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Abstract: The impact of nonlinear thermal radiations rotating with the augmentation of heat transfer
flow of time-dependent single-walled carbon nanotubes is investigated. Nanofluid flow is induced
by a shrinking sheet within the rotating system. The impact of viscous dissipation is taken into
account. Nanofluid flow is assumed to be electrically conducting. Similarity transformations are
applied to transform PDEs (partial differential equations) into ODEs (ordinary differential equations).
Transformed equations are solved by the homotopy analysis method (HAM). The radiative source
term is involved in the energy equation. For entropy generation, the second law of thermodynamics
is applied. The Bejan number represents the current investigation of non-dimensional entropy
generation due to heat transfer and fluid friction. The results obtained indicate that the thickness of
the boundary layer decreases for greater values of the rotation parameter. Moreover, the unsteadiness
parameter decreases the temperature profile and increases the velocity field. Skin friction and the
Nusselt number are also physically and numerically analyzed.

Keywords: Magnetohydrodynamic (MHD); rotating flow; carbon nanotubes; nonlinear thermal
radiation; entropy generation; HAM

1. Introduction

Applications of nanofluids in technology and science are increasing day by day, and they play
an important role in various machinery and engineering applications such as detergents, microchip
technology, transferences, micromechanical systems and biomedical applications. In light of these
applications, researchers have applied modern techniques and have modified the base fluids by
adding ultra-fine solid particles. A fast-growing field of research is micro channel cooling, floor
heating and heat renewal systems in various industries, which have been flourishing in the current era.
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In comparison to base liquids, nanofluids have higher single-phase thermal conductivity and heat
transfer coefficients.

Khan [1] scrutinized nanofluid flow for Buongiorno’s model with the transfer of heat and mass.
Mahdy et al. [2] depicted Buongiorno’s model for an unsteady nanofluid flowing in a contracting cylinder
in the presence of heat transfer. The flow of nanofluid through a vertical annular pipe was deliberated
by Malvandi et al. [3]. Researchers have examined nanofluid flow over a stretching sheet [4–6].
Non-Newtonian MHD nanofluid flow through a pipe was depicted by Ellahi [7]. Jawad et al. [8] studied
the nanofluid thin film flow of Sisko fluid. Nanofluid thin film flow through a stretching sheet with
heat transfer was studied by Fakour et al. [9]. The flow of nanofluids with analytical techniques was
investigated by Abolbashari et al. [10]. Choi [11] was the innovator who developed the word nanofluid.
Nanofluids are a mixture of metallic, nanoscale, suspended particles with a base fluid. For mass,
momentum and heat transport, non-homogeneous equilibrium models in nanofluids embody four
equations with two components, as expressed by Buongiorno [12]. Some interesting results pertaining
to the use of nanofluids can be found in [13–16]. Recently, insufficient expressive efforts for nonlinear
thermal radiations have been observed in these investigations [17]. Kumar et al. [18] scrutinized the
problem of entropy generation in rotating nanofluid flow. Nadeem et al. [19] examined the issue of flow
of rotating fluid, including nanoparticles of titanium and copper oxide. Mabood et al. [20] explored the
flow of rotating nanofluids with the effects of radiation, magnetism, the dissipation of viscosity and
a heat source. Shah et al. [21,22] investigated the flow of nanofluids within a rotating system under
the influences of hall current and thermal radiation. Further theoretical investigations of nanofluids
using modern applications were performed by Sheikholeslami [23–25]. Gireesha et al. [26] explored
a single-walled nanotube in an unsteady rotating flow weight transfer. Ishaq et al. [27] examined an
unsteady nanofluid thin film flow with non-dimensional entropy generation through a stretched surface.

In the study of fluid flow involving nanoparticles, nanofluids have received more attention with
the arrival of nanoscience. Nanofluids are 109 nm sized materials such as nanotubes, nanofibers,
droplets, nanoparticles, etc. The solid phase and liquid phase create a two-phase system. Moreover,
stable fluids have good writing and spreading properties on hard surfaces. Using nanofluids, the
thermal conductivity of fluids can be enhanced [28,29]. Sheikholeslami et al. [30–32] stressed the
significance of nanofluids in nanotechnology. Yadav et al. [33,34] explored MHD nanofluid flow with
dissimilar phenomena such as heat transfer enhancement, stability, instability, and linear and nonlinear
properties in a nanofluid model.

