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Abstract: The human microbiome is an extremely complex ecosystem considering the number of
bacterial species, their interactions, and its variability over space and time. Here, we untangle the
complexity of the human microbiome for the Irritable Bowel Syndrome (IBS) that is the most prevalent
functional gastrointestinal disorder in human populations. Based on a novel information theoretic
network inference model, we detected potential species interaction networks that are functionally
and structurally different for healthy and unhealthy individuals. Healthy networks are characterized
by a neutral symmetrical pattern of species interactions and scale-free topology versus random
unhealthy networks. We detected an inverse scaling relationship between species total outgoing
information flow, meaningful of node interactivity, and relative species abundance (RSA). The top
ten interacting species are also the least relatively abundant for the healthy microbiome and the
most detrimental. These findings support the idea about the diminishing role of network hubs and
how these should be defined considering the total outgoing information flow rather than the node
degree. Macroecologically, the healthy microbiome is characterized by the highest Pareto total species
diversity growth rate, the lowest species turnover, and the smallest variability of RSA for all species.
This result challenges current views that posit a universal association between healthy states and
the highest absolute species diversity in ecosystems. Additionally, we show how the transitory
microbiome is unstable and microbiome criticality is not necessarily at the phase transition between
healthy and unhealthy states. We stress the importance of considering portfolios of interacting pairs
versus single node dynamics when characterizing the microbiome and of ranking these pairs in
terms of their interactions (i.e., species collective behavior) that shape transition from healthy to
unhealthy states. The macroecological characterization of the microbiome is useful for public health
and disease diagnosis and etiognosis, while species-specific analyses can detect beneficial species
leading to personalized design of pre- and probiotic treatments and microbiome engineering.

Keywords: microbiome; complex networks; species diversity; criticality; RSA; information
flow; transitions

1. Introduction

1.1. Microbiome Dynamics and Health

Microbial ecology has become an important topic for health sciences and other basic and applied
sciences such as biology, ecology, forensics and agriculture. In particular, the microbiome seems
particularly important for ecosystem health in a broader sense, being the primary connector among
multiple species, ecosystem structure, functions and services [1,2]. Recent work has shown how
each person maintains a fairly unique microbial fingerprint, and that microbial dysbioses are often
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associated with shifts in health-status. These shifts are typically associated with the gut that is the
most diverse part of the human body considering the bacteria holobiont [3,4]. We recognize that
our microbiota is highly dynamic, and that this dynamics is linked to environmental and individual
states [4]. The field of microbiome science is still in its infancy and it is not yet settled upon whether
gut microbial community structure varies continuously or if it jumps between “discrete” community
states, and whether these states are in common across individuals. In particular, some researchers
suggest that gut communities can be binned into discrete enterotypes [5], while others argue that gut
communities vary along multidimensional continua without any universality [6]. If the ultimate goal
of microbiome research is to improve human health by engineering the ecology of the gut, and other
applications are also of interest, we must first understand how and why our microbiota varies in time
and space, whether these dynamics are consistent across humans, whether we can define stable or
healthy dynamics, and how these states are associated to the environment. This line of research is
primarily missing how microbial diversity is organized considering all its facets and how this diversity
changes when species interaction networks change. For instance, the same level of diversity can be
achieved via different network topologies that may lead to different health states [7].

1.2. Microbiome Diversity and Functional Network Organization

To determine the network organization of the microbiome and associate that to healthy or
unhealthy states, we consider Irritable Bowel Syndrome (IBS) as the template syndrome to characterize
microbiome dynamics [8,9]. IBS shows common symptoms of cramping, abdominal pain and diarrhea
related to altered gut flora. Previous research has found that the microbiome in people with IBS differs
from that in healthy people [8]; however, nobody has demonstrated how the microbiome network is
different for these healthy and unhealthy individual groups (i.e., “states” generally speaking when
not focused on a particular subpopulation) and how the transition from one to another occurs. By
exploring this topic, we propose novel network inferential models for gathering microbiome networks
from species big data; these models are based on the principle of maximum entropy that tries to
gather the most informative set of variables about stable state patterns with the least amount (but
most diverse set) of information [10–13]. An example can be about sets of species abundance for
predicting a diverse set of potential species interaction networks. “Big data” is not only related to
the size of the data used but also to the number of calculations required to infer the underlying
networks. These computations increase exponentially with the number of species/nodes n considered
beyond the geometrical criteria, where the number of connections is n(n − 1) in the case of an
undirected topology of the network. A directed topology is for instance found when species interaction
networks are non-symmetrical which means that the direct influence of two species does not have
the same magnitude for different directions of interaction [14]. A variety of different models have
been proposed to infer network structures from small and large datasets. For biological systems in
particular, the inference of causal interactions among systems’ components is a daunting task because
not all interactions are known, nor the “true” magnitude of interactions, considering the data used to
assess these interactions and the models [15,16]. For instance, microbiome networks are in principle
different if the used input data are species occurrence, relative species abundance (RSA), geographic
range or other features. In addition, for this motivation, we employed assumption free inference
models that consider the whole probability distribution of species dynamics and these models were
validated considering their ability to predict population biodiversity patterns over time. We extracted
optimal microbiome networks as optimal information networks (OINs) [13] for healthy, transitory and
unhealthy groups to investigate general patterns and drivers underlying microbiome stability and
the interactions among different species in terms of network topology, magnitude and preferential
direction. Additionally, we characterized macroecological functions α-, β- and γ-diversity, which
describe the temporal organization of microbiome biodiversity considering time point, intertemporal
and total diversity. We show how these functions are related to microbiome network features and
different topologies emerge for different diversity/health states. The linkage between microbiome
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networks and macroecology (in particular information theoretic and biodiversity functions) is unique
and offers additional insights into the ecology and the evolution of the microbiome with relevance to
ecosystem health.

1.3. Microbiome Inference, Neutrality and Criticality

Speculations about the underlying processes of ecosystems’ organization have been made in
the past considering diversity patterns and models able to predict these patterns such as neutral
models [17–20], niche models [21–25], and other models such as Lotka–Volterra models based on
non-linear ordinary differential equations [26]. Neutral models posit that biological diversity is
driven solely by ecological drift without a strong interference of environmental biases that lead to
preferential dynamics (“niche”) for some species versus others. Neutral patterns exhibit species
indicators (e.g., RSA) of all sizes simultaneously without a preferential size. From neutral to
niche states, a critical transition is typically observed where species network organization exhibits
scale-free behavior [22,27–31]. This scale-free behavior was thought to occur only at the critical
transition point but recent evidence shows that criticality (defined by the scale invariance of
ecosystem function reflected by a Pareto distribution) [32] also exists for stable states where system’s
component organization is optimal due to optimal information sharing among components and
the environment [20,33]. Transitions in network functions are also observed for neural systems
where subcritical and supercritical regimes are defined as the ones corresponding to weakly
connected random networks and hyperconnected scale-free networks [34,35] that can associate to
pathologies. These transitions were previously found for geophysical networks and coupled ecological
networks [36,37] for instance, where energy dissipation tends to a global minimum.

Some indications that microorganism cooccurrence patterns are shaped by species interactions
that are altered from niche to neutral is available (e.g., [22,38]). This also has conceptual and numerical
confirmation when thinking and simulating species that are just responding to local resources and
species that are somehow “equal” and responding to fundamental speciation-dispersal processes.
The former are interacting more randomly with limited dispersal ranges while the latter are interacting
with much larger dispersal ranges. The corresponding probability distributions of species diversity
for the former and latter cases are exponential and power-law, respectively, corresponding to random
and scale-free species networks. Without introducing any model (but with the knowledge of the
underlying potential macroprocesses) these changes in network topologies have been observed for
large scale ecosystems [39] and other single population systems where topologies correspond to
system’s pathologies [40].

However, these models of microbiome characterization are typically driven by some “hard”
assumptions about the species interaction network, which may lead to erroneous conclusions about
the predicted patterns: in other words, predictability (under some assumptions) of biological patterns
does not imply causality considering the hypothesized and implemented processes [41]. Leaving
aside the causality investigation, models of microbiome network inference exist (see, e.g., Baldassano
and Bassett [42] and Stein et al. [26]) but they simply infer species co-occurrence networks without
assessing the magnitude and directionality of potential species interdependence. A different approach
is achieved by pattern-oriented models charactering systems’ dynamics [43–45] such as the one here
proposed, which do not assume any preferential mechanism a priori but consider the whole information
content in data (via probability distributions and their relevance to predict patterns via entropic
functions [11]) to claim underlying processes. In this sensem we move our discussion of the problem of
understanding microbiome dynamics toward one that identifies which information is critical, and how
that model criticality [11,46] is associated to biological criticality [32] also considering the neutrality
of biodiversity dynamics. Therefore, rather than trying to untangle biological complexity via fitting
some biologically inspired models, we use all data available to check their information content to
define all possible microbiome states and associated diversity patterns. In this information theoretic
framework, in particular we show how criticality coincides with neutrality and optimal microbial
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network organization that leads to healthy states. We also show how criticality corresponds to a
scale-free functional networks relating RSA interdependencies even when the functional co-occurrence
network of species is not scale-free (this place some warning about inferring networks just based on
occurrence data).

As a caveat, it should be noted that neutral patterns does not necessarily imply neutral
processes [47] despite many papers try to define one from the other [22,23,48–50]. Furthermore
neutral models can predict non-neutral processes (therefore care must be placed when considering
predictability vs. causality) and neutrality might not be present at all scales of biological
organization [23]. The focus here is on microbiome pattern detection and its predictability, which
we believe to be extremely important and the starting point for a top-down investigation of the
underlying processes and causality. Different patterns are evident for different health states when RSA
interdependence networks are considered, and these networks seem to shape microbiome diversity in
many ways considering local, intertemporal and total diversity.

