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Abstract: We studied the performance of classical and quantum magnetic Otto cycle with a working
substance composed of a single quantum dot using the Fock–Darwin model with the inclusion of the
Zeeman interaction. Modulating an external/perpendicular magnetic field, in the classical approach,
we found an oscillating behavior in the total work extracted that was not present in the quantum
formulation.We found that, in the classical approach, the engine yielded a greater performance in
terms of total work extracted and efficiency than when compared with the quantum approach. This
is because, in the classical case, the working substance can be in thermal equilibrium at each point of
the cycle, which maximizes the energy extracted in the adiabatic strokes.

Keywords: magnetic cycle; quantum otto cycle; quantum thermodynamics

1. Introduction

The study of quantum heat engines (QHEs) [1] is focused on the search and design of efficient
nanoscale devices operating with a quantum working substance. These devices are characterized by
their working substance, the thermodynamic cycle of operation, and the dynamics that govern the
cycle [2–26]. Among the cycles in which the engine may operate, the Carnot and Otto cycles have
received increasing attention. In particular, the quantum Otto cycle has been considered for various
working substances such as spin-1/2 systems [27,28] and harmonic oscillators [29], among others.
Recently, an increasing number of experimental realizations for the quantum Otto cycle has been
proposed in the literature [30–33]. Furthermore, it has been shown that thermal machines can be
reduced to the limits of single atoms [34].

Previous studies of the quantum Otto cycle embedding working substances with magnetic
properties have highlighted the role of degeneracy in the energy spectrum on the performance
of the engine [35–41]. In this same framework, we highlight the work of Mehta and Johal [38],
who studied a quantum Otto engine in the presence of level degeneracy, finding an enhancement of
work and efficiency for two-level particles with a degeneracy in the excited state. In addition, Azimi
et al. presented the study of a quantum Otto engine operating with a working substance of a single
phase multiferroic LiCu2O2 tunable by external electromagnetic fields [39], which was extended by
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Chotorlishvili et al. [40] under the implementation of shortcuts to adiabaticity, finding an optimal
output power for the proposed machine.

On the other hand, the classical description of the Otto cycle is characterized by state variables
that are well-defined at each point of the cycle. In this sense, the main difference between the
classical and quantum approach is that in the classical cycle the working substance can be at thermal
equilibrium after each stroke. Classically, the adiabatic strokes are determined by the isentropic
condition, which allows determining the state variables. For many systems, such as diamagnetic
systems, which were considered in this study, the relation between the thermodynamics variables
involved in the adiabatic stroke is not trivial in general and must be solved numerically [41].

In particular, it is interesting to compare the classical and quantum approaches for the same
working substance and establish the conditions for each case appropriately. In this framework,
several recent studies have focused on employing quantum coherence in the working fluid
for enhancing the performance of the engine [42–44]. Recently, an interesting regime called
“sudden cycles” [45] has been explored in an incoherent formulation avoiding off-diagonal elements of
the density matrix, characterized by finite cooling power [46].

In this work, we study the classical and quantum performance of a multi-level Otto cycle in
a diagonal formulation of the density matrix operator, where the working substance comprises a
nanosized quantum dot under a controllable external magnetic field. This system is described by
the Fock–Darwin model [47,48] that represents an accurate model for a semiconductor quantum dot.
For this diamagnetic system, we find the point at which the quantum total work extracted becomes
smaller than the classical one and we report, in the classical approach, an oscillating behaviour in the
total work extracted that is not perceptible under the quantum formulation.

2. Model

Let us consider a system given by an electron in the presence of a parabolic potential and external
magnetic field B. The Hamiltonian that describes the system is given by

Ĥ =
1

2m∗
(p + eA)2 + UD(x, y), (1)

where m∗ is the effective electron mass, A is the total vector potential, and the term UD(x, y) is given by

UD(x, y) =
1
2

m∗ω2
0

(
x2 + y2

)
, (2)

which corresponds to an attractive potential describing the effect of the dot on the electron. The quantity
ω0 is the parabolic trap frequency and can be controlled geometrically. If we consider a constant
perpendicular magnetic field in the form

B = Bẑ , (3)

and the use of the vector potential A in the symmetric gauge (i.e., A = B
2 (−y, x, 0)), the solution of the

eigenvalues of the Schrödinger equation are given by

Enm = h̄Ω (2n+ | m | +1) +
1
2

h̄ωcm. (4)

where ωc =
eB
m∗ is the cyclotron frequency, and n and m are the radial and magnetic quantum numbers

(n = 0, 1, 2, ... and m = −∞, ...,+∞), respectively. Ω is known as the effective frequency of the system
corresponding to

Ω = ω0

(
1 +

(
ωc

2ω0

)2
) 1

2

. (5)
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Notice that, when the parameter ω0 → 0, the energy levels of Equation (4) take the usual form of
the Landau energy levels in cylindrical coordinates.

