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Abstract: Pareto type II distribution has been studied from many statisticians due to its important
role in reliability modelling and lifetime testing. In this article, we introduce two bivariate Pareto
Type II distributions; one is derived from copula and the other is based on mixture and copula.
Parameter Estimates of the proposed distribution are obtained using the maximum likelihood method.
The performance of the proposed bivariate distributions is examined using a simulation study.
Finally, we analyze one data set under the proposed distributions to illustrate their flexibility for
real-life applications.
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1. Introduction

The Pareto Type-II distribution or Pearson Type-VI distribution is called Lomax distribution
introduced and studied by [1]. This distribution is commonly used in reliability and many lifetime
testing studies. It is also used to analyze business data. Let T be a random variable from the Pareto
type II (PII) distribution with scale parameter β and shape parameter α, then the probability density
function (PDF) and the cumulative density function (CDF) of PII distribution are given respectively by

f(T) =
αβ

(1 + βt)α+1
, t > 0 (1)

F(T) = 1− (1 + βt)−α, t > 0 (2)

The survivor function (SF) is given by:

S(T) = (1 + βt)−α, t > 0 (3)

The hazard rate function (HRF) and the cumulative hazard rate function (CHRF) are

h(T) =
αβ

1 + βt
, t > 0 (4)

H(T) = α ln(1 + βt) , t > 0 (5)

Dubey [2] showed that Pareto Type II distribution can be derived as a special case of a compound
gamma distribution. Bryson [3] discussed that Lomax distribution provides an excellent alternative
to classical distributions such as the exponential and Weibull distributions. Ahsanullah [4] studied
the record statistics of the Lomax distribution using distributional characteristics. Balakrishnan and
Ahsanullah [5] acquired some repeated relations between the moments of record values for the Lomax
distribution. The Lomax distribution was used as a mixing distribution for the Poisson parameter
to derive the discrete Poisson-Lomax distribution [6]. Petropoulos and Kourouklis [7] considered

Entropy 2019, 21, 473; doi:10.3390/e21050473 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-8070-956X
http://www.mdpi.com/1099-4300/21/5/473?type=check_update&version=1
http://dx.doi.org/10.3390/e21050473
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 473 2 of 11

the estimation of a quintile of the classical marginal distribution of multivariate Lomax distribution
in which the location and scale parameters are unknown. ABD [8] obtained an estimation of the
Lomax parameters using maximum likelihood and Bayesian methods. Moghadam et al. [9] studied the
problem of estimating the parameters of Lomax distribution based on generalization order statistics.
Many scientists studied the Lomax distribution as lifetime models to provide estimates for the unknown
parameters using different methods such as [10–17]. Tadikamalla [18] linked the Burr family with
Lomax distribution. There are many applications for Pareto II distribution in modeling and analyzing
the lifetime data in medical, engineering, and biological sciences. Examples of these applications
include the mass to energy ratios in nuclear physics, Mendelian inheritance ratios in genetics, target to
control precipitation in meteorology, and the stress-strength model in the context of reliability which is
widely searched, see [19,20].

Many studies were conducted to obtain a useable multivariate or bivariate distribution for
modelling real life applications. There are a number of methods in the literature that have been used
successfully in constructing new multivariate distributions [21,22]. Among these, the copula method
has been recognized as one of the most popular methods to construct new multivariate or bivariate
distributions due to its simplicity. In addition, the dependence property of the copula method between
random variables gives researchers a general structure to model multivariate distributions [23,24].
Several studies have lately introduced bivariate distributions using copula and some of these have
derived by combining the mixture and copula methods [25–32].

In this article, we aim to propose new bivariate Pareto type II (BPII) distributions using copula
due to the usefulness of the Pareto II distribution in many life applications and the simplicity of the
copula method. The article is outlined as follows: BPII distribution derived from Gaussian copula
and BPII distribution derived from mixture and Gaussian copula are proposed in Section 2. Section 3
illustrates parameter estimates of the proposed distributions. A simulation study is performed to show
the flexibility of the new bivariate distributions in Section 4. Section 5 presents an analysis of one real
data set to show the usefulness of the bivariate Pareto Type II distributions. The article is concluded in
Section 6.