2. Material and Methods

2.1. Microbiome Data

We considered microbiome data originally published by Durbán et al. [51] and later used by
Martí et al. [8] for which species data of six individuals are available over time (30 days). Fine scale
species Operational Taxonomic Unit (OTU) RSA data were derived by published 16S rRNA and
shotgun metagenomic sequencing (SMS) data pertaining to the gut microbiotas. In Durbán et al. [51],
species-level phylotypes were defined at 97% of sequence identity, which is the lowest taxonomic
rank used to identify differences in biological states of interest (e.g., healthy and unhealthy). Two
individuals suffered from IBS, two were healthy, one was treated with antibiotics and one was on
the verge of being unhealthy. Thus, these two individuals are representative of a transitory state
with different directions, from unhealthy to healthy and from healthy to unhealthy, respectively.
Durbán et al. [51] considered the healthy subjects as those individuals who did not suffer from
lab-confirmed IBS, and took the patients who had this disease as individuals with perturbations
from the healthy state without a priori categorization. In the dataset [51], the healthy period is from
time points before the IBS triggering event altering the microbiome. More specifically, the datasets
are composed by two healthy individuals (Individuals A and B in the original datasets [8,51]), two
transitory individuals (C and C1), and two patients with IBS (P1 and P2). The length of RSA data for
these individuals are 30 days for A, 15 days for B, 15 days for C, 9 days for C1, 9 days P1, and 14 days
for P2.

2.2. Time Series Reconstruction

The raw data available present the challenge of individuals whose species abundance is sampled
for different time lengths. Computationally, to have datasets with the same length and merge them into
one group, we used the method of Least Common Multiple (LCM) [52] for time series reconstruction.
LCM extends time series at their maximum feasible length by preserving their probability distribution
functions (pdfs); in our case, the pdfs are associated to each RSA and are the inputs for the network
inference model that requires time series with the same length [53]. We calculated LCM considering
the number of data for each individual in each group. The extended length is the smallest number that
is a multiple of the length of original time series of each individual. This implies to extend the time
series at the length of LCM or to maintain the data length if the length of the raw data is equal to LCM.
In this way, LCM guarantees to have the largest dataset representative of the stochastic dynamics
analyzed. In our study, LCM between Individuals A and B was 30; thus, the length of the abundance
time series for A was unchanged while B became 30 (B was repeated twice). This was done by copying
the data in B until the 30th day. LCM for C and C1 was 45; thus, both C and C1 time series were
extended to 45. LCM for P1 and P2 was 126; thus, both time series were expanded to the 126th day.
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These examples show that data rich sample are preserved as they are while data poor samples are
extended. To create pdfs of RSA representative of each group, we considered the average values of
RSA for common species. If for individuals belonging to the same group different species were found,
the pdf of RSA was based on the time series as they were. This choice was dictated by the desire to
emphasize common dynamics for each group when possible.

2.3. Probabilistic Characterization of the Microbiome

We characterized probabilistically the distribution of microbiome macroecological and species
interaction network variables (generally indicated as Y as for a generic random variable) considering
the following general exceedance probability distribution function (see Convertino et al. [54]):

P(Y ≥ y) ∼
{

e−λ1 y for y < Y∗

y−ε+1 f
( y

m
)

e−λ2 y for y ≥ Y∗
, (1)

where Y∗ is the truncation point (“hard truncation”) for which the transition in the regime of the
probability distribution is observed from exponential to power-law. We refer to “hard truncation”
when the pd f clearly exhibits two regimes (for y < Y∗ and y > Y∗) in which two diverse pdfs
can be identified. λ factors are scale factors for the exponential distribution (related to random
networks), either above or below the lower/upper cutoff defining the scale-free regime with power-law
distribution (associated to scale free networks). m is the upper cutoff after which finite size effects
occur faster than exponential decays. We introduce the function f (y/m) to give more generality to the
cutoff (or homogeneity) function [54]. y−ε+1 is the scaling function where ε is the scaling exponent of
the power-law distribution; this exponent is a critical exponent associated to the fractal dimension of
the process analyzed, yet it is representative of the process dynamics [54]. Note that the probability
distribution function p(y) y−ε scales with ε only. ε dictates how the mean and the variance behave,
in fact it is related to the Taylor’s law scaling exponent [8]. For ε = 2, the pdf is the classical Zipf’s law
that is found for many socio-ecological systems [54,55].

2.4. Network Inference and Dynamical Species Characterization

2.4.1. Information Balance and Exchange

To infer species interaction networks based on microbial RSA data, we based our approach
on the model developed in Servadio and Convertino [13] as well as on previous computational
efforts [53,56]. We considered the microbiome as a dynamic network of species interactions (sensu RSA
interdependence vs. true causality) where the total free energy and corresponding entropy change over
time. Codes of the model are available at the GitHub account https://github.com/HokudaiNexusLab/
Microbiome. The pdf of each RSA for each group was derived by putting together the RSA time
series for all individuals; in this network, the RSA was treated as a random variable meaningful of the
group and each individual was offering one realization of the same random variable. The RSA matrix
was created with compositions in mind and therefore the sum of each sample was constrained [57].
Considering information entropy as the total dissipated energy’s counterpart, the total network entropy
can be written as:

H(N) ≈∑
i

H(xi) + ∑
i

∑
j 6=i

TEi(xi, xj) + σ(N) (2)

where xi denotes the i− s variables that contribute to the total information of the network N. In our
case, x is the RSA of species. In this equation, H(xi) denotes Shannon entropy, and TE(xi, xj)

denotes Transfer Entropy from the first variable to the second variable [13,56,58–60]; in our case,
both variables are the RSA of two different species. Equation (2) represents a fundamental principle
of information balance independently of the chosen entropy analytics [61] and forms the general
basis of sensitivity analyses. Equation (2) states that the total network entropy can be decomposed

https://github.com/HokudaiNexusLab/Microbiome
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into the entropy of each individual node plus the entropy of interactions. The sum of absolute TEs
is a proxy of the Mutual Information (MI) of a variable, thus it considers the whole set of variable
interdependencies; in Equation (2), we consider the sign of TE because H(N) should consider the
typology of interactions with their sign. σ(N) is a noise term that captures the unexplained variability of
N related to variables not considered and other discretization factors related to the numerical methods
employed in solving the model. Shannon entropy is representative of the species information content
(attached to the pdf of RSA) for the whole network and it allows comparing all species in a common
framework. Equation (2) can also be extended in space if spatially explicit calculations are needed, as in
Servadio and Convertino [13]. Note that H(N) is inversely proportional to the free energy of the system
so the lower H(N) the higher the free energy and the higher the total dissipated energy. Evolution
self-organizes systems toward states where H(N) is minimized [10,33].

The computation of TE was based on the distributions of the two variables of interest (i.e., RSA)
conditioned on their histories. Comparing the conditional probability of the variable on its own history
with the conditional probability of the variable on both its own history and the history of a predictor
variable provides asymmetry in determining predictive abilities of one variable onto another. Thus,
a directed network can be inferred. Directed TE of two time series variables, denoted as Xi and Xj,
was calculated as

TEXi →Xj = ∑ p(Xj,t, Xj,τ , Xi,τ) · log

(
p(Xj,t|Xj,τ , Xi,τ)

p(Xj,t|Xj,τ)

)
(3)

where Xi,τ and Xj,τ denote the respective histories of Xi and Xj at time t as well as considering all past
values for the period t− τ. Here, we consider the same memory lag for Xi and Xj but in principle
historical dependencies can be different when considering other variables and the variable itself.
In our microbiome study, Xi and Xj are RSA of species i and j. This definition is the most general
definition of TE and neither conflates dyadic and polyadic relationships between species nor assumes
any causality [62].

The definition of TE can assume that the processes analyzed obeys a Markov model, which is
suitable for memoryless stochastic process. This implies that future states depend only on the current
state and not on events that occurred before it. Thus, in a Markov process, it is assumed that τ = 1.
This is usually true, especially for rapidly varying processes (such as for microbial RSA); however,
this constraint can be relaxed by choosing temporal lags that are small enough to focus on short-term
interdependencies which are not related to long dependencies in the underlying processes. In our
case, study RSA values of two randomly selected species did not correlate with RSA values for τ = 1;
thus, memory processes are relevant and, as in Villaverde et al. [53], we selected the τ that maximizes
the interdependency between two species assessed by the functional distance (see Equation (12)).
Note that TE, as calculated in Equation (3), should be interpreted as information flow vs. information
transfer (as in Lizier and Prokopenko [15]) because conditional entropies are used to exclude indirect
pairs of species whose interactions is of second order importance. This approach has been criticized by
some authors (e.g., James et al. [62]) if “causality” is indeed claimed about the inferred interactions
and in consideration of the fact that polyadic relationships may be underrepresented. In this study
we spouse the view of James et al. [62] for which TEs are considered as measures of reduction in
uncertainty about one time series given another (thus, with predictable power) with potential but
not certain causality, leaving aside the issue of what specific biological causality is investigated (e.g.,
influence, physical causality, etc.). The idea of using conditional entropies is solely related to find the
most informative set of species to identify the core microbiome interaction network.