Recently, it has been suggested that the analysis of thin film flow has pointedly contributed
in different areas, such as industry, engineering and technology, etc. The study of nanofluids was
improved due to their vast applications. The latest investigations of thin film flow using different
models in different geometries can be seen in [35–41].

Entropy is the amount of unobtainable energy in a thermodynamically closed system. The total
entropy remains constant in a steady-state system. Chemical reactions, thermal resistance, joule
heating, diffusion and friction concerning fluid viscosity and hard surfaces within a system are
irreversible processes. Entropy production minimization is necessary for the maximal usefulness
of equipment [42–49]. The entropy generated by squeezing the nanofluid flow in three-dimensions
between two parallel plates is considered here. Shah et al. [50,51] proposed the heat transfer
model for nanofluids. Ahmad et al. [52] deliberated squeezing the time-dependent flow of viscous
nanoparticles under five dissimilar shapes. Rehman et al. [53] deliberated the flow of rotating nanofluid
with entropy generation included in the thermal slip. The impacts of dissimilar constraints on
liquid flow and heat transfer in a rotating fluid over a stretched disk were studied recently [54].
Alnaqi et al. [55] explored nanofluid flow with the effects of a magnetic field on the convective heat
transfer rate and entropy generation through an inclined square cavity equipped with a conductor
fin. Moradikazerouni et al. [56] studied CPU heat sinks in computers using a structural stability
method. Hajizadeh et al. [57] investigated the thermal conductivity enhancement of nano-antifreeze
containing single-walled carbon nanotubes. Vo et al. [58] deliberated γ-AlOOH nano-fluid convection
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performance by using various shapes of nano-additives. Alsarraf et al. [59] explored nanofluid flow
with different nanoparticle shapes in a mini-channel heat exchanger using a two-phase mixture model.
Moradikazerouni et al. [60] investigated the effects of five different channel forms of a micro-channel
heat sink in forced convection, with application to cooling a supercomputer circuit board.

The aim of the current research is to obtain an analytical solution using the homotopy analysis
method (HAM) for an unsteady, MHD, and the incompressible rotating flow of carbon nano tubes
nanofluid over a shrinking surface with nonlinear thermal radiation and viscous dissipation effect.
Here, we consider three types of nanofluids: CuO-water, Ag-water and Au-water, where water is used
as the base fluid. The impact of the first order chemical reaction is also deliberated. The problem is
formulated, solved and the corresponding results are examined in detail. Finally, the impact of the
physical parameters on temperature and concentration profiles are presented and analyzed.

2. Mathematical Formulation of the Problem

Single-walled carbon nanotube nanofluid unsteady laminar incompressible three-dimensional
rotating flow is considered over a shrinking surface. The Cartesian coordinates are chosen in the
x, y, and z dimensions. The nanofluid rotates with an angular velocity about the z-axis, which is
denoted by Ω(t). The surface velocity is represented by uw(x, t) and given as uw(x, t) = bx

(1−δt) in the
x direction, vw (x, t) in y direction and ww(x, t) in the z direction, and ww(x, t) is the wall mass flux
velocity. The nanofluid flow is assumed to be thermally conductive. Radiative and viscous dissipation
effects are taken into account.

Using all these assumptions, the governing equations are written as [9,25,44,45]:
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The boundary conditions are:

u = uw(x, t), v = 0, w = 0, T = Tw at z = 0
u→ 0, v→ 0, w→ 0, T→ T∞ at z→∞

(6)

where x, y and z are the directions of the velocity components; Ω denotes a constant angular velocity;
µn f denotes the nanofluid dynamic viscosity; ρn f denotes the nanofluid density αn f ; T represents the
temperature of the nanofluid; Tw and T∞ are the wall and the outside surface temperatures, respectively.
The radiative heat flux in Equation (5) can be shown as [9,25]:

qr = −
4σ∗

3
(
ρcp

)
n f

k∗
∂T4

∂z
= −

16σ∗

3k∗
T3 ∂T
∂z

(7)

where the Stefan–Boltzmann constant and the mean absorption coefficient are denoted by σ∗ and k∗,
respectively. By substituting Equation (7) into Equation (4), it can be written as [6–9,25]:
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Other parameters with nanoparticle volume fraction are mathematically presented as [6,7,22,23]:
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In Equation (9), for the base fluid the volumetric heat capacity is denoted as
(
ρCp

)
f

and for CNTs

as
(
ρCp

)
CNT

. The thermal conductivity of the nanofluid, base fluid, and CNTs are denoted as kn f , k f
and kCNT, respectively. The nanoparticle volume fraction is denoted by φ; the density viscosity of
CNTs and the base fluid are represented by ρCNT and ρ f , respectively.