To obtain a more precise expression, especially when we consider the case of strong magnetic
fields for the electron trapped in a quantum dot, we also take into account the electron spin of value
h̄σ̂
2 and magnetic moment µB, where σ̂ is the Pauli spin operator and µB = eh̄

2m∗ . Here, the spin can
be in two possible states, either ↑ or ↓, with respect to the applied external magnetic field B in the
z-axis. Therefore, we include the Zeeman term in the Fock–Darwin energy levels in Equation (4).
Consequently, the energy spectrum is given by

En,m,σ = h̄Ω(2n + |m|+ 1) + m
h̄ωc

2
− µBσB. (6)

The energy spectrum of Equation (6) is presented in Figure 1 for σ = −1 and σ = 1. It is interesting
to note that, for high magnetic fields (ωc/2ω0 >> 1), things simplify in Equation (6) and we get the
following expression:

En,m,σ =
h̄ωc

2
(n + 1/2 + |m|+ m)− µBσB , (7)

where we observe that |m| + m = 0 for m < 0, therefore each Landau level labeled by n has
infinite degeneracy.
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n = 1
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Figure 1. (a) Fock–Darwin energy spectrum with σ = −1 for the first six radial number n = 0, 1, ..., 6
and for each of them the azimuthal quantum number taking the values between m = −6,−5, ..., 5, 6.
(b) Fock–Darwin energy spectrum with σ = +1 for the first six radial number n = 0, 1, ..., 6 and for
each of them the azimuthal quantum number taking the values between m = −6,−5, ..., 5, 6. We clearly
observe the confinement of the energy levels at high magnetic fields (ωc/2ω0 >> 1).

In this paper, we consider a low-frequency coupling for the parabolic trap given by
ω0 ∼ 2.637 THz which in terms of energy units corresponds to a coupling of approximately 1.7 meV.
The selection of this particular value is to compare the intensity of the trap with the typical energy of
intra-band optical transitions of the quantum dots [47]. The order of this transition is approximately
around∼1 meV for cylindrical GaAs quantum dots with effective mass given by m∗ ∼ 0.067 me [47–49].

For the classical approach, we employ the framework of Refs. [50–53], and, in particular,
classical thermodynamic quantities for the Fock–Darwin model with spin can be obtained analytically
using the treatment of Kumar et al. [54]. For a working substance in thermal equilibrium at inverse
temperature β = 1/kBT, the partition function can be written as:

ZdS =
1
2

csch
(

h̄βω+

2

)
csch

(
h̄βω−

2

)
cosh

(
h̄βωB

2

)
, (8)

where the frequencies ω± are:

ω± = Ω± ωc

2
. (9)
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Therefore, entropy (S(T, B)), internal energy (U(T, B)) and magnetization M(T, B) are simply
given by

S(T, B) = kB lnZdS + kBT
(

∂ lnZdS
∂T

)
B

, (10)

U(T, B) = kBT2
(

∂ lnZdS
∂T

)
B

, (11)

M(T, B) = kBT
(

∂ lnZdS
∂B

)
. (12)

Equations (10)–(12) are presented in Figure 2 for a parabolic trap corresponding to an energy of
1.7 meV together with the scheme of the Otto cycle that we consider. A very interesting behavior is
observed for the entropy as a function of the magnetic field in Figure 2a. For external magnetic fields
≤1 T, the entropy decreases as the external field increases, but for values higher than 1 T we see the
opposite behavior. This can be explained by the energy levels becoming closer to each other as the
magnetic field increases, moving towards degeneracy. This behavior in the energy levels causes the
entropy growth as the magnetic field increases. In addition, the change in the behavior of the entropy is
affected by temperature, finding that the change of slope as a function of external magnetic field moves
away from the 1 T value to higher values as we move to higher temperature of the working substance.
This can be appreciated in Figure 2a. At the same time, the magnetization shows a crossing in its
behavior as a function of magnetic field, as we can see in Figure 2b, where previous to this crossing
at lower temperatures higher values of magnetization are obtained. This fact becomes essential for
the total work extracted. In the cycle that we propose, the work is directly related to the change in
the magnetization of the system as a function of magnetic field and temperature. On the other hand,
we can see that the internal energy monotonically decreases in terms of the magnetic field for all
temperatures considered. The reason for this is that the internal energy only depends on the derivative
of lnZdS (see Equation (11)) with respect to temperature while the entropy has an additional term
proportional to lnZdS (see Equation (10)) and the magnetization on its derivative with respect to the
external field (see Equation (12)).