2. Bivariate Pareto Type II Distributions

This section illustrates the construction of Bivariate Pareto Type II distribution derived from
Gaussian copula (BPIIG) and derived from the mixture and Gaussian copula (BPIImG).

2.1. BPIIG Distribution

The construction of BPIIG distribution is derived using the inversion method for the PII distribution
using Sklar’s theorem [23]. Therefore, the joint CDF is given by

F(T1 , T2) = C[F(T1), F(T2)]

where T1, T2 are random variables with PII distribution, and C is the Gaussian copula function with
uniform margins and Pearson correlation parameter ρ ∈ (−1, 1) is given by

C = Φρ

(
Φ−1(v1), Φ−1(v2), ρ

)
Φρ denotes the bivariate standard normal distribution function, Φ−1 is the inverse of univariate
standard normal distribution function and v1 = F(t1), v2 = F(t2) , are the marginal distribution for
the random variables T1 and T2, respectively.

Then, the joint PDF of T1 and T2 is given by

f(T1 , T2) = C′[F(T1), F(T2)]f(T1)f(T2)
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where for j = 1, 2, f
(
Tj

)
and F

(
Tj

)
are given by (1) and (2), respectively, and C′ is the density of the

bivariate Gaussian copula obtained by differentiating C, such that

C′ =
exp

{
−1

2(1−ρ2)

(
y2

1 − 2ρy1y2 + y2
2

)}
2π

√
1− ρ2

(6)

where y1 = Φ−1(v1) and y2 = Φ−1(v2). For details see, [33–35].
Therefore, the joint PDF of BPII distribution with PII marginal can be rewritten as

f(T1, T2) =

 α1β1

(1 + β1t1)
α1+1

 α2β2

(1 + β2t2)
α2+1

C′(v1, v2) (7)

where vj = F
(
Tj

)
, j = 1, 2, given by (1), C′(v1, v2) given by (6). For more details, see [36,37].

Plots of the BPIIG distribution PDF, CDF, and contour for α1 = 1.5 , α2 = 2, β1 = 0.01, β2 = 0.03,
and two values of the copula parameter ρ are presented in Figure 1.
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Figure 1. Probability density function (PDF), cumulative density function (CDF) and contour plots
of the bivariate Pareto Type II models for (a) α1 = 1.5 , α2 = 2, β1 = 0.01, β2 = 0.03, ρ = 0.70,
(b) α1 = 1.5 , α2 = 2, β1 = 0.01, β2 = 0.03, ρ = 0.80.
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2.2. BPIImG Distribution

The construction of BPIImG distribution depends on the mixture representation described
in [25,38,39]. The idea of mixture representation is to write the density of a random variable T on (0,∞)

in the form of compound distribution as follows:

f(t) =
∫

Ω

f(t|u) f(u) du, u ∈ Ω,

where Ω is a subset of R, U is a non-negative latent random variable following a gamma distribution
with shape parameter 2 and scale parameter 1, denoted by gamma (2,1). And fT|U(t|u) can be written
as follows

f(t|u) =
h(t)

u
, u > H(t),

where h(t) is the HRF, and H(t) is CHRF.
That is, the mixture and copula methods are combined to obtain bivariate distribution. This is

conducted by constructing a bivariate gamma distribution of latent variable U = (U1, U2) with two
marginal gamma (2,1) distributions using Gaussian copula. At first stage, we obtain a bivariate gamma
distribution with only unknown correlation parameter ρ such as

f(u1, u2) = f(u1) f(u2)C′(v1, v2) (8)

where C′(v1, v2) is given by (6), f
(
uj

)
is the PDF of gamma (2,1), vj = F

(
uj

)
is the CDF of gamma (2,1)

given by

F
(
uj

)
=

∫ uj

0
uje
−uj duj (9)