Similarity transformations [26] are introduced as:
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Using Equation (10) and Equations (2)–(6), we obtain:
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The transformed boundary conditions are written as:

f (0) = 0, f ′(0) = 1, g(0) = 0,θ(0) = 1 at η = 0
f ′(η)→ 0, g(η)→ 0, f (η)→ 0,θ(η)→ 0 at η→∞.

(14)
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where Ω = ω
b is the rotation parameter, λ = δ

b is the unsteadiness parameter and R =
16σ∗T3

∞

3kn f k∗ is the

radiation parameter. The Prandtl number is denoted by Pr =
αn f
νn f

, the Eckert number is denoted by

Ec =
u2

w
cp(T−T∞)

and the temperature ratio parameter is denoted by θw = Tw
Tα .

2.1. Physical Quantities of Interest

Skin friction in the x and y directions is denoted as C f x and C f y, respectively, and the Nusselt
number is Nux. These are defined as:

C f x =
τwx

ρ f u2
w(x, t)

, C f y =
τwy

ρ f u2
w(x, t)

, Nux =
xqw

(Tw − T∞)
, (15)

where τwx and τwy are the surface shear stress in the x and y directions, respectively; qw is the surface
heat flux. These can be defined as:
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(
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)
z=0

, τwy = µn f

(
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∂z

)
z=0

, qw = −kn f

(
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)
+ (qr)z=0. (16)

Using Equations (16) and (17), we obtain:
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)
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The local Reynolds number is denoted by Rex = uwx/v .

2.2. Entropy Generation and Bejan Number

The dimensional local entropy rate per unit volume for a nanofluid is given by [42–53]:
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[
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]
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where ∇T = ∂T
∂x + ∂T

∂y + ∂T
∂z and Φ represent viscous dissipation.

In this instance,
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(
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)2 (19)

Sg,t = Sh + SR + S f . (20)

We have three sub-generators of entropy, as deduced from Equation (20). The heat transfer
dimensional entropy generator is represented by Sh. Due to thermal radiation, the dimensional entropy
generator is represented by SR and the inter-friction of the fluid layers is represented by S f . Sg,c is
defined as:

Sg,c =
Kn f (∆T)2

L2T2
α

. (21)

Now, the non-dimensional Ns (Nusselt number) is defined as:

Ns =
Sg,t

Sg,c
. (22)

To evaluate the non-dimensional Ns we use Equations (19) and (21) combined with Equations (10)
and (22) to obtain:
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Ns =
Sg,t

Sg,c
= ReL

[
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4
3

R
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[
( f ′′ (η))2 + (g′(η))2

]
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Here A =
kn f
k f

, Br and ReL are the Brinkman and Reynolds numbers, respectively, and Ω is the
non-dimensional temperature, which can be shown as:

Tc =
Tw − Tα

Tα
(24)

Equation (23) can be rewritten as:

Ns = Nh,+NR + N f (25)

where the fluid friction, thermal radiation and heat transfer non-dimensional entropy generators are
denoted by Nh, NR and N f , respectively.

The mathematical description of the Bejan number (Be) is:

Be =
Nh

Nh + NR + N f
(26)

Be =
Kn f Ω2

L2 Relθ
′2/ReL

[
1 +

4
3

R
]
θ′2 +
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(1−φ)2.5Ω
ReL

[(
f ′′ 2

)
+

(
g′2

)]
. (27)

From Equation (26), it is clear that the Bejan number is limited to the unit interval [0, 1].

3. Solution Procedure

The modeled Equations (11)–(13) with boundary conditions from Equation (14), together with
the conditions from Equations (23) and (27), are solved with HAM. The homotopy analysis method is
applied due to its outstanding results in boundary layer equations. Several researchers [46–50] have
used HAM due to it fast convergence. The preliminary guesses are selected as follows:

L f̂ , Lĝ and Lθ̂ are linear operators which are represented as.
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k(k = 1, 2, 3, . . . , 9) is constant.