Figure 2. Classical thermodynamic quantities entropy (S), internal energy (U) and magnetization
(M) as a function of: external magnetic field (B) (a–c); and temperature (T) (d–f). In (a–c), the colors
blue to red represent temperatures from 0.1 K to 10 K, respectively. For (d–f), the colors blue to
red represent lower to higher external magnetic field, from 0.1 T to 5 T. The value of the parabolic
trap is approximately to 1.7 meV. Additionally, we show how the Otto cycle appears in terms of the
thermodynamic quantities considered.
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3. First Law of Thermodynamics and the Quantum and Classical Otto Cycle

The first law of thermodynamics in a quantum context has been discussed extensively in the
literature. We follow the treatment in Refs. [50–52], which identifies the heat transferred and work
performed during a thermodynamic process by means of the variation of the internal energy of
the system.

First, consider a system described by a Hamiltonian, Ĥ, with discrete energy levels, En,m,σ.
The internal energy of the system is simply the expectation value of the Hamiltonian E = 〈Ĥ〉 =
∑n ∑m ∑σ pn,m,σEn,m,σ, where pn,m,σ are the corresponding occupation probabilities. The infinitesimal
change of the internal energy can be written as

dE = ∑
n

∑
m

∑
σ

(En,m,σdPn,m,σ + Pn,m,σdEn,m,σ) , (13)

where we can identify the infinitesimal work and heat as

dQ := ∑
n

∑
m

∑
σ

En,m,σdpn,m,σ, dW := ∑
n

∑
m

∑
σ

pn,m,σdEn,m,σ. (14)

Equation (13) is a formulation of the first law of thermodynamics for quantum working substances.
Therefore, work is then related to a change in the eigenenergies En,m,σ, which is in agreement with the
fact that work can only be carried out through a change in generalized coordinates. It is important to
note that the expressions of Equation (14) is only a particular case of the definition of work and heat
for a case of a density matrix operator that is diagonal on the energy eigenbasis [52]. A more complete
definition of Equation (14) can be found in Refs. [29–33,46].

The quantum Otto cycle is composed of four strokes: two quantum isochoric processes and two
quantum adiabatic processes. This cycle can be seen in Figure 3, replacing the value of Sl and Sh for
Pn,m,σ(Tl , Bh) and Pn,m,σ(Th, Bl) in the vertical axis, respectively. For the cases that we consider, the
quantum Otto cycle proceeds as follows.

Figure 3. The magnetic Otto engine represented as an entropy (S) versus a magnetic field (B) diagram.
The way to perform the cycle is in the form B→ A→ D→ C→ B.

1. Step B → A: Quantum adiabatic compression process. The systems, which is initialized
in thermal equilibrium at temperature Tl , is isolated from the cold reservoir and the magnetic
field is changed from Bh to Bl , with Bh > Bl . During this stage the populations remain constant,
so Pn,m,σ(Tl , Bh) = PA

n,m,σ. We remark that PA
n,m,σ does not yield a thermal state. No heat is exchanged

during this process.
2. Step A → D: The system, at constant magnetic field Bl , is brought into contact with a hot

thermal reservoir at temperature Th until it reaches thermal equilibrium. The corresponding thermal
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populations Pn,m,σ(Th, Bl) are given by the Boltzmann distribution with temperature Th. No work is
done during this stage.