2.4.2. Maximum Entropy Networks

Subsequently, the inference of interspecies TEs, among all values of TEs the question remains on
which value is the most informative about the potential causal relationship between two variables.
We emphasize that here “causal” is in the sense of of predictability, sensu uncertainty reduction,
rather than “certain” biological reality. As in Servadio and Convertino [13], we proposed to select
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TEs that lead to the maximum entropy for the inferred network. This corresponds to maximize the
Fisher information matrix [63] that produces the lowest complexity and the highest informative set
of information about a pattern of interest. MaxEnt [12] favors probability distribution functions with
maximum entropy as the most general distributions that fit the observed data [64]. This theory can be
applied to a functional network where edge weights are based on TE. The network with the greatest
total entropy can be similarly favored as the most general network structure that fits the observed
data. The method considers all possible pairs of variables in both directions for predicting a pattern of
interest. The edges that comprise the network with the greatest total TE are then included. Selecting
the edges that contribute to the greatest amounts of TE, according to the MaxEnt theory, produces the
network that most accurately describes “causal” patterns among the included variables. Note that
MaxEnt should be interpreted in an information theoretic sense, where higher entropy means higher
information. We show how this entropy (useful to characterize the system) is related to the state of each
health group that has a more ecological and physical sense in a thermodynamic purview; in particular,
how the absolute value of total entropy is lower for stable and healthy states vs. unhealthy ones.

A utility function is needed to establish the function where MaxEnt is applied. The utility function
can be thought as a systemic (network) value function ∑i,j fi,j(X) wi,j (potentially multiplied by
weight factors wi,j) where value functions fi,j are TEs among RSAs. These TEs, as in Equation (3),
assess the potential causal interactions between species pairs. Thus, the utility function is the total
network entropy H(N) (Equation (2)) that needs to be optimized in order to define necessary and
sufficient TEs with the maximum entropy. The optimization can be subjected to feasibility constraints,
for instance related to the ability to control certain species or data limitations. In the context of the
present goal of creating a microbiome network indicator, the value functions fi,j are defined as:

fi,j(X) =

{
TEXi →Xj , for {Xi, Xj} ∈ EMENet

0, for {Xi, Xj} /∈ EMENet
, (4)

where {Xi, Xj} represents the directed edge connecting Xi to Xj, and MENet (Maximum Entropy
Network) represents the set of directed edges in the network with the maximum total network entropy
H(N). The selection of edges to be included in the network is determined by finding the network with
the greatest total entropy as in Equation (2). In the present study, the utility function was defined as
the total TE of the network (plus Shannon entropies of each RSA but those turned out to be second- or
third-order factors that can be neglected), and it is maximized by selection of the fi,j functions. To the
best of our knowledge, this is one of the the first times that TE was framed in a decision analytical
model via a network threshold entropy criteria that defines MENets.

2.4.3. Optimal Information Networks

To reduce redundancy in creating a MENet, variables that are strongly predicted by other variables
(hypothetically establishing a strong causality—in a predictive sense rather than in a biological one—if
prediction accuracy of one decreases quickly when removing the other [41]) can be excluded. This can
be done by evaluating the weighted in-degree and out-degree of each node in the network (i.e., TE).
Nodes with a greater weighted out-degree than in-degree can be included in the Optimal Information
Network (OIN) that one among many MENets with the same average total entropy. These nodes are
strongly predicting the variability of other nodes, thus the overall network dynamics. OIN is then the
necessary and sufficient MENet for predicting microbiome function. Here, we refer to microbiome
function as the information network related to the interdependence between RSA measured by TE;
this function is not the “true” biological function but it is likely related to the variability in mutual
abundance that is commonly found in any complex ecological systems [65,66]. Thus, OINs are purely
information networks and not causal biological networks. This entropy reduction to define OINs
based on conditional entropies (calculated on sets of potentially influencing species that do not affect
much the total entropy, yet removing the indirect interactions as in Lizier [56] in order to estimate
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information flow vs. information transfer [15], where the former is more likely representing “causal”
species interactions)) can be further achieved by introducing functions g(Xi), defined as follows

g(Xi) =

{
1, for ∑j fi,j(X) > ∑j f j,i(X)

0, for ∑j fi,j(X) ≤ ∑j f j,i(X)
, (5)

where ∑j fi,j(X) = OTE and ∑j f j,i(X) = ITE. OTE and ITE are the total outgoing and incoming TE
for a node, respectively. Thus, variable inclusion depends on the comparison of the TE projected by
the variable Xi onto the other variables and the TE projected by the other variables onto Xi.

The defined function g was then used to create the total network entropy that can be used to
carefully describe the network dynamics:

H(N ≡ OIN) = ∑
i

H(xi) · g(xi,t) + ∑
i

∑
j 6=i

TEi(xi, xj) · g(xi,t) + σ(Y) (6)

which represents the sum of all necessary variables that were included by the structure of MENet in a
multi-criteria value function, and the sufficient variables after the redundancy exclusion to form OIN.
In this way, the OIN inference was based on information theoretic and functional topological criteria
to screen: (i) the necessary information to maximize network entropy H(MENet) (i.e., total information
content); and (ii) the smallest non-redundant information to sufficiently predict total network function
(of maximum entropy H(OIN)). Note that the first criterion on H(MENet) is a global one on the total
information content while the criterion on H(OIN)) is a local one on the information of a node with
respect to the functionally connected nodes. This entropy minimization is somehow the equivalent of
the energy minimization of other optimized networks in nature [67].

However, this OIN is the network with the highest accuracy in predicting macroecological patterns
of diversity over time that are dependent on fluctuating RSA. Then, OINs are characterized by the
highest information content (lowest uncertainty), highest information diversity (e.g., represented by
the values of TEs), and lowest complexity.

2.4.4. Assessment of Species Importance and Collectivity

After the inference of OINs, it is possible to quantify the importance of different species
considering their variability in isolation and in cooperation with other species for predicting the
dynamics of the microbiome. Species first order importance and interaction for reproducing the
network dynamics are then calculated considering new indices based on nodal information flow rather
than on Mutual Information Indices (MII) as in Lüdtke et al. [68]. σi describes species interaction
and is calculated as the ratio between the total Outgoing Transfer Entropy (OTE) as information flow
(OTE(j) = ∑i TEj→i) and the total network entropy, while µi describes the species importance as the
ratio between the nodal Entropy as information content (using Shannon entropy) and the total network
entropy. These Transfer Entropy Indices (TEI) are useful when no systemic variable is needed (contrary
to Servadio and Convertino [13]), and analytically they are formulated as:

TEI =


σi =

OTE(j) = ∑i TEj→i

H(OIN)

µi =
H(xi) · g(xi,t)

H(OIN)

, (7)

When considering a systemic indicator (see, e.g., Servadio and Convertino [13]), MII are better
suited to identify variable importance because no directional influence is needed. MII use the mutual
information (MI) normalized by the entropy of the output variable considering one independent
variable or pairs of variables for predicting a dependent variable Y that is in this case undefined.

These MII indices are si =
MI(Xi ;Y)

H(Y) and sij =
MI(Xi ;Xj |Y)

H(Y) , where Xi is any variable (e.g., RSA) and
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Y is the predicted variable built using the same process of constructing OINs but selecting variable
features rather than keeping entropy of species as independent variables. The use of TE can give
further information about the directionality of causality (in a predictive sense of the model), and the
time-lag of the causality.

2.5. Macroecological Indicators

To characterize the microbiome as an ecosystem we introduce macroecological indicators that aim
to describe ecosystems’ collective dynamics of diversity locally, within communities or time points,
and globally. In this paper we use such macroecological indicators that are time dependent (because
space information is not provided and hardly inferable) and of order zero mathematically speaking (as
in Jost [69] the order is related to the exponent to which the probability of RSA is elevated to). For a set
of unique distinct species S = {S1, S2, ..., Sn} whose RSA X = {X1, X2, ..., Xn} changes over time, we
define the local species diversity, or α-diversity as:

α(t) =
n

∑
k=1,t

pk(t)0 (8)

where pk(t) is the probability to find one species at time t. Thus, α is the sum of diverse species at any
given time during the observation period (30 days) or the reconstructed period (see Section “Time
Series Reconstruction”). Considering this definition of α it is easily noticeable that the sum of the
entropy of all RSA Hα = ∑k H(xk) = −∑k pk(t) log pk(t) is proportional to the Shannon index that is
the local species diversity of order one [69].

Leaving aside the controversy about the definition of interspecies diversity over time, i.e., species
turnover, we define β-diversity as the complementary variable of species similarity (here introduced
via the Jaccard Similarity Index (JSI) as in Convertino et al. [37] and Convertino [18]):

β(t) = 1− JSI(t) = 1− St,t+1

St + St+1 − St,t+1
(9)

where St,t+1 = ∑n
k=1,t(pk(t)0 + pk(t + 1)0)/2 is the number of species present at both time steps if

pk(t)0 and pk(t + 1)0 are 6= 0, otherwise St,t+1 = 1. St = ∑n
k=1,t pk(t)0 = α(t) is the number of

species present at time t (or t + 1) (Equation (8)). Note that, β-diversity as a measure of species
turnover overemphasizes the role of rare species as the difference in species composition between two
communities or two time steps is likely reflecting the presence and absence of some rare species in
the assemblages.

Note that the definition of β in Equation (9) is proportional to the “true” β that is classically
defined as the number of diverse species between two samples (either over space or time). β-diversity
can also be defined as a second order index where the entropy related to β is Hβ = Hγ − Hα [69]
where Hγ = H(N) is the total network entropy (Equation (2)). Considering the variation of diversity
over time β-diversity is proportional to the complementary of the mutual information 1−MIXi ,Xj =

1− ∑ p(Xj, Xi) · log2

( p(Xj ,Xi)

p(Xj) p(Xi)

)
. However, 1− β(t) is proportional to the sum of the TEs. These

relationships between information theoretic quantities and macroecological indicator is novel and
worth being addressed in further papers.