4. Results and Discussion

In this section, the physical outcome of dissimilar parameters of the modeled problems and their
effects on f ′(η), g(η) and θ(η) are discussed in detail. The effect of Ω, β, φ and λ on the velocity profile
is shown in Figures 1–8. The impact of Ω on f ′(η) and g(η) is presented in Figures 1 and 2. It can
be seen that for larger values of Ω the velocity profile ( f ′(η)) is increased while g(η) is decreased.
Actually, increasing the rotation parameter enhances the kinetic energy, which consequently increases
the velocity profile, whereas the transverse velocity (g(η)) is reduced with higher values of the rotation
parameter. Figures 3 and 4 represent the influence ofφ on f ′(η) and g(η). The higher values ofφ reduce
the velocity profiles. This is because the increase in φ further increases the density of the nanofluid,
and as a result slows down the fluid velocity profile. Figures 5 and 6 describe the effect of λ on f ′(η)
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and g(η). It was perceived that increases in λ reduce the velocity profile. It is also indicated from the
figure that the velocity intensifies with increasing λ, whereas we observed the opposite influence of
λ on the fluid velocity inside the nanofluid and the thickness of the layer. Figures 7 and 8 show the
influence of β on f ′(η) and g(η). With an increase in β the velocity profile of the fluid film is decreased.
It was also detected that an increase in β results in a decrease in the fluid velocity of the nanofluid and
the layer thickness. The purpose behind this influence of β by the stimulation of a lingering body force,
stated as the Lorentz force, is due to the existence of β in an electrically conducting nanofluid layer.
The action of this force is perpendicular to both fields. Since β represents the ratio of the viscous force
to the hydromagnetic body force, a larger value of β specifies a higher hydromagnetic body force, due
to which the fluid flow is reduced. The Lorentz force theory states that β has a converse consequence
on f ′(η) and g(η). Therefore, the greater values of β reduce f ′(η) and g(η).Entropy 2019, 21, x FOR PEER REVIEW 8 of 21 
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The influence of the physical parameters λ, Ec, Rd and Pr on θ(η) is shown in Figures 9–13.
Figure 9 presents the impact of λ on the θ(η) profile. Figure 9 shows that a decrease in λ reduces
the boundary layer thickness. It can be seen that when unsteadiness in the stretching increases,
the thin film fluid temperature and the free surface temperature are consequently reduced. Under
consitions of stirring, it was revealed that greater values of λ cause the fluid temperature to fall
radically, while the thickness of the thermal boundary layer is increased. The influence of Rd on θ(η) is
shown in Figure 10. By increasing Rd, the temperature of the nanofluid boundary layer area increased.
In fact, when Rd is raised, then it is obvious that it increases θ(η) in the boundary layer area in the
fluid layer. It is shown in Figure 11 that θ(η) increases with a rise in Rd. Thermal radiation has a
dominating role in the comprehensive surface heat diffusion when the coefficient of convection heat
transmission is small. Increasing Rd then increases the temperature in the boundary layer area in the
fluid layer. This increase leads to a drop in the rate of cooling for nanofluid flow. Therefore, the fluid
θ(η) is increased. The graphical representation shows that θ(η) is increased when we increase the
ratio strength and thermal radiation temperature. Thermal radiation has an important role in heat
conduction when the coefficient of convection heat transmission is small. The impact of Pr on θ(η)
given in Figure 11. It was observed that θ(η) decreases with larger values of Pr, while it rises for
smaller values. The variation of θ(η) with respect to the variation of Pr is illustrated and shows that
Pr specifies the ratio of momentum diffusivity to thermal diffusivity. It can be concluded that θ(η)
decreases with increasing Pr. The nanofluids have a greater thermal diffusivity with a small Pr, but
this influence does not hold for larger values of Pr; hence, θ(η) of a fluid displays a reducing behavior.
Actually, the fluids having a smaller Pr have a greater thermal diffusivity, and this impact is the reverse
for greater values of Pr. Based on this, a very large value of Pr causes the thermal boundary layer to
drop. Figure 13 shows that with increasing Ec, θ(η) is enlarged, which is supported by the physics.
By increasing Ec, heat stored in the liquid is dissipated, causing the temperature to be enhanced. θ(η)
is increased with greater values of Ec and the thermal boundary layer thickness of the nanofluid
becomes larger.