The heat absorbed for the working substance is given by

Qin = ∑
n

∑
m

∑
σ

∫ D

A
En,m,σdPn,m,σ = ∑

n
∑
m

∑
σ

El
n,m,σ

[
Pn,m,σ(Th, Bl)− PA

n,m,σ

]
, (15)

where El
n,m,σ is the n-th eigenenergy of the system in the quantum isochoric heating process to an

external magnetic field of value Bl .
3. Step D → C: Quantum adiabatic expansion process. The system is isolated from the hot

reservoir, and the magnetic field is changed back from Bl to Bh. During this stage the populations
remains constant, thus Pn,m,σ(Th, Bl) = PC

n,m,σ. Again, we remark that PC
n,m,σ is not a thermal state.

No heat is exchanged during this process.
4. Step C→ B : Quantum isochoric cooling process. The working substance at Bh is brought into

contact with a cold thermal reservoir at temperature Tl . Therefore, the heat released is given by

Qout = ∑
n

∑
m

∑
σ

∫ B

C
En,m,σdPn,m,σ = ∑

n
∑
m

∑
σ

Eh
n,m,σ

[
Pn,m,σ(Tl , Bh)− PC

n,m,σ

]
, (16)

where Eh
n,m,σ is the n-th eigenenergy of the system for an external magnetic field Bh.

The net work done in a single cycle can be obtained from W = Qin + Qout,

W = ∑
n

∑
m

∑
σ

(
El

n,m,σ − Eh
n,m,σ

)
(Pn,m,σ(Th, Bl)− Pn,m,σ(Tl , Bh)) , (17)

where we use the condition of constant populations along the quantum adiabatic strokes. Furthermore,
the efficiency is given by

η =
W
Qin

. (18)

The main difference between the classical and quantum Otto cycle is related to Points A and C in
the cycle. In the classical case, the working substance can be at thermal equilibrium with a well-defined
temperature at each point. On the other hand, for the quantum case, the working substance only
reaches thermal equilibrium in the isochoric stages at Points B and D. After the adiabatic stages, the
quantum system is in a diagonal state which is not a thermal state.

For the classical engine, the total work extracted by Equation (16) can be calculated by replacing
PA

n,m,σ with P(TA, Bl) and PC
n,m,σ with P(TC, Bh), that is, it is obtained as a difference between the

internal energy at adjacent points which can be calculated from the partition function

Qin = U(Th, Bl)−U(TA, Bl); Qout = U(Tl , Bh)−U(TC, Bh), (19)

where TA and TC are determined by the condition imposed by the classical isentropic strokes. If
we have the classical entropy, the intermediate temperatures TA and TC can be determined in two
different forms:

• Finding the relation between the magnetic field and the temperature along an isentropic trajectory
by solving the differential equation of first order given by

dS(B, T) =
(

∂S
∂B

)
T

dB +

(
∂S
∂T

)
B

dT = 0, (20)

which can be written as
dB
dT

= − CB

T
(

∂S
∂B

)
T

, (21)



Entropy 2019, 21, 512 7 of 17

where CB is the specific heat at constant magnetic field.

• By matching two points within an isentropic trajectory

S(Tl , Bh) = S(TA, Bl)

S(Th, Bl) = S(TC, Bh) ,
(22)

finding the magnetic field in terms of the temperature, throughout numerical calculation.
Therefore, from Equation (19) andW = Qin + Qout, the classical work is given by the difference

of four internal energy in the form

W = UD (Th, Bl)−UA (TA, Bl) + UB (Tl , Bh)−UC (TC, Bh) , (23)

It is important to mention that the cycle operation in the counter-clockwise form starting at Point
A described in Figure 2 gives negative work extracted, thus, to define a thermal machine correctly, we
start the cycle at Point B, and we go through it in a clockwise direction. This is due to the particular
behavior of the entropy as a function of magnetic field and temperature in the chosen zone marked with
A, B, C and D. Therefore, the cycle described in the next subsection is the form of B→ A→ D→ C→ B
and is presented in Figure 3.

The maximum values considered in our calculations for the temperatures and external magnetic
field were 10 K and 5 T. Therefore, for the quantum cycle calculation (i.e., Equation (17)), we used the
quantum numbers n = 0 to n = 10 and m = −33 to m = 33 for Equation (6). The selection of this
particular energy levels in this model is justified for the values of the thermal populations for the hot
and cold temperatures of the reservoirs that we selected. Our numerical calculations indicated that the
contributions of the other levels of energy can be neglected.