The total diversity γ is defined as:

γ(t) =
S,T

∑
k=1,t=1

pk(t)0 (10)

that can be established over time or over the total number of speciation events M. M is the sum of all
species at any given time independently of their diversity calculated from time t = 1 to the final time
of observation T; equivalently, M is the number of events when new or existing species are introduced.
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A speciation event is an event when a species is introduced in the microbiome; this species can be
already present or can be a new distinct species that is established over the total number of speciation
events M. The concept of speciation event is introduced because that determines the number of
total species introductions independently of the true temporal dimension. Thus, the speciation event
focuses on the dynamics of the process independently of time because it counts events. Considering
M allows one to map how the total diversity changes as a function of biodiversity meaningful scales,
equivalently to the species–area relationship [70].

vs. mapping its change over time (that may not be an influencing variable). The total number of
speciation events can be related to the number of unique species S (i.e., all distinct species occurred in
the time period) as follows:

M =
S

∑
k=1

mix0
i (11)

where S is the number of unique species across the whole observation period, xi is the RSA of the
counted species, and mi is the number of times that species occurs. Considering the validity of the
information balance equation (Equation (2)) that leads to the diversity balance equation Hγ = Hα + Hβ,
the total diversity can also be calculated as γ = α · β [69].

2.6. Functional and Structural Network Metrics

The topological organization of the microbiome is characterized via structural and functional
complex network metrics. Functional metrics are based on information theoretic functions that quantify
the interactions among species while structural metrics are based on the geometry of the network and
can be derived from the former ones.

The functional distance between species is defined as:

d f (Xi, Xj) = minτ e−MI(Xi(t±τ),Xj(t)) (12)

where the minimum value of the distance is taken for all possible time delays τ. Xi and Xj are the RSA
of species i and j and MI is the mutual information evaluated for different values of the temporal scale
of species dependency τ. The τ that minimizes the distance d f is chosen for capturing the maximum
interdependence MImax. Such distance as in Villaverde et al. [53] quantifies the magnitude of the most
meaningful interactions between species in a predictive sense: the higher MI the shorter the distance
that signifies high levels of interaction (sensu predictability) without specifying the directionality.
Thus, because of the inability of assessing the direction of interdependence between species (whether
that is information transfer or flow [15]), MI (or d f equivalently) is a metric useful for identifying the
most interacting pairs of the microbiome rather than individual species.

The calculation of the structural distance is based on the functional distance and the concept of
the shortest path. The structural distance is then defined as the minimum number of steps from one
node (species) to another independently of the magnitude of these steps (e.g., in terms of TE). Thus,
analytically the structural distance is defined as:

d(Xi, Xj) = argmin

[
∑
i,j

d f (Xi, Xj)
0

]
if Aij = 1 (13)

where Aij = TE0
ij is the adjacency matrix that can be formulated in terms of TE. The rationale for

considering the shortest paths is related to the exponentially large ensemble of distances as a function of
the number of nodes and the fact that biological systems always optimize information transmission [67];
however, Pareto shortest paths are always chosen [67,71].
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In terms of connectivity, the functional degree is defined for the directed network as the sum of the
weighted in- and out-degree (i.e., TE) elevated to a power exponent equal to zero. Then, analytically
the functional degree is:

k f = kin + kout = ∑
i,j

[
fi,j(X)0 + f j,i(X)0

]
(14)

where ∑ fi,j(X) = TEij is the transfer entropy as defined in Equation (3).
The structural degree is defined by thinking the network as an undirected network (without signs

related to TEs), thus
k = ∑

i
ai,j (15)

where ai,j = 1 = TE0
i,j if i and j are connected. Classically, the structural degree considers the number

of connections independently of the bidirectional pathways implied by TE. Thus, functional degree is
always greater or equal to structural degree.

3. Results

The simplest analysis of the microbiome starts by looking at the temporal trajectories of RSA. By a
simple cursory analysis, it was evident that the average RSA of the healthy microbiome is lower than
the average RSA of the unhealthy microbiome independently of the species; however, the maximum
RSA was found for the healthy microbiome and the species with the highest RSA is one of the the most
beneficial for health. A recent dataset with absolute abundances suggests that healthy gut microbiota
have higher total abundances than diseased ones [72] but no studies exist about the universality of this
abundance-health relationship. By looking into species diversity (Figure 1A), it was observed that the
average number of species at any time point (α) is lower for the healthy microbiome than the unhealthy
one. This may seem in contrast with previous findings that report higher diversity for healthy
microbiome or in general for healthy ecosystems [28,73,74]. A controversy on the subject is already
found in literature [73], thus just maximizing total diversity without considering how that diversity
grows and is organized is not intuitively a necessary and sufficient ingredient to achieve a stable healthy
state [75]. More importantly, the RSA-rank pattern (Figure 1B) shows only one dynamical regime,
corresponding to the common Zipf–Mandelbrot model for RSA [76], for the healthy microbiome
vs. two regimes for the transitory and the unhealthy microbiomes (double Pareto, lognormal or
exponential regime). Figure 1C shows that the decay in richness over RSA is higher for the unhealthy
microbiome; this result underlines the fact that higher diversity does not imply stability because of
the suboptimal, yet unsustainable distribution of species in the unhealthy microbiome. Stability is
related to network topology [3], which also affects diversity [77,78] and the systemic fluctuations of
the microbiome, as shown by the Taylor’s law [8] that highlights how variance in RSA abundance
changes with the mean. “Optimal” organization is in this case referring to the healthy state as a
reference state because it has the smallest fluctuations for the highest achievable total diversity growth
rate γ′ (this is the Pareto solution) and the associated network topology is more resilient to random
node removal (Figure S3). We will show the Pareto solution has the larger diversity growth rare and
a Pareto-like network. Figure 1B,C shows the RSA-rank plot and the Preston’s plot [70] of species
diversity dependent on RSA. The RSA-rank shows two dynamical regimes for the unhealthy and
transitory groups: a result that likely confirms the bimodality in local species richness α. By plotting
the Preston’s plot in log-log, a scaling relationship was found showing a faster decay in species richness
for the unhealthy group.
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Figure 1. RSA trajectories, RSA-rank, and Relative Species Abundance. Blue, green and red curves
refer to the healthy, transitory and unhealthy microbiome, respectively. A: RSA time series for all
individuals before LCM; B: average RSA-rank pattern; and C: average species diversity vs. RSA (the
inset shows the same pattern in a loglog scale. The healthy microbiome shows smaller fluctuations in
species diversity α vs. RSA and one regime when considering the RSA-rank profile. An inverse scaling
law was detected between the average species diversity and RSA (inset in C).
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Considering the RSA of species in time, from the most to the least relatively abundant, a transition
in the epdf of RSA was observed from a pseudo-normal distribution (corresponding to a homogenous
spatial distribution) to a Dirac-like distribution (corresponding to a singular point distribution)
considering the maximum and minimum RSA. Figure S2 shows the epdf of RSA for the top 10
highest RSA, intermediate 10 RSA, and the least 10 RSA species. the transition is less dramatic, from an
exponential to a log-normal-like distribution. Intermediate RSA species, independently of species
belonging to the healthy, unhealthy or transitory group, show a scale-free like distribution underlying
the fact that these species are fundamentally important in the function of the complex microbiome as
highlighted in Lahti et al. [28]. Rare species seem also to display a truncated scale-free behavior (limited
by their maximum RSA as a finite size factor rather than limited by spatial biological constraints),
which also underlines their importance for the microbiome organization. These pdfs are a signature of
species interaction networks for different RSA groups: pseudo-random, scale-free, and small-world
topology for the highest, intermediate and lowest RSA class, respectively. Further results discuss the
connection between RSA and species information flow.

The inferred microbial networks corresponding to the three microbiome groups are shown in
Figure 2 (right plots from top to bottom for the healthy, transitory and unhealthy groups). Maximum
entropy networks evidence the different topology in microbiome organization for healthy, unhealthy
and transitory group. In the structure of these networks, the size of each node is proportional to the
Shannon entropy of the species and the color is proportional to the structural degree. In Figure S3, we
show the networks whose nodal color is proportional to the total outgoing TE (OTE) that is likely more
representative of node activity in a collective network sense. The higher is the value of the structural
degree (or OTE in Figure S3), the warmer is the color. The width of each edge is proportional to the
TE between pairs and the direction is corresponding to the directional influence. All OINs are special
MaxEnt networks, i.e., networks for which the total network entropy is maximized (MENets) and where
redundant nodes are removed (see Section 2.4.3). Thus, OINs allow one to identify the fundamental
functional species interactions useful for predicting microbiome dynamics. The transition in network
topology, from random to small-world (tending toward a scale-free network) for the unhealthy and
healthy groups, is manifested also by the shift in total entropy pattern (left plots in Figure 2 from top to
bottom). The latter is asymmetrical and symmetrical for the random/unhealthy and scale-free/healthy
microbiomes, respectively. This type of network transitions has been observed for large ecosystems
(e.g., Winemiller [79]). The network entropy plots show that network entropy over information flow
is roughly symmetrical for healthy individuals, expressing that the interconnectedness in healthy
communities is more dynamically balanced than unhealthy ones. Figure S3 shows microbiome
networks for a high value of the threshold on TEij, which establish the information exchange (of
flow) between species above which links become relevant. However, these networks are no more
OINs. Considering the total network entropy and its decomposition, it was observed that the most
important nodes in terms of OTE (Equation (6) and Figure S6), that is the information flow necessary
to predict all other nodes’ dynamics, are the dominant species in making up the total information
network (Figure S5). In other words, the entropy of each single node in isolation H(xi) is a second-
or third-order factor in determining the total network entropy. Figure S7 shows that most species
interactions (TEs) are positive for the unhealthy microbiome, which is underlying the evidence that
mutualistic positive feedbacks leads to instability; therefore, higher α and γ diversity in short and
long term do not guarantee stability if interactions are predominantly in one direction. The healthy
microbiome instead has balanced positive and negative interactions that lead to microbiome stability.