Then as a second stage, a bivariate gamma distribution in (8) is used as a mixing distribution
of T1, T2, assuming that T1, T2 are conditionally independent given U. The conditional PDF can be
written as

f(tj |u j) =
αjβj(

1 + βjtj

)e−uj , uj > αj
(
ln

(
1 + βjtj

))
(10)

And then integrate over the latent variables U to obtain the joint PDF of BPIImG distribution is
as follows

f(t1, t2) =

∫
∞

H(t2)

∫
∞

H(t1)

2∏
j=1

 αjβj(
1 + βjtj

) e−uj

C′(v1, v2) du1du2, (11)

using the above two stages method will help in the model analysis, because we can estimate the
correlation parameter ρ from the first stage (i.e., the bivariate gamma distribution). Then, estimate the
other parameters from the second stage (i.e., the conditional density functions f(tj |u j)).

3. Estimation

3.1. Estimation for BPIIG Parameters

If Ti = (T1i, T2i), is a bivariate random sample from BPII distribution with probability function in
(7), then the likelihood function is

L(θ|T1, T2 ) =
n∏

i=1

f(t1i, t2i) =
2∏

j=1

n∏
i=1


 αjβj(

1 + βjtji
)αj+1


C′(v1, v2)

where θ = (β1,α1,β2,α2, ρ). The log-likelihood function is given by
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` =
2∑

j=1

n lnαj + n lnβj −
(
αj + 1

)∑
n
i=1 ln

(
1 + βjtji

)
+

∑
n
i=1[ln(C

′(v1, v2))] (12)

The maximum likelihood (ML) estimates are obtained by differentiating (12) with respect to
β1,α1,β2,α2, and ρ. Then, the first partial derivatives are as follows:

∂`
∂αj

= n
αj
−

∑n
i=1 ln

(
1 + βjtji

)
= 0,

∂`
∂βj

= n
βj
−

(
αj + 1

) n∑
i=1

tji

(1+βjtji)
= 0

∂`
∂ρ = 0

⇒
ρ̂ =

n∑
i=1

y1i y2i
n


(13)

The ML estimates of β1,α1,β2,α2, and ρ can be obtained by solving (13) numerically.
In addition, we can obtain approximate confidence interval (CI) of the parameters

β1,α1,β2,α2, and ρ by using large sample theory and ML estimates of asymptotic distribution. That
is, θ = (β1,α1,β2,α2, ρ) ∼ multivariate normal

(
θ, I−1(θ)

)
, where I−1 is the inverse of the observed

information matrix given by

I−1(θ) =



∂2`
∂α2

1

∂2`
∂α1∂α2

∂2`
∂α1∂β1

∂2`
∂α1∂β2

∂2`
∂α1∂ρ

∂2`
∂α2∂α1

∂2`
∂α2

2

∂2`
∂α2∂β1

∂2`
∂α2∂β2

∂2`
∂α2∂ρ

∂2`
∂β1∂α1

∂2`
∂β1∂α2

∂2`
∂β2

1

∂2`
∂β1∂β2

∂2`
∂β1∂ρ

∂2`
∂β2∂α1

∂2`
∂β2∂α2

∂2`
∂β2∂β1

∂2`
∂β2

2

∂2`
∂β2∂ρ

∂2`
∂ρ∂α1

∂2`
∂ρ∂α2

∂2`
∂ρ∂β1

∂2`
∂ρ∂β2

∂2`
∂p2



−1

The second derivative of (13) with respect to the parameters are provided in the Appendix A.
Therefore, 100(1− γ)% approximate CI for the parameters β1,α1,β2,α2, and ρ for j = 1, 2 are given by

α̂j ∓ zγ/2

√
var(α̂j)

β̂j ∓ zγ/2

√
var(β̂j)

ρ̂∓ zγ/2

√
var(ρ̂)

where: zγ/2 is the upper (γ/2)% of the standard normal distribution. The CI of the parameters could
be adjusted for the lower bound using the method in [40].