Finally, it is useful to express our results of total work extracted and efficiency in terms of the
relation between the highest value (Bh) and the lowest value (Bl) of the external magnetic field over
the sample. To do that, we used the definition of “magnetic length”, which is given by

lB =

√
h̄

eB
, (24)

allowing us to define the parameter

r =
lBl

lBh

=

√
Bh
Bl

, (25)

which represents the analogy of the compression ratio for the classical case. It is important to remember
that the Landau radius is inversely proportional to the magnitude of the magnetic field. Therefore, for a
major (minor) magnitude of the field, the Landau radius is smaller (bigger), and the r is well defined.

4. Results and Discussions

4.1. Classical Magnetic Otto Cycle

The condition given by Equation (21) (or Equation (22)) for the classical cycle give us information
about the behavior of the external magnetic field and the temperature in the adiabatic stroke. In Figure
4a, we can appreciate the level curves of the entropy function S(T, B) and, Figure 4b shows some
examples of isentropic strokes in a plot of S(B) vs. B for different temperatures. That example shows
three cases of constant low (red-black curve, S = 0.05), medium (yellow-black curve, S = 0.10) and
high (white-black curve, S = 0.13) entropy. We observe in Figure 4a that there is a zone where the
external field grows with the temperature of the sample and a zone where the opposite happens to
maintain the entropy constant. At low working temperatures, the behavior changes near B = 1 T,
while as the temperature increases, the slope change occurs at higher values of the magnetic field,
approaching B = 2 T. Secondly, if we observe Figure 4b showing the case for S = 0.13 (white-black
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line), we have a restricted area for field values lower to 3 T if we work with a maximum temperature
of 10 K. Therefore, the movement of the magnetic field is not arbitrary if we think in a thermodynamic
magnetic Otto cycle with two temperature reservoirs fixed at some specific values, more specifically,
the reservoir associated to the hot temperature in the cycle. In addition, Figure 4 is the solution of
S(T, B) = constant, obtained from the differential Equation (21) with different conditions (i.e., distinct
values of the constant value of S). Therefore, Figure 4a depicts the entire family of solutions for the
isentropic stroke of the engine of this particular system.

In our first example displayed in Figure 5, Point B has the value of the external field given by
Bh = 4 T and a temperature of TB = 6.19 K. The value of the temperature for Point D is fixed to
TD = 10 K. Therefore, the Carnot efficiency of the proposal cycle is given by

ηCarnot = 1− TB

TD
= 1− 6.19

10
= 0.381 (26)

Figure 5e shows different values of total work extracted (W) varying the value of BD from 4 T

to 1.99 T. This variation in the external field is reflected in the movement of r in the form of r =
√

4
Bl

.
Therefore, r is in the range of 1 ≤ r ≤ 1.41. The parabolic trap is fixed to the value of 1.7 meV and the
effective mass in the value of m∗ = 0.067me. In particular, Figure 5a–c shows the exact paths for the
magnetic cycle for the maximum point obtained when multiplyingW (Figure 5e) and the efficiency
(η, Figure 5f). That point corresponds to r ∼ 1.22 (black point in Figure 5d–f) and constitutes the best
configuration of the systems to obtain the bestW with the better η through the cycle. In addition,W
and η are presented in Figure 5e,f for the optimal value of r parameter mentioned before. We observe
thatW obtained for that point is in the order of ∼0.038 meV with an efficiency of η ∼ 0.28. We have
corroborated the numeric result of total work extracted using the area enclosed by the cycle in Figure
5b of M versus B, as the work is W = −

∫
MdB [50–52] when the parameter changed during the

operation of the engine in the external field. On the other hand, to obtain the solid lines presented in
Figure 5d–f, we needed to make different cycles configuration keeping the values of the isothermal
fixed as can be appreciated in the Supplementary Materials (see the link after Section 5), made with the
Mathematica software [55], where we show each shape that the cycle must have to generate a specific
point of work. It is important to recall that we never reach the optimal value of η = 0.381, i.e., the
Carnot efficiency.

