyshev’s inequality, there exists κ > 0 such that

Pr
(

1
n

∥∥∥S̃
∥∥∥2
≤ Λ

)
≥ κ . (A131)
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The state sequence S is then distributed according to

P
S|{ 1

n‖S̃‖2≤Λ}(s) =
1

2nR ∑
m̃∈[1:2nR ]

∫
ỹ1 :f′(m̃)+f1(ỹ1)=s

dy1PY1|M(y1|m) ,

Pr
(

S = 0 | 1
n

∥∥∥S̃
∥∥∥2

> Λ
)
= 1 . (A132)

Assume to the contrary that a positive rate can be achieved when the channel is governed by such
state sequence, hence the size of the message set is at least 2, i.e., M , 2nR ≥ 2. The probability of error
is then bounded by

P(n)
e (q, C ) =

∫ ∞

−∞
ds · q(s)P(n)

e|s (C ) ≥ Pr
(

1
n

∥∥∥S̃
∥∥∥2
≤ Λ

)
·
∫

s: 1
n ‖s‖

2≤Λ
ds · P

S|{ 1
n‖S̃‖2≤Λ}(s) · P

(n)
e|s (C )

≥κ ·
∫

s: 1
n ‖s‖

2≤Λ
ds · P

S|{ 1
n‖S̃‖2≤Λ}(s) · P

(n)
e|s (C ) (A133)

where the inequality holds by (A131). Next, we have that

P(n)
e|s (C ) =

1
M

M

∑
m=1

∫ ∞

−∞
dy1 · PY1|M(y1|m) · 1

{
y1 : g(f′(m) + f1(y1) + s) 6= m

}
, (A134)

where we define the indicator function G(y1) = 1{y1 ∈ A} such that G(y1) = 1 if y1 ∈ A, and
G(y1) = 0 otherwise. Substituting (A132) and (A134) into (A133) yields

P(n)
e (q, C ) ≥κ ·

∫
s: 1

n ‖s‖
2≤Λ

ds · 1
M

M

∑
m̃=1

∫
ỹ1 :f′(m̃)+f1(ỹ1)=s

dỹ1 · PY1|M(ỹ1|m̃)

× 1
M

M

∑
m=1

∫ ∞

−∞
dy1 · PY1|M(y1|m) · 1

{
y1 : g(f′(m) + f1(y1) + s) 6= m

}
. (A135)

Eliminating s = f′(m̃) + f1(ỹ1), and adding the constraint ‖f′(m) + f1(y1)‖2 ≤ Λ, we obtain the
following,

P(n)
e (q, C ) ≥ κ

M2

M

∑
m=1

M

∑
m̃=1

∫
(y1 , ỹ1) : 1

n ‖f′(m)+f1(y1)‖2≤Λ ,
1
n ‖f′(m̃)+f1(ỹ1)‖2≤Λ

dy1 dỹ1 · PY1|M(y1|m)PY1|M(ỹ1|m̃)

× 1
{

y1 : g(f′(m) + f1(y1) + f′(m̃) + f1(ỹ1)) 6= m
}

. (A136)

Now, by interchanging the summation variables (m, y1) and (m̃, ỹ1), we have that

P(n)
e (q, C ) ≥ κ

2M2

M

∑
m=1

M

∑
m̃=1

∫
(y1 , ỹ1) : 1

n ‖f′(m)+f1(y1)‖2≤Λ ,
1
n ‖f′(m̃)+f1(ỹ1)‖2≤Λ

dy1 dỹ1 · PY1|M(y1|m)PY1|M(ỹ1|m̃)

× 1
{

y1 : g(f′(m) + f1(y1) + f′(m̃) + f1(ỹ1)) 6= m
}

+
κ

2M2

M

∑
m=1

M

∑
m̃=1

∫
(y1 , ỹ1) : 1

n ‖f′(m)+f1(y1)‖2≤Λ ,
1
n ‖f′(m̃)+f1(ỹ1)‖2≤Λ

dy1 dỹ1 · PY1|M(y1|m)PY1|M(ỹ1|m̃)

× 1
{

y1 : g(f′(m) + f1(y1) + f′(m̃) + f1(ỹ1)) 6= m̃
}

. (A137)



Entropy 2019, 21, 516 43 of 48

Thus,

P(n)
e (q, C ) ≥ κ

2M2

M

∑
m=1

∑
m̃ 6=m

∫
(y1 , ỹ1) : 1

n ‖f′(m)+f1(y1)‖2≤Λ ,
1
n ‖f′(m̃)+f1(ỹ1)‖2≤Λ

dy1 dỹ1 · PY1|M(y1|m)PY1|M(ỹ1|m̃)

×
[
1
{

y1 : g(f′(m) + f1(y1) + f′(m̃) + f1(ỹ1)) 6= m
}

+ 1
{

y1 : g(f′(m) + f1(y1) + f′(m̃) + f1(ỹ1)) 6= m̃
} ]

. (A138)

As the sum in the square brackets is at least 1 for all m̃ 6= m, it follows that

P(n)
e (q, C ) ≥ κ

2M2

M

∑
m=1

∑
m̃ 6=m

∫
(y1 , ỹ1) : 1

n ‖f′(m)+f1(y1)‖2≤Λ ,
1
n ‖f′(m̃)+f1(ỹ1)‖2≤Λ

dy1 dỹ1 · PY1|M(yn
1 |m)PY1|M(ỹ1|m̃)