3.2. Estimation for BPIImG Parameters

If Ti = (T1i, T2i) is a bivariate random sample of size n from BPII distribution, and U =

(U1i, U2i), i = 1, . . . , n is a random sample from bivariate gamma distribution, then the log-likelihood
function can be written as

`(θ|T1, T2, U1, U2 ) =
2∑

j=1

n lnαj + n lnβj −

n∑
i=1

uji −

n∑
i=1

ln
(
1 + β jtji

)
+

n∑
i=1

[ln(C′(v1, v2))] (14)

where uj > αj

(
ln

(
1 + βjtj

))
, and vj = F

(
uj

)
given by (9).

The ML estimates of θ = (β1,α1,β2,α2, ρ) can be obtained by differentiating (14) with respect to
β1,α1,β2,α2, and ρ and solving the following equations:
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∂`
∂αj

= n
αj
−
∂
∑n

i=1 uji
∂αj

= 0,

∂`
∂βj

= n
βj
−

n∑
i=1

tji

(1+βjtji)
−
∂
∑n

i=1 uji
∂βj

= 0

∂`
∂ρ = 0⇒ ρ̂ =

n∑
i=1

y1i y2i
n


(15)

The nonlinear system of equations in (15) can be solved numerically to obtain the ML estimates of
β1,α1,β2,α2, and ρ.

4. Simulation Study

Monte Carlo simulation studies were conducted to estimates the parameters for BPIIG and
BPIImG distributions. In addition, we investigated and compared the performance of the ML estimates
at different sample sizes; n = (80, 150, 300, 350, 400) with the selected values of the parameters,
(β1 = 2.1,α1 = 1.1,β2 = 2.5,α2 = 1.5), keeping the copula parameter ρ = (0.3, 0.70, 0.80).

4.1. ML Estimates of BPIIG

ML parameter estimates of the BPIIG distribution are shown in Table 1 along with the corresponding
relative mean square error (RMSE).

Table 1. Maximum likelihood (ML) average estimates for the parameters of bivariate Pareto Type
II distribution based on Gaussian copula (BPIIG) and the corresponding relative mean square error
(RMSE).

Sample
Size

Parameters
ML

ρ = 0.30
ML

ρ = 0.70
ML

ρ = 0.80

Mean RMSE Mean RMSE Mean RMSE

80

α̂1 1.2137 0.1321 1.2076 0.1114 1.1923 0.0881
α̂2 1.7906 0.4042 1.6979 0.2457 1.6937 0.4678
β̂1 2.1038 0.3529 2.0866 0.2779 2.1132 0.3038
β̂2 2.4345 0.4989 2.4847 0.3783 2.5225 0.3113
ρ̂ 0.2945 0.0369 0.6900 0.0161 0.7995 0.0019

150

α̂1 1.1626 0.0508 1.1519 0.0451 1.15828 0.0450
α̂2 1.6207 0.1151 1.6233 0.1085 1.5980 0.0952
β̂1 2.0828 0.1743 2.0986 0.1627 2.0909 0.1625
β̂2 2.4643 0.2409 2.4629 0.2282 2.5114 0.2267
ρ̂ 0.3001 0.0187 0.6975 0.0022 0.8002 0.0009

300

α̂1 1.1238 0.0172 1.1281 0.0159 1.1155 0.0162
α̂2 1.5469 0.0406 1.5494 0.0364 1.5320 0.0316
β̂1 2.0901 0.0825 2.1004 0.0749 2.1075 0.0777
β̂2 2.4974 0.1193 2.5087 0.1134 2.4988 0.1020
ρ̂ 0.2983 0.0091 0.6987 0.0010 0.8001 0.0004