Figure 3 shows macroecological indicators of diversity of the microbiome for healthy, unhealthy
and transitory individuals. We show that species diversity α, and total species diversity γ are the
highest in the unhealthy group (for which average RSA is also the highest) but species similarity
1−β and the the diversity growth rate α′ over time are the highest for the healthy group. This is a
critical result that shapes microbiome organization around healthy or dysbiotic states. The highest
fluctuations in RSA and macroecological indicators (in particular, α and γ) were observed for the
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transitory and unhealthy groups. These results underline the potential conclusion that too high levels
of diversity are possibly unsustainable, leading to unhealthy unstable states related to the abnormally
excessive multiplication of species in the gut ecosystem. These species may be invasive from outside
sources or subspecies created within the gut as a response to external stressors. It is interesting to
note that the behavior of the pdf of α informs about the potential states of the microbiome in each
group. The pdf is platykurtic multimodal for the unhealthy microbiome, which suggests the presence
of multiple unstable states, and it is leptokurtic monomodal for the healthy microbiome which implies
one stable state. The transitory microbiome shows an almost symmetrical pdf that underlines the fact
it exists in between the healthy and unhealthy microbiome. These results highlight the resilience of the
microbiome as a whole dictated by the ability to change as a function of external stressors as well as
the higher stability of the optimal healthy state. However, the latter seems easy to perturb considering
the lower entropy (and probability, or corresponding high free energy) defined in one state. This ability
to change state is also a good indicator of gut adaptability and human body resilience.
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Figure 2. Network entropy patterns and inferred Optimal Microbiome Networks. Network entropy
dependent on the pairwise information flow (TE) (left patterns) and extracted Optimal Information
Networks for the microbiome on the right (Maximum Entropy Networks after node redundancy
exclusion). A, B, and C: network entropy patterns for the healthy, transitory and unhealthy microbiome.
The size of each node is proportional to the Shannon Entropy of the species; the color of the node is
proportional to the structural degree (in Figure S3, the color of each node is proportional to the sum of
total outgoing TEs of each node (OTE); the higher is the OTE, the warmer is the color); the distance is
proportional to exp(−MI(X, Y)) where MI(X, Y) is the mutual information between species RSA x
and y; the width of each edge is proportional to the pairwise Transfer Entropy; and the direction is
related to TE(i− >j); the direction of this edge is from i to j.
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Figure 3. Macroecological indicators of microbiome networks and probabilistic characterization.
Average α, species similarity 1 − β, and total diversity γ are plotted as a function of time. Their
probability distribution is shown on the right. A, C, and E: α, 1− β, and γ diversity over time. B, D,
and F: pdf of α, 1− β, and γ diversity.

Species collective interaction and singular importance are shown in Figure 4 by plotting the
information theoretic TEI σi and µi (see Methods, Section “Assessment of Species Importance and
Collectivity”, i.e., Section 2.4.4). The top 10 interacting species are also the least relatively abundant
for the healthy microbiome and the most detrimental; however, these species are controlled by other
species and the microbiome is organized into a healthy state. Figure S7 shows that from the top to
the least 10 TE species there is a shift in the pdf of RSA from a bimodal to a monomodal distribution
for the healthy microbiome. For the transitory and unhealthy microbiome, instead, there is a shift
from a leptokurtic (Dirac-like) to a platykurtic pdf (uniform-like). The top 10 TE species are the most
detrimental bacteria (“antibiotic”) but their RSA is small for the healthy microbiome; this means that
these bacteria are controlled (in terms of RSA variability) by all other beneficial bacteria. The top 10 TE
species are mostly characterized by positive interactions (positive TEs) while the least ten 10 TE species
are characterized by negative interactions (feedbacks). For characterizing species collectivity or single
species dynamics, as well as for predictability, OTE that is a node function is better suited than TE that
is a link function. The pdfs of OTE in Figure S6 show more clearly the changes in species dynamics
for each health state and overall species activity manifested by the magnitude of OTE. The top 10
OTE species are always characterized by positive feedbacks vs. the least 10 OTE species with negative
feedbacks (top and bottom plots of Figure S6). Figure S8, by plotting the pdf of all TEs and OTEs for
any group, further emphasizes the fact that there is a positive bias and an asymmetry for the unhealthy
group species interactions.



Entropy 2019, 21, 506 16 of 31

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

i

i

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

Healthy

Transitory

Unhealthy

Sp
ec

ie
s 

In
te

ra
ct

io
n

Species Singular Importance

i
i

i

i

C
lo

s
tr

id
ia

le
s
in

c
e

rt
a

e
s
e

d
is

X
II

R
h

iz
o

b
ia

c
e

a
e

P
s
e

u
d

o
m

o
n

a
d

a
c
e

a
e

V
ib

ri
o

n
a

c
e

a
e

C
o

ry
n

e
b

a
c
te

ri
a

c
e

a
e

F
u

s
o

b
a

c
te

ri
a

c
e

a
e

A
c
id

o
b

a
c
te

ri
a

G
p

1
8

A
n

a
e

ro
p

la
s
m

a
ta

c
e

a
e

C
h

la
m

y
d

ia
c
e

a
e

u
c
F

la
v
o

b
a

c
te

ri
a

le
s

Rank
0

10

20

30

40

50

60

O
T

E

C
ry

o
m

o
rp

h
a

c
e

a
e

D
e

s
u

lf
o

h
a

lo
b

ia
c
e

a
e

L
e

g
io

n
e

lla
c
e

a
e

M
e

th
y
lo

c
o

c
c
a

c
e

a
e

A
n

a
p

la
s
m

a
ta

c
e

a
e

H
a

la
n

a
e

ro
b

ia
c
e

a
e

H
a

lo
b

a
c
te

ro
id

a
c
e

a
e

M
ic

ro
b

a
c
te

ri
a

c
e

a
e

H
a

lo
m

o
n

a
d

a
c
e

a
e

H
e

lio
b

a
c
te

ri
a

c
e

a
e

Rank
0

20

40

60

80

100

120

140

 O
T

E

N
e

is
s
e

ri
a

c
e

a
e

L
a

c
to

b
a

c
ill

a
c
e

a
e

H
a

lo
m

o
n

a
d

a
c
e

a
e

A
e

ro
c
o

c
c
a

c
e

a
e

C
a

rn
o

b
a

c
te

ri
a

c
e

a
e

F
u

s
o

b
a

c
te

ri
a

c
e

a
e

C
a

m
p

y
lo

b
a

c
te

ra
c
e

a
e

S
ta

p
h

y
lo

c
o

c
c
a

c
e

a
e

C
h

lo
ro

p
la

s
t

u
c
B

a
c
te

ri
a

Rank
0

5

10

15

20

25

30

O
T

E

Figure 4. Importance and interaction of microbial species, and top 10 most active species species.
Transfer Entropy Indices: σ is describing species interaction and is calculated as the ratio between the
total Outgoing Information Flow (OTE) (OTE(j) = ∑i TEj→i) and the Total Network Entropy, while
µ is describing the species importance as the ratio between the Nodal Entropy (Shannon Entropy)
and the Total Network Entropy. The continuous line in each σ-µ plot (left) shows the critical edge
that describes a state between regularity and chaos. On the right plots, the top 10 most active species
in terms of OTE (and least relatively abundant) are ranked for the healthy, transitory and unhealthy
microbiome (from top to bottom). These species are the most detrimental for the healthy group and the
most beneficial for the unhealthy one.

The non-linear duality between microbiome structure and function is shown in Figure 5 where
structure is considered via the network degree (Figures S9 and S10) and function is about the nodal
information flow OTE. The epdfs show how microbiome function is much more suited to show
functional network topology versus microbiome structure. Function is a much more important
property than structure which is just based on geometrical analyses of cooccurrence species networks
(e.g., as in Baldassano and Bassett [42]). This scale-free function may be related to the scale-free
behavior of the intermediate RSA species, as shown in Figure S2. The Pareto solution has the
largest diversity growth rate and is not by chance accompanied by a Pareto-like species interaction
network where interactions are inferred by TE (Figure 5B). As shown in Figure 2, visually, the healthy
microbiome functional network is tending toward a scale-free topological organization. Statistics
of the functional scale-free network based on TE are in Figure 5. This mild scale-free organization
(see, e.g., [80], where the authors highlighted the difficulty in defining the classification for these
networks into one topology radically) does not correspond to a scale-free distribution of α-diversity
(Figure 5C) that instead is exponential. Additionally, some functional network features beyond
the inferred RSA-based interdependence (TE and OTE) show a bimodal or Poisson distribution
(Figure S10) characterizing more small-world networks rather than scale-free ones. However, we point
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out how these features are more structural than functional (see Equations (12) and (14)) since they
characterize species interactions directly. The non-linearity among structure, function and microbiome
service (i.e., diversity in this paper) is highlighted when plotting α dependent on functional network
degree and distance (Figure S10). α diversity increases for high values of the functional degree
(Equation (14)) but does not have a clear trend when considering the functional distance (Equation (12)).
α(d f ) is lower for the unhealthy than the healthy microbiome for the same range of functional distances
which highlights the more random distribution of diversity in any dysbiotic state. We observed
72, 378, and 9647 unique values of functional distance for the healthy, transitory and unhealthy
group. The highest diversity in functional distances for the unhealthy group confirm the fact that the
unhealthy microbiome is more densely connected and the number of small distances (high species
interdependencies) is lower than the healthy one. However, the healthy microbiome is more clusterized
into species clusters. The values of functional distance were normalized and the distribution of α over
the normalized distance shows a random arrangement for the unhealthy group with respect to the
healthy one (Figure S10).
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Figure 5. Exceedance probability distribution of microbiome structure, function, and service. Network
degree, total outgoing transfer entropy (OTE) of each node, and α-diversity over time characterize the
structure, function and service of the microbiome network (A, B and C plots).
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We found the most interesting results when we combined microbiome service and function
indicators, for instance considering total macroecological diversity γ and OTE. Figure 6 shows the
relationship between γ and the temporal sampling scale (i.e., the number of speciation events) in
analogy to the species–area relationship widely used in macroecology [70]. The plot shows a scaling
relationship valid for two orders of magnitude whose exponent is higher for the healthy than unhealthy
group underlying the optimal growth of diversity for the healthy microbiome. Considering this optimal
diversity growth relationship, it is meaningful how the transitory microbiome has the largest value
of γ′ leading to a change in diversity from the healthy species “poor” to the unhealthy species “rich”
microbiome. These results are in synchrony with the power-law decay of species similarity 1− β