Due to the change of behavior in the entropy as a function of the external field, we obtained very
interesting results forW when we explored the zone close to B = 1 T. Before that point, the entropy
decreases as function of the external field (B) and after that point entropy begins to increase. This
fact can be used to explore the magnetic cycle in that zone finding an oscillatory behavior forW . In
Figure 6, we show the cycle with operating temperatures TB = 2.69 K and TD = 5.40 K and external
magnetic field moving between 2.995 T and 0.250 T and, consequently, the r parameter moving from 1
to 3.46. First, we observe a decreasing efficiency for r > 1.75 in Figure 6f with a maximum value of
η ∼ 0.43 for r ∼ 1.75. Therefore, also for this configuration, the Carnot efficiency (ηCarnot ∼ 0.5 for this
case) cannot be reached. Comparing these results with those previously discussed (when we avoid
this particular region), we can see in Figure 5f that the efficiency asymptotically approaches to the
efficiency of Carnot if we increase the intensity of the external magnetic field of the starting point of
the cycle (Point B).

In Figure 6b, we can understand the oscillations in W interpreting these results using the
expression W = −

∫
MdB. In Figure 6a–c, Points A–D correspond to the black point displayed

in Figure 6d–f where we see that the work is still greater than zero but close to a vanishing situation.
The reason there is still positive work at this point under study is that the total area enclosed to the
right of the crossing point is larger than the other to the left. The magnetization presented in Figure 6b
in the zone around the range of external magnetic field explored for this case (from 2.995 to 0.250T)
clearly reverses his behavior and presents a crossing point close to B ∼ 1.2 T for different temperatures.
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The area to the right of that point can be interpreted as a positive contribution toW while the left area
contributes to negative work.

Figure 4. Solution of classical isentropic path. (a) The entropy as a function of magnetic field (horizontal
axis) and temperature (vertical axis). The level curves (constant entropy values) highlight three
different cases for S: first, red-black curve corresponding to S = 0.05; secondly, yellow-black curve,
corresponding to S = 0.10 and finally, white-black curve for the case of S = 0.13. (b) The three constant
values for the entropy (S = 0.05, S = 0.10, S = 0.13) in a graphic of entropy as a function of B for
temperatures from 1 K (blue) up to 10 K (red). Due to the form of the entropy obtained for this system,
the solution for S = 0.13 needs to work with temperatures higher than 10 K for an external magnetic
field lower than 3 T (white dots in (a,b)). The value of the parabolic trap corresponds to 1.7 meV.

Figure 5. Proposed magnetic Otto cycle showing three different thermodynamic quantities, Entropy (S),
Magnetization (M) and Internal Energy (U) ((a–c), respectively) as a function of the external magnetic
field and different temperatures from 0.1K (blue) to 10K (red). (d) The total work extracted multiplied
by efficiency (Wη); (e) the total work extracted (W); and (f) the efficiency (η) for the classical cycle.
The black points in (d–f) represent exactly the cycle B→ A→ D→ C→ B, presented in (a–c). The value
of the parabolic trap corresponds to 1.7 meV. The fixed temperatures are TB = 6.19 K and TD = 10 K.

To explore if these oscillations in W are still obtained for higher temperature ranges, we plot
in Figure 7 the work W for different values of TD with TB = 2.69 K fixed. We note that for higher
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temperatures than 7 K the oscillations found before disappear. It is only a reinforcement that the
quantum effects of the working substance are only significant at low temperatures. On the other hand,
as we expect, W grows as the difference between the temperature reservoir is larger, as shown in
Figure 7a. However, for this case, the efficiency obtained is increasingly lower for increasingly larger
temperature differences, as we can appreciate in Figure 7b.

Figure 6. Proposed magnetic Otto cycle in three different thermodynamics quantities, Entropy,
Magnetization and internal energy ((a–c), respectively) as a function of the external magnetic field and
different temperatures from 0.1K (blue) to 10 K (red). Total work extracted multiplied by efficiency
(Wη) (d) total work extracted (W) (e) and efficiency (η) (d) for the cycle. The black point in (d–f)
represents the value of 0.02 meV of total work extracted and corresponds exactly to the cycle B→
A→ D→ C→ B, shown in (a–c). The value of the parabolic trap correspond to 1.7 meV. The fixed
temperatures are TB = 2.69 K and TD = 5.40 K.

Figure 7. Work, efficiency and work multiply by efficiency (a–c) for different values of TD for TB = 2.69
fixed. The value of the parabolic trap corresponds to 1.7 meV.