350

α̂1 1.1268 0.0178 1.1244 0.0147 1.1145 0.0129
α̂2 1.5393 0.0315 1.5396 0.0309 1.5304 0.0265
β̂1 2.0989 0.0760 2.1006 0.0670 2.1023 0.0610
β̂2 2.5078 0.1044 2.5116 0.0973 2.4911 0.0852
ρ̂ 0.2985 0.0073 0.6988 0.0009 0.7998 0.0003

400

α̂1 1.1134 0.0131 1.1222 0.0128 1.1135 0.0111
α̂2 1.5338 0.0264 1.5346 0.0260 1.5241 0.0221
β̂1 2.1221 0.0673 2.0982 0.0581 2.1012 0.0532
β̂2 2.4999 0.0867 2.5073 0.0846 2.4989 0.0721
ρ̂ 0.3009 0.0066 0.6988 0.0008 0.7995 0.0003
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The results in Table 1 show that as the sample size increases, the RMSE of the parameters estimates
become smaller. In addition, most parameters have better estimates and smaller RMSEs when the
copula parameter equal to 0.80.

4.2. ML Estimates of BPIImG

Parameter estimates of BPIImG distribution using ML methods are illustrated in Table 2. In
addition, the average estimates along with their RMSE over 1000 replication are reported.

Table 2. ML average estimates for the parameters of bivariate Pareto Type II distribution based on
mixture and Gaussian copula (BPIImG) and the corresponding RMSE.

Sample
Size

Parameters
ML

ρ = 0.30
ML

ρ = 0.70
ML

ρ = 0.80

Mean RMSE Mean RMSE Mean RMSE

80

α̂1 1.2204 0.1456 1.2036 0.0532 1.1812 0.1163
α̂2 1.8343 0.7488 1.6036 0.0419 1.6125 0.2962
β̂1 2.0930 0.3395 2.1039 0.1772 2.1818 0.3749
β̂2 2.4204 0.2852 2.5019 0.1168 2.5054 0.3149
ρ̂ 0.3018 0.0326 0.7024 0.0043 0.7987 0.0019

150

α̂1 1.1460 0.0440 1.1551 0.0461 1.1523 0.0476
α̂2 1.5988 0.1096 1.5901 0.0412 1.5909 0.2826
β̂1 2.1260 0.1941 2.1152 0.0923 2.1291 0.1871
β̂2 2.5215 0.1630 2.4963 0.1161 2.5292 0.1572
ρ̂ 0.2998 0.0184 0.7022 0.0025 0.7998 0.0010

300

α̂1 1.1329 0.0213 1.1319 0.0214 1.1235 0.0193
α̂2 1.5480 0.0484 1.5620 0.0478 1.5400 0.0384
β̂1 2.0869 0.0926 2.1035 0.0914 2.1037 0.0891
β̂2 2.4916 0.0778 2.4976 0.0767 2.5059 0.0748
ρ̂ 0.3018 0.0089 0.6997 0.0013 0.7992 0.0005

350

α̂1 1.1217 0.0169 1.1158 0.0154 1.1145 0.0151
α̂2 1.5374 0.0335 1.5263 0.0307 1.5368 0.0295
β̂1 2.1065 0.0844 2.1318 0.0795 2.1181 0.0743
β̂2 2.5030 0.0701 2.5450 0.0668 2.5022 0.0624
ρ̂ 0.3024 0.0077 0.7003 0.0011 0.7984 0.0005

400

α̂1 1.1247 0.0150 1.1156 0.0130 1.1177 0.0136
α̂2 1.5421 0.0287 1.5416 0.0332 1.5345 0.0286
β̂1 2.0948 0.0699 2.1012 0.0676 2.1013 0.0634
β̂2 2.4936 0.0587 2.4825 0.0568 2.5035 0.0533
ρ̂ 0.2983 0.0064 0.6993 0.0009 0.7998 0.0004

The results reported in Table 2 indicate that the RMSE of the parameter estimates decreases as
the sample size increases. Also, we obtained better estimates of the parameters with smaller RMSE
especially the estimate of ρ when the copula parameter is equal to 0.80 and the sample size is more
than 150.