over time (Figure 6C). When considering OTE of species as a function of their RSA, we found a
surprising scaling law over four orders of magnitude; this law with an average exponent close to
1/4 (very common in biology, for instance the mass-specific Kleiber’s law [81]) implies a decay in
species interaction for highly relatively abundant species. When comparing γ over OTE (Figure 6D),
a non-linear growth is detected where a common increase in total diversity occurs until a critical
species interaction value, above which γ slows down or remains stationary, at least for the healthy
and transitory groups. For the unhealthy group, the growth of γ seems to slow down but not reach a
stationary state; this may relate to the continuous multiplicative generation of detrimental species in
the gut.
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Figure 6. Macroecological scaling patterns and predicted species interactions. (Left) The scaling of
total γ-diversity and species similarity 1− β dependent on the number of speciation events (A and C)
that is the number of new and existing species introduced until the time considered; speciation time
is a proxy of the sampling area over time. (Right) The scaling of OTE vs. RSA (B) and γ-diversity vs.
OTE (D) that consider the mutual variability of information exchange and macroecological indicators
of the microbiome.

4. Discussion

We employed an information theoretic model for the inference of microbial species interaction
networks based on RSA interdependence. The model was used to infer microbial networks associated
to different health states and is suitable for predicting selected biodiversity patterns characterizing
the space-time organization of bacteria α-, β-, and γ-diversity. Thus, the primary purpose of the
model is not to infer causal (or “true”) species–species interactions among bacteria. The computational
inference of “real” interactions is always very hard—provided that there is a complete knowledge of
the reality on which results can be validated—and any inferred interaction is always dependent on
the analytics and data used. For instance, RSA profile may not necessarily contain the information
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about all species–species interactions aimed to be assessed but still the question remains about what
is truly an interaction (aimed to be measured) since any physical or functional interaction may not
necessarily reflect any change in RSA, or other biomarker. Additionally, any change in RSA or other
biomarkers may be related to other external factors, such as environmental fluctuations, which alter
species simultaneously. What is certainly true, however, is that, if the inference model detects strikingly
different patterns for different population groups, then those patterns likely tell something meaningful
about different dynamics and collective environmentally driven changes [43,44]. In this perspective the
entropy-based model is focused on the predictability of patterns vs. causal investigation of mechanisms.
The proposed model can be applied to both abundance and RSA, or other biomarkers, without any
special modification. Theoretically, the pdf of abundance and relative abundance is the same leaving
aside numerical artifacts; independently of this, RSA seems better suited for this type of ecological
analyses because it informs about changes of species abundance with respect to the whole community.
Abundance and/or RSA seems also the most likely to detect species functional roles and interactions
as highlighted by recent studies [65,66]. Constructing a network for each health group is the purpose
of studies such as ours that try to identify common group dynamics in populations independently of
individual variability (see, e.g., Bashan et al. [82], where universal group dynamics in microbiome
is the core quest). The identified network topologies have a correspondence with the dynamics of
RSA, that is a critical dynamics for the scale-free information network associated to the healthy state,
and exponential dynamics for the random network associated to the unhealthy state. The total network
entropy is the lowest for the healthy microbiome for any threshold of the information flow TE (Figure 2).
This implies higher free energy available to the healthy microbiome and lower information needed to
function where information entropy in the physical space can be thought of as the average interspecies
communication/interdependence. The lower entropy in species collective interactions has certain
implications for data collection, potentially implying fewer data are needed for characterizing healthy
microbiomes. This is because one single globally stable state was identified for the healthy microbiome
(in the entropy pattern in Figure 2) vs. multiple stable states for the unhealthy microbiome (one
globally and two locally stable state for high, medium and low value of network entropy, respectively).
These states correspond to different biodiversity states in terms of α, β and γ. The existence of multiple
dysbiotic states seems to confirm the previously observed “Anna Karenina effect” [83] where “all
healthy microbiome look alike, instead each unhealthy microbiome is diverse in its own way”. More
theoretically speaking, the lowest entropy across the system’s landscape of potential states is a sign of
criticality that is the state toward which any ecosystem tends to [33]; the critical state is where there is
a balance of system’s self-organization and environmental influence [44].

The inferred patterns in this paper are representative of confirmed health states where individuals
are confirmed representative samples (Durbán et al. [51] published the original dataset) for IBS and
non-IBS people, as reported by Martí et al. [8]. Patterns and methods are proposed to highlight what is
relevant to look at when describing state transitions and characterizing health states. The number of
individuals sampled in a population matters as a function of expected or reported patterns’ changes.
Reliability is not only dependent on the sample size but also on the consistency and differences within
and among samples. In this particular study, we found striking differences between potential health
states and many times concordant with the reported literature. Further research is required to test the
biological universality [82] or local specificity of these patters across a much larger population sample
than the one considered. Analyses were made considering varying data lengths for individuals, which
did not change any pattern considered significantly. This means that the dynamics represented in
the time series is well contained at least in the smallest data sample available. The smallest reliable
sample is for ten data points that seems in this case the minimum data length to have in order to have
representative probability distributions.

Considering the issue of compositionality, which is related to the issue of having samples
consisting of proportions of various species with a sum constrained to a constant [57,84,85], the theory
suggests that a small number of species should increase compositional effects. In our case, the number
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of species is 47 at minimum and that should limit the effect of compositionality because the sample
is large enough. Microbiome sequence datasets are typically high dimensional, with the number
of species much greater than the number of samples. The consideration of pdfs limits the issue of
compositionality, as well as the focus on group vs. individual statistics limits the issue of data sparsity
(considering both rare species and the length of time series). Of course, this macroecological purview
does not imply any strict causality inference but rather aims to set up the basis for the predictability of
microbiome group features. This is also because there is no well established data or model to identify
what is truly a causal effect between species, although some advancements have been made in the
field of information theory such as in Lizier and Prokopenko [15] where information flow (such as the
one used in our model via TE after entropy reduction) proves to assess local causality vs. information
transfer via simple TE. Arguments have also been formulated about the general validity of TE to infer
causality (see James et al. [62]). However, beyond these analytics centered debates, the fundamental
argument should also be focusing on what kind of interaction based on data is truly inferred, what
is the interaction that is wished to be inferred, and what is the modeler choice of analytics selected
to represent reality [16]. All these elements of discussion would make the interpretation of results
clearer, such as the distinction between inferred networks for predicting patterns vs. inferred networks
claimed to represent the physics of the biological system considered. Despite sophisticated approaches
to statistical transformation (such as centered log-ratio transformation that can remove the constraint of
the sum of species proportions), the analysis of compositional data may remain a partially intractable
problem because RSA is the information that is available. Given these findings, promising work
has been done on addressing compositional data as a significant challenge to co-occurrence network
inference, but the problem is still not solved [57]. However, TE is not affected by compositional
data (provided enough data are given to characterize pdfs) precisely because it uses pdfs in network
inference and the pdf of RSA, raw abundance, and any transformation applied to all species is the
same. A problem may arise only when data are asymmetrically transformed in a way that the pdf of
one or more species is altered.

The entropy/free energy patterns (or “entropy-flow patterns”) in Figure 2 do not show any strong
scale invariance as for instance in Servadio and Convertino [13], likely because no pure scale-free
networks are observed in the microbiome organization. In this study, we focused on the total entropy
as a utility function versus the value function defined in Servadio and Convertino [13] (based on a
systemic indicator) where raw values of network variables were considered rather than TEs among
them. The focus on network variable interdependence (that is between species in this context) rather
than nodal values (i.e., RSA for the microbiome) leads to a higher variability in network entropy
patterns. Therefore, we believe that the focus should be on network function in order to better
characterize networks; this is substantiated by the higher importance of species interactions (OTE)
versus species independent dynamics (represented by nodal entropy), as shown in Figure S5 (bottom
plot). This figure shows that OTE makes up almost the whole Network Entropy (HN) (Figure S5
top plot) (see Equation (6)) so Nodal Entropy has little importance. Entropy-flow patterns are then
useful for detecting scale-invariance in the functional topology of the network and for identifying
MaxEnt states. Additionally the entropy-flow patterns can reveal healthy vs. unhealthy states by
considering the symmetry of the entropy distribution; if symmetrical positive and negative species
interactions (TEs) are found these interactions sum up to zero leading to a healthy neutral state.
The asymmetry of unhealthy microbiome can certainly relate to non-neutral states created by strong
stressors, as highlighted theoretically in Borile et al. [63]; these state may not allow host individuals
to keep the microbiome “on a leash” [86] that causes overgrowth of abundance and multiplication of
species. However, the broken symmetry can be indeed manifesting an unhealthy state. The neutral
state also coincides with the critical state because of the tendency of the network toward a scale-free
organization manifested by the epdf of OTE (Figure 5), higher functional distances and smaller
functional degrees (Figure S10).
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To assess the robustness of microbiome networks, we considered the network topology for high
thresholds values of the interspecies TE. In other words, we considered as meaningful TEs, only
those above a certain threshold. According to the 80/20 Pareto principle (that states that 20% of
subcomponents make up at least 80% of a system’s dynamics [87]) (note that this principle works for
scale-free systems), we considered only the highest 20% of TEs for the inferred networks. These Pareto
high threshold networks show that the healthy group maintains the topology while changing TE;
this is because healthy networks are more scale-free than unhealthy ones (see Figure 5B, that shows a
scale-free like epdf of OTE) , yet scale-invariance is preserved when changing the threshold defining
the scale at which the network is constructed (or observed). This scale analysis is equivalent to make
experiments when random nodes are removed simulating a random attack on networks [88]; thus, we
can also claim the higher resilience of the healthy network for the microbiome. However, this result is
expected considering the known optimality of scale-free networks [67]. The scale-free configuration
enhances stability as confirmed by the calculation of the dominant eigenvalue for both the adjacency
and TE matrices; the dominant eigenvalue is the smallest for the healthy group that is a signature of
network stability [3].