4.2. Magnetic Quantum Otto Cycle

Next, we show the results of the evaluation of the quantum version of this magnetic Otto cycle
for the same cases shown in Figures 5 and 6. In Figure 8a, we plot the classical work (blue line) and the
quantum work (red line) for the same sets of parameters in Figure 5. First, we note that the classical
and quantum work are equal up to the value of r ∼ 1.07. This means, for values close to the starting
external magnetic field to Point B, we do not notice a difference between the classic and quantum
formulation of the Otto cycle. As shown in Figure 8a, we found a transition from positive work to
negative work not reflected in the classic scenario close to r ∼ 1.26.
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Figure 8. (a) Total work extracted for classical (blue line) and quantum version of Otto cycle (red line).
The parameters for this case displayed are : TD = 10 K, TB = 6.19 K and BB = 4 T as starting value of
the external magnetic field. The value of BD moves from 4 T to 1.99 T and this variation is reflected

in the movement of r in the form of r =
√

4
BD

, same parameter as the results shown in Figure 5. (b)
Total work extracted (W) presented in Figure 6e versus the values obtaining in the quantum version of
the Otto cycle. The parameters for this figure are TD = 5.40 K, TB = 2.69 K and BB = 2.995 T and BD

moves from 2.995 to 0.250 T. The parabolic trap is fixed to the value of 1.7 meV and the effective mass
value of m∗ = 0.067me.

Additionally, we observe that the maximum positive value of the total work extracted for the
quantum version of Otto cycle is reduced by approximately 0.01 meV compared to the classical
counterpart. In particular, for the quantum version of this cycle, we did not found the oscillations in W
presented in Figure 6e. Moreover, we found a transition from positive to negative work at some value
of the r parameter. This is dramatically reflected in Figure 8b, where the absolute value of W is highly
increased as compared with the classical approach.

In Figure 9, we present the work W per energy level and spin value for the most important values
of our numerical calculations. We used the same parameter as in Figure 8b. We observed that the
contribution given by σ = 1 are positive up to r close to r ∼ 1.6 being the energy levels E0,−1, E0,−2

and E0,−3 those that contribute with the most positive values. Contrarily, for the case of σ = −1, we
found that all contributions per energy level are negative. Therefore, the small region of positive work
found in Figure 8b can only be associated to the spin up (σ = 1) contributions.

Figure 9. Total quantum work extracted (W) per energy level for the case of σ = 1 (a) and for the case
of σ = −1 (b). The lines marked with circles correspond to the sum of all contributions of the energy
level for each spin. The parameters used for this figure are the same as the one used in Figure 8b.

To explore other operation regions for the magnetic Otto cycle, we calculated the total work
extracted and efficiency for the same ∆T = Th − Tl in a broad range of temperatures and the same
∆Bmax = 1.5 T in different regions of the external magnetic field for the classical cycle and its quantum
version. This is displayed in Figures 10 and 11 where the dotted lines represent the classical results
and the solid lines the quantum results. The three regions of temperature selected for these two figures
are 1–4 K (blue lines), 4–7 K (black lines) and 7–10 K (red lines). First, we treat the case of BB = 3.5 T
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and BD moving from 3.5 T to 2.0 T in Figure 10, where we note large differences between the classical
and quantum results for W, as can be seen in Figure 10b. On the other hand, if we observed the region
of 3.5 ≤ BD ≤ 5.0 T for a BB fixed, as shown in Figure 11b. The work and efficiency for the region of
1–4 K and 4–7 K present similar behavior for the classical and quantum versions. Only the case of
7–10 K shows a larger difference between this two approaches. For the case of the efficiency, we note
in Figure 10c a major difference between the classical results and quantum results compare with the
presented in Figure 11c and this is consistent with the reported results for the work W.

Figure 10. η ×W (a); and total work extracted (b,c) efficiency for the case of ∆T = Th − Tl = 3 K for
different regions of temperature parameter for classical approach (solid line) and quantum version of
the magnetic Otto cycle (dotted line). For all graphics, we use the initial external magnetic field in the
value of BB = 3.5 T and the minimum value of the field, BD moves between 3.5 T and 2.0 T. Therefore,
the r parameter moves between 1 ≤ r ≤ 1.32. The parabolic trap is fixed to the value of 1.7 meV and
the effective mass value of m∗ = 0.067me.

Summarizing, our results show that it is the classical engine case with larger total work extracted
and efficiency compared to the quantum formulation. This can be explained as follows.