Entropy 2019, 21, x FOR PEER REVIEW 11 of 21 

 

larger values of Pr , while it rises for smaller values. The variation of     with respect to the 

variation of Pr  is illustrated and shows that Pr  specifies the ratio of momentum diffusivity to 

thermal diffusivity. It can be concluded that     decreases with increasing Pr . The nanofluids 

have a greater thermal diffusivity with a small Pr , but this influence does not hold for larger values 

of Pr ; hence,     of a fluid displays a reducing behavior. Actually, the fluids having a smaller Pr  

have a greater thermal diffusivity, and this impact is the reverse for greater values of Pr . Based on 

this, a very large value of Pr  causes the thermal boundary layer to drop. Figure 13 shows that with 

increasing Ec ,     is enlarged, which is supported by the physics. By increasing Ec , heat stored 

in the liquid is dissipated, causing the temperature to be enhanced.     is increased with greater 

values of Ec  and the thermal boundary layer thickness of the nanofluid becomes larger. 

 

Figure 9. The effect of   on ( )   when 0.1, 0.2, Pr 6.2, 1.2
w

Rd Ec     . 

 

Figure 10. The effect of Rd  on ( )   when 0.2, 0.6, Pr 6.2, 1.2
w

Ec      . 

Figure 9. The effect of λ on θ(η) when Rd = 0.1, Ec = 0.2, Pr = 6.2, θw = 1.2.



Entropy 2019, 21, 492 11 of 20

Entropy 2019, 21, x FOR PEER REVIEW 11 of 21 

 

larger values of Pr , while it rises for smaller values. The variation of     with respect to the 

variation of Pr  is illustrated and shows that Pr  specifies the ratio of momentum diffusivity to 

thermal diffusivity. It can be concluded that     decreases with increasing Pr . The nanofluids 

have a greater thermal diffusivity with a small Pr , but this influence does not hold for larger values 

of Pr ; hence,     of a fluid displays a reducing behavior. Actually, the fluids having a smaller Pr  

have a greater thermal diffusivity, and this impact is the reverse for greater values of Pr . Based on 

this, a very large value of Pr  causes the thermal boundary layer to drop. Figure 13 shows that with 

increasing Ec ,     is enlarged, which is supported by the physics. By increasing Ec , heat stored 

in the liquid is dissipated, causing the temperature to be enhanced.     is increased with greater 

values of Ec  and the thermal boundary layer thickness of the nanofluid becomes larger. 

 

Figure 9. The effect of   on ( )   when 0.1, 0.2, Pr 6.2, 1.2
w

Rd Ec     . 

 

Figure 10. The effect of Rd  on ( )   when 0.2, 0.6, Pr 6.2, 1.2
w

Ec      . Figure 10. The effect of Rd on θ(η) when Ec = 0.2, λ = 0.6, Pr = 6.2, θw = 1.2.Entropy 2019, 21, x FOR PEER REVIEW 12 of 21 

 

 

Figure 11. The effect of Pr  on ( )   when 0.5, 0.6, 0.2, 1.2
w

Rd Ec     . 

 

Figure 12. The effect of Ec  on ( )   when 0.5, 0.6, Pr 6.2, 1.2
w

Rd      . 

 

Figure 13. The impact of Re  on entropy generation ( Ns ) when 0.1, 0.2, 0.1Br Rd    . 

Figure 11. The effect of Pr on θ(η) when Rd = 0.5, λ = 0.6, Ec = 0.2, θw = 1.2.

Entropy 2019, 21, x FOR PEER REVIEW 12 of 21 

 

 

Figure 11. The effect of Pr  on ( )   when 0.5, 0.6, 0.2, 1.2
w

Rd Ec     . 

 

Figure 12. The effect of Ec  on ( )   when 0.5, 0.6, Pr 6.2, 1.2
w

Rd      . 

 

Figure 13. The impact of Re  on entropy generation ( Ns ) when 0.1, 0.2, 0.1Br Rd    . 

Figure 12. The effect of Ec on θ(η) when Rd = 0.5, λ = 0.6, Pr = 6.2, θw = 1.2.



Entropy 2019, 21, 492 12 of 20

Entropy 2019, 21, x FOR PEER REVIEW 12 of 21 

 

 

Figure 11. The effect of Pr  on ( )   when 0.5, 0.6, 0.2, 1.2
w

Rd Ec     . 

 

Figure 12. The effect of Ec  on ( )   when 0.5, 0.6, Pr 6.2, 1.2
w

Rd      . 

 

Figure 13. The impact of Re  on entropy generation ( Ns ) when 0.1, 0.2, 0.1Br Rd    . Figure 13. The impact of Re on entropy generation (Ns) when Ω = 0.1, Br = 0.2, Rd = 0.1.