The “non-pure” scale-free organization of the microbiome confers the ability to adapt to
different externally-driven changes and to adapt vs. a more stable scale-free topology. Overall,
we suggest to focus on TE and OTE as the best indicators of microbiome function (for pairs and node
functional characterization), vs. any other indicator, since those are related to species interdependence.
As highlighted in recent studies (see Rivett and Bell [66]) abundance determines the functional
role of bacterial phylotypes in complex communities; rare and common bacteria are implicated
in fundamentally different types of ecosystem functioning [66]. Such knowledge could be used,
for example, to understand how bacteria modulate biogeochemical cycles, and to engineer bacterial
communities to optimize desirable functional processes. Microbiome service is here identified by any
microbiome diversity indicator in analogy to how services are also expressed for large scale ecosystems.
Certainly, it is true that α-, β- and γ-diversity cannot be “equated” to large scale ecosystem services
(i.e., the benefits that people derive from nature and how these are quantified as “natural capital”),
but any diversity measure is a valuable indicator of biological function at any scale of biological
organization (see, for instance, Isbell et al. [77] and Mori et al. [89]) much more than structural
indicators, as shown in this paper. Therefore, there is a desired ecosystem service-function nexus
that is desirable and related to healthy states (which is the benefit individuals get from having the
“right” value and patterns of macroecological indicators manifesting optimal biodiversity organization).
Of course, especially in microbial ecology where the identification of species is more difficult than
large scale ecosystems, there are arguments about the utility and validity of different diversity metrics
such as γ vs. evenness. Nonetheless, independently of this, we argue that our analyses would result in
equivalent conclusions. For instance, in our case, high γ corresponds to low evenness and vice versa;
thus, biodiversity patterns would reveal opposite trends but provide the same meaning because of the
γ-evenness relationship.

In our microbiome data, we considered the complementary of β-diversity over time via the
Jaccard Similarity Index (JSI) and we showed that JSI is higher for the healthy than the unhealthy
microbiome over time. This means that the local species richness, α, tends to be more equal to previous
values over time; however, this underlines the stability of α (species organization) in the healthy
state. For the unhealthy microbiome, the similarity over time is lower (i.e., higher species turnover,
or higher β-diversity) such as for the corals in Zaneveld et al. [74] that are evaluated over time as
a function of external stressors. In other types of ecosystems, e.g., in coral ecosystems under stress,
Zaneveld et al. [74] found that the true β-diversity increases over time. In macroecology, leaving
aside the debates about the many definitions of species turnover, and in an entropic context the true
β-diversity is the ratio between regional (γ) and local species diversity (α) [69]. This definition is in line
with the general information balance equation (Equation (2)) and the more specific diversity balance
equation Hγ = Hα + Hβ as in Jost [69]. An increase in β is typically associated with a decrease in α as
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much as we observe for the healthy microbiome, and this is also associated to fluctuations of α that are
smaller than those for the unhealthy microbiome. The “proportional species turnover” (i.e., where
βp = 1− α/γ, when considering γ partitioned into additive rather than multiplicative components)
that quantifies what proportion of species diversity is not contained in an average representative
sample, is also higher. This emphasizes how our results are robust independently of the peculiar
definition of species diversity indicators. In ecology these quantities are typically evaluated over
space and in healthy conditions 1-β has a relatively fast decay but never goes to zero; this means that
heterogeneity exists but even communities far apart have species in common. Considering space in
unhealthy conditions, typically the “true” β-diversity is smaller than in healthy conditions because
much more homogeneity is achieved. However, heterogeneity is a good thing as shown for ecosystems
at any scale of biological organization.

The higher variability of β-diversity in healthy individuals highlights the “Anna Karenina
phenomenon” for human microbiomes. The principles underlying the phenomenon states that
dysbiotic individuals vary more in microbial community composition than healthy individuals
paralleling Leo Tolstoy’s dictum that all happy families look alike (“each unhappy family is unhappy
in its own way”). The stability-unimodal pattern of diversity is concordant with current theories
looking into β-diversity vs. solely α-diversity for the stability of ecosystems [73]. This is also
concordant with the network entropy pattern that is unimodally stable for the healthy group. Thus, we
innovatively highlight the linkage between information exchange and diversity in biological systems.
Convertino et al. [39] previously found that ecosystem hotspots are those that maximize the Value
of Information (of biodiversity) which coincides with those that minimize β-diversity variability
over time. The multiplicity of “unhappy/unhealthy” states is reflected by the network topology
that is random for the unhealthy group, which allows many more potential unhealthy microbiome
combinations. We support the position of previous studies that Anna Karenina effects are a common
and important response of animal microbiomes to stressors that reduce the ability of the host or its
microbiome to regulate community composition. These effects may be transient and necessary to bring
back the system to the healthy state.

Similar to other ecosystems, we show that scale-invariance (that is occurring for the healthy
microbiome) does not arise from an underlying criticality (where fluctuations becomes bigger and
bigger causing the system to tip abruptly) nor self-organization at the edge of a phase transition.
Instead, it emerges from the fact that perturbations to the system exhibit a neutral drift (also relate
to small extrinsic environmental changes) with respect to the endogenous spontaneous dynamics.
This neutral dynamics, similar to the one in genetics and ecology, shows fluctuations of all sizes
simultaneously that likely determine power-law distributed species diversity (as well as power-law
information exchange among species). The tipping point that was observed, i.e., between healthy and
unhealthy microbiome, is a second-order critical transition where exogenous fluctuations are too large
to be assimilated by the system and the microbiome tips from healthy to unhealthy. This transition
is evident in the shape of the pdf of microbiome function and diversity (as microbiome service) but
not in the shape of microbiome structure (unless a rescaling in size is performed, for instance for the
microbial network degree; see Figure 5).

The introduction of new pathogens driven by the environment can lead to the alteration of
the whole ecosystem microbiome [8]. In our case study, despite the non-explicit consideration of
the disturbance agent, we found a transition in IBS individuals from healthy to unhealthy states.
However, this disturbance agent was considered by Durbán et al. [51] and Martí et al. [8], who
worked on the original dataset. Independently of the disturbance, healthy individuals have larger
gradients of speciation events and higher growth rate for γ-diversity because they produce more
species (diverse of not) to guarantee necessary/basic biological function and other functions related to
extreme fluctuations. Not all species need to be present all the time and that is likely the motivation
for which the average γ′ is higher for healthy and transitory individuals than unhealthy people as
well the average γ is lower for healthy ones. γ′ seems to reflect the general dynamical systems’ pattern
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indicated by the Heap’s law [90] that regulates the rate of diversity produced by a system. This is
associated to the Taylor’s law regulating mean and fluctuations and the Zipf’s law (in our case of
RSA which influence macroecological indicators). In a more ecological purview, the species–area-like
relationship in Figure 6A can also emphasize the island biogeographic effect where for islands/healthy
individuals γ is lower but γ′ is higher than the mainland/unhealthy people [91] due to optimal growth
(ideally not impacted by invasions). The higher γ for unhealthy individuals is likely related to invasive
species for instance attributable to external sources; healthy individuals instead, have a gut flora
composed by only endemic species. In a general view, Taylor’s law regulating RSA fluctuations, Zipf’s
law governing RSA distribution, Heap’s law relating γ’s growth over time, and the mass-specific
Kleiber’s law are all liked together by the Pareto optimal principle of self-organized design [92–96]
that can inform about the optimality or pathology of biological systems.

The microbiome in the gut is similar to any ecosystem: no other species at all scales of biological
organization can survive optimally if the microbiome is altered. The microbiome is the linkage between
the fundamental genetic organization of life and the stochastic environmental dynamics; in the context
of a person’s growth, it is possible to refer to those two processes as nature and nurture. The proposed
information theoretic global sensitivity and uncertainty analyses (Figure 4, left plots) allow one to
map the dynamics of species considering their interactions and absolute influence, and to see how
these quantities vary considering their intrinsic biological variability and environmentally driven
variability. One must keep in mind that these interactions are based on mutual RSA interdependence
assessed by TE, so TEs might not represent the whole “true” interactions among species; however,
recent evidence points to this conclusion [65,66] but there is still a lot work to be done in this area.
In the healthy state, more species (fewer in number) are influencing the collective dynamics with
a more organized distribution of interactions (“hierarchical” organization), while for the transitory
and unhealthy state all species (higher in number) are somehow behaving equally and likely driven
by external environmental stimuli (“random” organization). This organization is also reflected by
network properties (Figures S9 and S10) that can be altered for the same set of species/diversity.
Researchers have found that cooperation promotes ecosystem biodiversity, which in turn increases
its stability without any fine tuning of species interaction strengths or of the self-interactions (i.e.,
neutrality) [97,98]. Even small values of TEs (close to zero) manifesting mutualistic interactions
(positive) among species can stabilize the dynamics. Stability increases with the ecosystem simplicity
where the latter is related to the scale-free like organization of bacteria. On the other side, too much
cooperation (e.g., dictated by networks for high values of TE) promotes instability and complex
random networks. It is interesting to note that this scale-free cooperation of species leads to Taylor’s
laws [29,99] between mean and variance of RSA where Taylor’s exponent is different for healthy and
unhealthy groups [8]. However, this reemphasizes the connection between time dynamics, network
organization, and ecological patterns of diversity and RSA [31,97,100]. In particular, it has been
shown that higher-order interactions (e.g., captured by σi in our model) have a stabilizing role [100].
These higher-order interactions are all those beyond the simple pairwise interactions whose sum
indeed cannot explain the whole composition and dynamics of ecosystems [101]. We show that
these higher-order interactions cannot be prevalent because some species must have an independent
dynamics (captured by µi) otherwise instability and tendency toward disorganized unhealthy state is
very likely (Figure 4).The healthy critical state is in fact characterized by an heterogenous distribution
of σi and µi for species that is optimal for the microbiome.