≥κ

4
· Pr

 1
n ‖f′(M) + f1(Y1)‖2 ≤ Λ ,
1
n

∥∥∥f′(M̃) + f1(Ỹ1)
∥∥∥2
≤ Λ , M̃ 6= M

 . (A139)

Then, recall that by (A130), the expectation of 1
n

∥∥f′(M) + f1(Yn
1 )
∥∥2 is strictly lower than Λ, and for a

sufficiently large n, the conditional expectation of 1
n ||f′(M̃) + f1(Ỹ1)||2 given M̃ 6= M is also strictly

lower than Λ. Thus, by Chebyshev’s inequality, the probability of error is bounded from below
by a positive constant. Following this contradiction, we deduce that if the code is reliable, then
Λ ≤ (1 + α + 2ρ

√
α)Ω.

It is left for us to show that for α and ρ as defined in (A128), we have that R < FG(α, ρ) (see (36)).
For a (2nR, n, ε∗n) code,

P(n)
e|s (C ) ≤ ε∗n , (A140)

for all s ∈ Rn with ‖s‖2 ≤ nΛ. Then, consider using the code C over the Gaussian relay channel
Wq

Y,Y1|X,X1
, specified by

Y1 = X′′ + Z ,

Y = X′ + X1 + S , (A141)

where the sequence S is i.i.d. ∼ q = N (0, Λ− δ). First, we show that the code C is reliable for this
channel, and then we show that R < FG(α, ρ). Using the code C over the channel Wq

Y,Y1|X,X1
, the

probability of error is bounded by

P(n)
e (q, C ) = Pr

(
1
n
∥∥S
∥∥ > Λ

)
+
∫

s: 1
n‖S‖≤Λ

ds · P(n)
e|s (C ) ≤ ε∗n + ε∗∗n , (A142)

where we have bounded the first term by ε∗∗n using the law of large numbers and the second term
using (A140), where ε∗∗n → 0 as n→ ∞. Since Wq

Y,Y1|X,X1
is a channel without a state, we can now show

that R < FG(α, ρ) by following the lines of [4] and [5]. By Fano’s inequality and [4] (Lemma 4), we
have that

R ≤ 1
n

n

∑
i=1

Iq(X′i , X′′i , X1,i; Yi) + εn ,

R ≤ 1
n

n

∑
i=1

Iq(X′i , X′′i ; Yi, Y1,i|X1,i) + εn , (A143)
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where q = N (0, Λ − δ), X′ = f′(M), X′′ = f′′(M), X1 = f1(Y1), and εn → 0 as n → ∞. For the
Gaussian relay channel with SFD, we have the following Markov relations,

Y1,i − X′′i − (X′i , X1,i, Y1,i) , (A144)

(X′′i , Y1,i)− (X′i , X1,i)−Yi . (A145)

Hence, by (A145), Iq(X′i , X′′i , X1,i; Yi) = Iq(X′i , X1,i; Yi). Moving to the second bound in the RHS of
(A143), we follow the lines of [5]. Then, by the mutual information chain rule, we have

Iq(X′i , X′′i ; Yi, Y1,i|X1,i) =I(X′′i ; Y1,i|X1,i) + I(X′i ; Y1,i|X′′i , X1,i) + Iq(X′i , X′′i ; Yi|X1,i, Y1,i)

(a)
= I(X′′i ; Y1,i|X1,i) + Iq(X′i , X′′i ; Yi|X1,i, Y1,i)

(b)
=[H(Y1,i|X1,i)− H(Y1,i|X′′i )] + [Hq(Yi|X1,i, Y1,i)− Hq(Yi|X′i , X1,i)]

(c)
≤ Iq1(X′′i ; Y1,i) + I(X′i ; Yi|X1,i) (A146)

where (a) is due to (A144), (b) is due to (A145), and (c) holds since conditioning reduces entropy.
Introducing a time-sharing random variable K ∼ Unif[1 : n], which is independent of X′, X′′, X1, Y, Y1,
we have that

R− εn ≤ Iq(X′K, X1,K; YK|K)
R− εn ≤I(X′′K; Y1,K|K) + Iq(X′K; YK|X1,K, K) . (A147)

Now, by the maximum differential entropy lemma (see e.g., [98] (Theorem 8.6.5)),

Iq(X′K , X1,K ; YK |K) ≤
1
2

log

(
E[(X′K + X1,K)

2] + (Λ− δ)

Λ− δ

)
=

1
2

log
(

1 +
αΩ + α1Ω1 + 2ρ

√
αΩ · α1Ω1

Λ− δ

)
(A148)

and

I(X′′K; Y1,K|K) + Iq(X′K; YK|X1,K, K) ≤1
2

log
EX′′2K + σ2

σ2 +
1
2

log

[
1− (E(X′K ·X1,K))

2

EX′2K ·EX2
1,K

]
EX′2K + (Λ− δ)

Λ− δ

=
1
2

log
(

1 +
(1− α)Ω

σ2

)
+

1
2

log
(

1 +
(1− ρ2)αΩ

Λ− δ

)
, (A149)

where α, α1 and ρ are given by (A128). Since δ > 0 is arbitrary, and α1 ≤ 1, the proof follows from
(A147)–(A149).
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