Now, we analyze the impact of the parameters that perform a role in entropy generation and the
Bejan number (Equations (23) and (27)). The influence of Re, Br, Rd and Ω on Ns and Be are examined
and displayed in Figures 14–20. Figures 14–17 examine one of the significant features of this study, i.e.,
volumetric entropy generation for Br and Re. The influence of Ns becomes increasingly important to all
these parameters. Higher Ns and Be values are due to an increase of Br. The higher Ns and Be values
are also generated by the role of Re. Ns and Be strongly depend on Re. We observed that increasing Re
also increases Ns. As Re increases, hectic motion occurs, the fluid moves more vigorously and thus the
impact of heat transfer and fluid friction on Ns and Be tends to increase entropy generation. Figure 18
shows that entropy generation is reduced with increased Rd. From Figure 20, it can be seen that Be
increases with an increase in Rd. From Figures 19 and 20, it can be observed that Be is reduced near
the lower plate of the channel where Ω is more intense; meanwhile, farther from the plate the drift is
reversed due to further contribution from the irreversible heat transfer on Ns and Be, which reduces
the nearby upper plate of the channel with an increase in Ω.

Entropy 2019, 21, x FOR PEER REVIEW 13 of 21 

 

Now, we analyze the impact of the parameters that perform a role in entropy generation and the 

Bejan number (Equations (23) and (27)). The influence of Re , Br , Rd  and   on Ns  and Be  are 

examined and displayed in Figures 14–20. Figures 14–17 examine one of the significant features of 

this study, i.e., volumetric entropy generation for Br  and Re . The influence of Ns  becomes 

increasingly important to all these parameters. Higher Ns  and Be  values are due to an increase of 

Br. The higher Ns  and Be  values are also generated by the role of Re . Ns  and Be  strongly 

depend on Re . We observed that increasing Re  also increases Ns . As Re increases, hectic motion 

occurs, the fluid moves more vigorously and thus the impact of heat transfer and fluid friction on Ns  

and Be  tends to increase entropy generation. Figure 18 shows that entropy generation is reduced 

with increased Rd . From Figure 20, it can be seen that Be  increases with an increase in Rd . From 

Figures 19–20, it can be observed that Be  is reduced near the lower plate of the channel where   

is more intense; meanwhile, farther from the plate the drift is reversed due to further contribution 

from the irreversible heat transfer on Ns  and Be , which reduces the nearby upper plate of the 

channel with an increase in  . 

 

Figure 14. The impact of Re  on the Bejan number ( Be ) when 

0.5, 0.5, 0.4, 1, k 0.3nfBr Rd L      . 

 

Figure 15. The impact of Br  on entropy generation ( Ns ) when 0.1, Re 0.2, 0.1Rd    . 

Figure 14. The impact of Re on the Bejan number (Be) when Br = 0.5, Ω = 0.5, Rd = 0.4, L = 1, kn f = 0.3.



Entropy 2019, 21, 492 13 of 20

Entropy 2019, 21, x FOR PEER REVIEW 13 of 21 

 

Now, we analyze the impact of the parameters that perform a role in entropy generation and the 

Bejan number (Equations (23) and (27)). The influence of Re , Br , Rd  and   on Ns  and Be  are 

examined and displayed in Figures 14–20. Figures 14–17 examine one of the significant features of 

this study, i.e., volumetric entropy generation for Br  and Re . The influence of Ns  becomes 

increasingly important to all these parameters. Higher Ns  and Be  values are due to an increase of 

Br. The higher Ns  and Be  values are also generated by the role of Re . Ns  and Be  strongly 

depend on Re . We observed that increasing Re  also increases Ns . As Re increases, hectic motion 

occurs, the fluid moves more vigorously and thus the impact of heat transfer and fluid friction on Ns  

and Be  tends to increase entropy generation. Figure 18 shows that entropy generation is reduced 

with increased Rd . From Figure 20, it can be seen that Be  increases with an increase in Rd . From 

Figures 19–20, it can be observed that Be  is reduced near the lower plate of the channel where   

is more intense; meanwhile, farther from the plate the drift is reversed due to further contribution 

from the irreversible heat transfer on Ns  and Be , which reduces the nearby upper plate of the 

channel with an increase in  . 

 

Figure 14. The impact of Re  on the Bejan number ( Be ) when 

0.5, 0.5, 0.4, 1, k 0.3nfBr Rd L      . 