The definitions of detrimental and beneficial bacteria (some of them listed in Figure 4, right
plots) were based on previously published papers. We incorporated this classification in Table S1.
For instance, Lactobacillaceae and AcidobacteriaGp18 are beneficial, while Neisseriaceae and Campylobacter
aceae are detrimental. Of course, this is just a rough categorical classification because as we emphasize
in this work, for a bacteria being detrimental or not is a function of relative abundance and network
topology rather than just being present or not in the microbiome or other independent properties
without considering the bacteria collectivity. Microbiome functional network topology defines how all
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bacteria behave synergistically and that synergy brings a healthy or an unhealthy state. Additionally,
the functional topology characterization, for instance determined by OTE, can avoid the issue of
determining precisely what true “species” are that is a debated topic in microbial ecology. The focus is
on portfolios of interacting species whose interaction is responsible for the microbiome dynamics/state.
This result sheds some light into a vision where a diminishing role of network hubs (considering total
information flow) is reported as found by other studies [102]. The least relatively abundant species for
the unhealthy microbiome are the most interactive and the least detrimental. On the contrary, the most
relatively abundant species (Figure S4) for the unhealthy microbiome are the least interactive and the
most detrimental. These analyses considering the activity of species show the importance of weak
ties (interactions) for the healthy and unhealthy groups. This is in accordance to general dynamical
principles such as the Granovetter principle about the strength of weak ties for the systemic dynamics
of a complex system [103]. For the healthy microbiome, the highest RSA species interact the least
and these species are the most beneficial. These species–specific analyses, when verified, are useful
for detecting species that are more beneficial or detrimental and this knowledge can lead to design
probiotic treatment, microbiome transplants [104], and large scale ecosystem microbiome controls [105]
for instance.

Universality in human microbiota dynamics [82], whether present, can be ideally manipulated in a
similar or even identical fashion in multiple individuals for population health. Following the discovery
of universality and the demonstration of beneficiary effects of specific interventions, microbiome
engineering efforts can be applied to a large number of people. In this way, microbiome engineering
will be highly cost-effective as a public-health based approach. This is in sharp contrast to the
excessive cost of “precision-medicine” approaches that try to target individual microbiome dynamics
by considering it as a purely individual-based feature. Current frontier topics are also related to the
understanding of how the microbiome and functional brain networks “communicate” [106]. It seems
that the nervous system contribute to dictate which microbes inhabit the gut; this in turns affects
emotional response and long term well being beyond short-term health.

The hypothalamic–pituitary–adrenal axis (HPA axis) is a primary mechanism by which the brain
can communicate with the gut to help control digestion through the action of hormones [106]. It seems
that the nervous system, through its ability to affect gut transit time and mucus secretion, can help
dictate which microbes inhabit the gut, which in turns affects emotional response and long-term well
being beyond short-term health.

5. Conclusions

An information theoretic model for the inference of microbiome networks and the related
biodiversity organization over time is proposed. The model consists in the assessment of transfer
entropy-based species interactions after entropy reduction calculations that remove the second-order
indirect interactions between species as in the works of Lizier and Prokopenko [15] and Lizier [56].
Maximum entropy networks are then extracted considering the highest information content without
model overfit; overfitting is avoided by removing the redundant variables for the simplest MENet,
that is an Optimal Information Network. Species interactions should be interpreted in terms of species
predictability rather than causal mechanisms due to the data- and model based-dependence of the
inferred interactions [62]. The macroecological validation of the model was performed considering the
ability to simultaneously predict the pdf of α-diversity, γ-diversity growth, species similarity (1− β)
decay, and the RSA-rank profile. This validation allowed predicting other biodiversity patterns such as
the Preston’s plot of average species richness dependent on species RSA. Considering the application
of the model to healthy and IBS symptomatic individuals, the following points are worth mentioning
without lack of generality.

• Directed species interdependencies and phase transitions of the microbiome over time were
detected. The healthy microbiome is characterized by balanced positive and negative species
interactions vs. the unhealthy microbiome where most species interactions are positive.
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The balanced interactions were evidenced by the symmetrical pattern of the total network entropy
as a function of the pairwise information flow (TE) vs. the positively biased asymmetrical pattern
of the dysbiotic microbiome. The healthy symmetrical network entropy pattern underlines the
neutral “sum to zero” dynamics of species interactions (based on RSA); the same neutrality was
found for biodiversity of large scale ecosystems at stationarity that are driven predominantly
by intrinsic ecological stochasticity (ecological drift). On the contrary, unhealthy microbiome
entropic patterns are affected by environmental disturbances; the positive bias in information
flow (that may relate to infections and antibiotics, as shown in the original data [51]) causes an
overgrowth in RSA of many opportunistic species as well as the generation of new detrimental
species. The categorization of beneficial and detrimental species was based on published literature;
however, we emphasize how important it is to consider collective bacteria topology vs. individual
bacteria behavior when defining health and disease;

• The healthy state is characterized by the highest total species diversity growth rate γ′ (leaving aside
the transitory microbiome) and the lowest loss of species similarity over time, i.e., species turnover
((1− β)′). A relationship similar to the species–area relationship for large scale ecosystems [70]
was found between γ-diversity and the number of species generations with an exponent equal
to 0.20 on average. The fact that the healthy microbiome has the lowest average total diversity
(γ) is in contrast to what is observed in large-scale ecosystems at stationarity where the highest
total diversity correspond to the stable and supposedly healthy state [78]. However, we speculate
that an optimal diversity growth is oriented toward maximizing growth rate rather than total
diversity (as according to many Pareto portfolio theories). The latter can lead to over-redundancy
of microbial interactions and instability as observed for the dysbiotic microbiome; the highest γ

diversity for unhealthy ecosystems is related to non-endemic species. Hence, we tend to challenge
the diversity–health–stability hypothesis when for diversity the total systemic diversity γ is solely
considered without the consideration of “invasive” species and γ′;

• We observed a phase transition of the second order from the healthy to the unhealthy state and
vice versa. The transition from healthy to unhealthy is characterized by typical signs of transitions
observed in many complex systems [107], i.e., an increase and a decrease in mean and variance
of species diversity while approaching the transition (“critical slowing down”). In the unhealthy
state the variance of α is higher than in the healthy state and concentrated around two values
which underline the likely chaotic-like dynamics of the microbiome. In terms of microbiome
functional network topology, a transition between the scale-free to the random network topology
is observed. The critical state, defined by a scale-free-like organization of microbial species
interactions, coincides with the neutral state (i.e., for the symmetrical network entropy pattern)
emphasizing how criticality does not necessarily occur at critical phase transitions, particularly
for second-order transitions as in this case. Rather, criticality can coincide with neutrality in
open energy dissipative systems, as observed in other complex systems [20]. Criticality at the
phase transition can favor gut adaptability but may pose high risks to tip to unhealthy states.
Neutrality implies lower topological complexity and higher dynamical stability (corresponding
to higher symmetry, higher organized information exchange, lower entropy/total information,
higher diversity, and higher predictability (or information content)) considering the scale-free and
small-world functional and structural organization of the microbial network. We emphasize how
the healthy local stable state is dynamically flexible because of the lower entropy (i.e., higher free
energy) and more predictable due to the more organized collective behavior of species; however,
due to the gradient in entropy moving from locally stable unhealthy conditions to the globally
healthy stable one is hard;

• A probabilistic linkage was found between microbiome function and services, defined by
species interaction topology and biodiversity organization, respectively. We did not find any
correspondence between microbiome structure and function, which emphasizes the non-linearity
between the two and the importance of assessing function rather than structure in biological
networks. We propose the total Outgoing Transfer Entropy (OTE) as the measure to identify
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the most influential nodes (and pairs); these nodes are able to predict the behavior of all other
connected nodes, as well as of the whole microbiome. OTE is largely determining the total
entropy of the network compared to the sum of nodal entropies whose contribution is negligible.
This emphasizes even more the role of collective behavior vs. individual nodes considered in
isolation. The highest OTE nodes have the lowest RSA, and these are the most beneficial and
the most detrimental bacteria for the dysbiotic and healthy microbiome. A scaling law was
found between OTE and RSA with an exponent close to 1/4 that is similar to the mass-specific
Kleiber’s law [81] where the species specific metabolic rate is the OTE and the mass is the RSA.
A power-law distribution for the microbiome function (i.e., the sum of nodal OTE) was found for
the healthy state (with an exponent ∼2 that implies finite mean but infinite variance suggesting
how the healthy condition is prone to perturbations enhancing fluctuations of all sizes) despite no
information (or resolution) invariance being detected in the network entropy pattern (see Servadio
and Convertino [13]). The lack of scale invariance in the entropy/free-energy phase space may
imply the metastability of the microbiome that can indicate its resilience in terms of ability to
move quickly from one state to another.
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