The main difference between the classical and quantum version of Otto cycle lies in the fact that,
in the classical formulation, the working substance can be in thermal equilibrium at each point in the
cycle. In the quantum approach, the working substance is a single system that can only be in a thermal
state after thermalizing with the reservoirs, which happens only in the isochoric strokes. After the
adiabatic strokes, the working substance is in a diagonal state which is not a thermal state. In our case,
the non-thermal points for the quantum case are Points C and A in Figure 3. The quantum work given
by Equation (17) can be rewritten in the convenient form

W = UD (Th, Bl)−∑n,m,σ El
n,m,σPn,m,σ(Tl , Bh) + UD (Tl , Bh)−∑n,m,σ Eh

n,m,σPn,m,σ(Th, Bl), (27)

where, due to the thermal equilibrium of the two points (Points D and B in Figure 3), we can
define the internal energy from equilibrium partition function. If we subtract the classical work
given by Equation (23) from the quantum work written in the form of Equation (27), we obtain the
following equation

W −W =
(

∑n,m,σ El
n,m,σPn,m,σ(Tl , Bh)−UA(TA, Bl)

)
+
(

∑n,m,σ Eh
n,m,σPn,m,σ(Th, Bl)−UC(TC, Bh)

)
(28)
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The first summation of Equation (28) is the average of the energy at low magnetic field with
thermal probabilities that satisfies the adiabatic condition

S = −kB ∑
n,m,σ

Pn,m,σ(Tl , Bh) ln (Pn,m,σ(Tl , Bh)) , (29)

i.e., the entropy at Point A. On the other hand, UA(TA, Bl) is the average value of the energy at low
external field and in thermal equilibrium, with the same value of entropy presented in Equation (29).
Therefore, UA(TA, Bl) is the absolute minimum according to thermodynamic [53]. The same argument
can be made at Point C, thus the difference of classical work minus quantum work always satisfies the
following condition

W −W ≥ 0 (30)

This result applies to any system in which the occupation probabilities of the energy levels at any
magnetic field are replaced with any form, provided that they satisfy the adiabatic condition. This is
because the value at equilibrium of any internal parameter (without constrains) of the system, makes
the internal energy to be a minimum for a given value of the total Entropy [53].

Figure 11. η ×W (a); and total work extracted (b,c) efficiency for the case of ∆T = Th − Tl = 3 K for
different regions of temperature parameter. For all cases, we use the initial external magnetic field
at the value of BB = 5.0 T and the minimum value of the field, BD moves between 5.0 T and 3.5 T.
Therefore, the r parameter moves between 1 ≤ r ≤ 1.19. The parabolic trap is fixed to the value of
1.7 meV and the effective mass value of m∗ = 0.067me.

5. Conclusions

In this work, we explored the classical and quantum approach for a magnetic Otto cycle
for an ensemble of non-interacting electrons with intrinsic spin where each one is trapped
inside a semiconductor quantum dot modeled by a parabolic potential. We analyzed all relevant
thermodynamics quantities, and found that the entropy changes it behavior in terms of the external
magnetic field at the point where the energy spectrum tends towards degeneracy; this behavior was
present at all temperatures considered. This behavior determined the range of parameters such as
temperature and external magnetic field that would lead to the operation of the Otto cycle extracting
positive total work. In the classical approach, we found oscillations in the total work extracted that are
not present in the quantum approach. This happened near the zone of slope change in the behavior
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of the entropy in terms of the magnetic field. Interestingly, we found that, in the classical approach,
the engine yielded a much higher performance in terms of total work extracted and efficiency than
in the quantum approach. This is because, in the classical approach, the working substance can be
in thermal equilibrium at each point of the cycle, whereas, in the quantum approach, the working
substance can only thermalize in the isochoric strokes. Because of the principle of minimum energy,
the system is allowed to extract more energy when the adiabatic strokes can lead to states that are in
thermal equilibrium, which is only possible in the classical case.

These results are reasonable, since, in our quantum approach, the working substance remains in a
diagonal state and does not use quantum resources such as quantum coherence, which in some cases
can lead to enhanced performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/5/512/s1,
Video S1: “Work evolution for high field/temperature zones”, Video S2: “Oscillatory behaviour of classical work
extracted I”, Video S3: “Oscillatory behaviour of classical work extracted II”. Video S1 shows the behaviour of
work and efficiency in the high field/temperature zones for the proposed machine. Video S2 and S3 shows the
oscillatory nature of the extracted work for the classical version of the Otto cycle due to the entropy behavior.
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