 

Figure 15. The impact of Br  on entropy generation ( Ns ) when 0.1, Re 0.2, 0.1Rd    . Figure 15. The impact of Br on entropy generation (Ns) when Ω = 0.1, Re = 0.2, Rd = 0.1.Entropy 2019, 21, x FOR PEER REVIEW 14 of 21 

 

 

Figure 16. The impact of Br  on the Bejan number ( Be ) when 

Re 1, 0.1, 0.4, 0.9, 0.5nfRd L k      . 

 

Figure 17. The impact of Rd  on entropy generation ( Ns ) when 0.1, R e 0.2 , 0.3Br    . 

 

Figure 18. The impact of Rd  on the Bejan number ( Be ) when 

Re 0.9, 0.3, 2.5, 0.3, 0.3
nf

Br L k      . 

Figure 16. The impact of Br on the Bejan number (Be) when Re = 1, Ω = 0.1, Rd = 0.4, L = 0.9, kn f = 0.5.

Entropy 2019, 21, x FOR PEER REVIEW 14 of 21 

 

 

Figure 16. The impact of Br  on the Bejan number ( Be ) when 

Re 1, 0.1, 0.4, 0.9, 0.5nfRd L k      . 

 

Figure 17. The impact of Rd  on entropy generation ( Ns ) when 0.1, R e 0.2 , 0.3Br    . 

 

Figure 18. The impact of Rd  on the Bejan number ( Be ) when 

Re 0.9, 0.3, 2.5, 0.3, 0.3
nf

Br L k      . 

Figure 17. The impact of Rd on entropy generation (Ns) when Ω = 0.1, Re = 0.2, Br = 0.3.



Entropy 2019, 21, 492 14 of 20

Entropy 2019, 21, x FOR PEER REVIEW 14 of 21 

 

 

Figure 16. The impact of Br  on the Bejan number ( Be ) when 

Re 1, 0.1, 0.4, 0.9, 0.5nfRd L k      . 

 

Figure 17. The impact of Rd  on entropy generation ( Ns ) when 0.1, R e 0.2 , 0.3Br    . 

 

Figure 18. The impact of Rd  on the Bejan number ( Be ) when 

Re 0.9, 0.3, 2.5, 0.3, 0.3
nf

Br L k      . 

Figure 18. The impact of Rd on the Bejan number (Be) when Re = 0.9, Ω = 0.3, Br = 2.5, L = 0.3, kn f = 0.3.Entropy 2019, 21, x FOR PEER REVIEW 15 of 21 

 

 

Figure 19. The impact of   on entropy generation ( Ns ) when 0.1, Re 0.2, 0.5Rd Br   . 

 

Figure 20. The impact of   on the Bejan number ( Be ) when 

Re 1, 0.4, 0.5, 0.3, 0.3
nf

Rd Br L k     . 

Figures 21–23 show the influence of ,   and   on fx
C  and fy

C . From Figure 21 it can 

be observed that the unsteady parameter increases fx
C  and fy

C . However, this trend is reversed 

for greater values of  . It can be seen in Figure 22 that the skin friction coefficient reduces for 

increasing values of  . Figure 23 shows that for increasing values of  , the skin friction coefficient 

increases. From the convergence of the series given in Equation (25), ( ),  g( ), ( )f      depends 

entirely upon the auxiliary parameters ,  ,  
f g     and the so-called  -curve. It is selected in 

such a way that it controls and converges on the series solution. The probable selection of   can be 

found by plotting  -curves of (0), '(0), (0)f g    for the 20th  order approximated HAM solution, 

as shown in Figures 24 and 25. The valid region of   is 

0.1 0.3, 0.5 0.1, 0.5 0.1
f g            . 

Figure 19. The impact of Ω on entropy generation (Ns) when Rd = 0.1, Re = 0.2, Br = 0.5.

Entropy 2019, 21, x FOR PEER REVIEW 15 of 21 

 

 

Figure 19. The impact of   on entropy generation ( Ns ) when 0.1, Re 0.2, 0.5Rd Br   . 

 

Figure 20. The impact of   on the Bejan number ( Be ) when 

Re 1, 0.4, 0.5, 0.3, 0.3
nf

Rd Br L k     . 

Figures 21–23 show the influence of ,   and   on fx
C  and fy

C . From Figure 21 it can 

be observed that the unsteady parameter increases fx
C  and fy

C . However, this trend is reversed 

for greater values of  . It can be seen in Figure 22 that the skin friction coefficient reduces for 

increasing values of  . Figure 23 shows that for increasing values of  , the skin friction coefficient 

increases. From the convergence of the series given in Equation (25), ( ),  g( ), ( )f      depends 

entirely upon the auxiliary parameters ,  ,  
f g     and the so-called  -curve. It is selected in 

such a way that it controls and converges on the series solution. The probable selection of   can be 

found by plotting  -curves of (0), '(0), (0)f g    for the 20th  order approximated HAM solution, 

as shown in Figures 24 and 25. The valid region of   is 

0.1 0.3, 0.5 0.1, 0.5 0.1
f g            . 

Figure 20. The impact of Ω on the Bejan number (Be) when Re = 1, Rd = 0.4, Br = 0.5, L = 0.3, kn f = 0.3.



Entropy 2019, 21, 492 15 of 20

Figures 21–23 show the influence of Ω,λ and φ on C f x and C f y. From Figure 21 it can be observed
that the unsteady parameter increases C f x and C f y. However, this trend is reversed for greater values
of Ω. It can be seen in Figure 22 that the skin friction coefficient reduces for increasing values of
Ω. Figure 23 shows that for increasing values of φ, the skin friction coefficient increases. From the
convergence of the series given in Equation (25), f (η), g(η),θ(η) depends entirely upon the auxiliary
parameters } f , }g, }θ and the so-called }-curve. It is selected in such a way that it controls and
converges on the series solution. The probable selection of } can be found by plotting }-curves of
f ′′ (0), g′(0),θ′(0) for the 20th order approximated HAM solution, as shown in Figures 24 and 25.
The valid region of } is −0.1 < } f < 0.3,−0.5 < }g < 0.1,−0.5 < }θ < 0.1.Entropy 2019, 21, x FOR PEER REVIEW 16 of 21 
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5. Conclusions

The exploration of nanoparticles preparations has introduced more deliberation in mechanical
and industrial engineering owing to their probable use for increasing the continuous phase fluid
thermal performance of cooling devices. A significant source of renewable energy is thermal radiation,
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which can be beneficial to govern overall population levels. In the present work, the second law of
thermodynamics is applied in terms of the impact of nanoparticles on non-dimensional entropy for
rotating flow with suggested thermal radiation. Mathematical modeling is established by modeling
five different types of nanoparticles with the purpose of achieving an appropriate mechanism to
enhance the thermal conductivity of continuous phase fluid. The following conclusions can be made:

• The unsteadiness parameter decreases the temperature profile and increases the velocity field.
• The thermal boundary layer thickness is reduced for larger values of the rotation rate parameter.
• The heat transfer rate rises for greater values of Rd and θw.
• With increasing values of Pr, the heat profile θ(η) reduces.
• The performance of Be is examined for the optimal values of the parameters at which Ns decreases.
• Entropy generation is increased with the increase of Pr, Ec and radiative heat flux.
• Velocity and temperature profiles decrease due to the increased unsteadiness parameter.
• Greater values of φ increase the frictional force within the fluid motion.
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Nomenclature

Be Bejan number Sh, SR, S f Dimensional entropy generation
Br Brinkman number Sg,c Characteristic entropy generation
cp Specific heat, J/kg·K T∞ Outside surface temperature K
C f x, C f y Skin friction coefficient in x and y directions Tw Wall temperature K
Ec Eckert number T Fluid temperature, K
h Distance between the plates, m τwx, τwy Surface shear stress
kn f Thermal conductivity of the nanofluid, W/m·K X, Y Topological space
Ns Non-dimensional entropy generation x, y, z Coordinates
Nux Nusselt number uw Stretching velocity m/s
O Origin vw Surface velocity, m/s
Pr Prandtl number ww(x, t) Wall mass flux velocity m/s
P Fluid pressure, N/m2 u, v, w Velocity components, m/s
qr Radioactive heat flux θw Temperature ratio parameter
qw Surface heat flux, W/m2 ϕ Viscous dissipation
Rex Local Reynolds number φ Nanoparticle volume friction
R Radiation parameter
Greek Letters
α Stretching parameter αn f Thermal diffusivity, m2/s
δ Transpiration parameter η Similarity variable
Ω Angular velocity k∗ Mean absorption coefficient
µn f Dynamic viscosity, kg/ms υ Kinematic coefficient of viscosity, m2/s
ρ f Base fluid density, kg/m3 ρCNT Density viscosity of CNT, kg/m3

ρn f Density of the nanofluid kg/m3 τ Embedding parameter where 0 ≤ τ ≤ 1
σ∗ Stefan–Boltzmann constant } Assisting parameter
λ Unsteadiness parameter
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