4.3. Models Comparison

We compared the flexibility of the BPIIG and BPIImG distributions based on RMSE, Akaike
information criterion (AIC), and Bayesian information criterion (BIC) values. The results in Table 3
indicate that the BPIImG distribution has lower values of AIC and BIC. Therefore, we conclude that
BPIImG distribution is more flexible and perform better than BPIIG.
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Table 3. RMSE, Akaike information criterion (AIC), and Bayesian information criterion (BIC) for BPIIG
and BPIImG distributions with ρ = 0.80.

Model n AIC BIC

BPIIG
300 1054.0 1072.5
400 1402.6 1422.6

BPIImG
300 672.0 690.5
400 876.6 896.6

5. Data Analysis

The American football league data obtained from the matches played on three consecutive
weekends in 1986 have two variables T1 and T2 where; T1 is the game time the first fields scored when
the ball kicks between goalposts and T2 is the game time the first touchdown is scored, see [41]. The
histogram and the scatter plots of T1 and T2 are right skewed and positively correlated [29]. The
sample Spearman correlation coefficient between T1 and T2 is 0.804 which allows using the proposed
BPII distribution to model this bivariate data. Also, we conducted goodness of fit test by fitting the
marginals only, see [42].

That is, the PII distribution is fitted to the marginals and the ML estimates of the parameters are:
β̂1 = 0.011, α̂1 = 9.519, β̂2 = 0.0141, α̂2 = 5.3778. The plots of the fitted and the empirical CDF for
the two marginals based on ML estimates are illustrated in Figure 2. The Kolmogorov-Smirnov (K-S)
test values and the associated p-values (reported in brackets) for T1 and T2 are 0.1521(0.2855) and
0.1355(0.3884).
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Hence, the K-S test along with the plots of the fitted and the empirical CDF in Figure 2 indicate
that the BPII distribution has an appropriate fit for this bivariate data. In addition, the Gaussian copula
is appropriate for this data as indicated in [29]. For more details, see [43].

Table 4 reports the ML estimates of the parameters along with the standard error (SE) of the
BPIIG and BPIImG parameters. It can be seen from Table 4 that the AIC of BPIImG distribution is
smaller compared to BPIIG distribution. This indicates that BPIImG distribution is more appropriate
for this data.
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Table 4. ML estimates, standard error and AIC for BPIIG and BPIImG distributions.

Model Par. ML Estimate SE AIC

BPIIG

β̂1 0.0117 0.01

526.8
α̂1 9.9106 5.15
β̂2 0.0457 0.02
α̂2 2.2948 0.95
ρ̂ 0.9236 0.02

BPIImG

β̂1 0.0122 0.01

264.1
α̂1 9.5197 5.68
β̂2 0.0159 0.01
α̂2 4.7856 2.97
ρ̂ 0.8781 0.03

The model’s comparison illustrated in [29] is re-conducted to compare BPIIG and BPIImG
with Bivariate expatiated Pareto derived from the mixture and Gaussian copula (BEPmG), bivariate
exponentiated generalized Weibull-Gompertz distribution (BEGWG) studied by [44], and bivariate
exponentiated Gompertez distribution (BEG) using the same real data set.

The results in Table 5 show that BPIImG distribution has the lowest AIC, and BIC values compared
the BEPmG, BEGWG, BEG and BPIIG distributions. Therefore, BPIImG provides a more appropriate
and flexible fit for this data set.

Table 5. Reports the ML estimates, the maximized log likelihood values (`), Akaike information
criterion (AIC) for the bivariate exponentiated Gompertez (BEG), bivariate exponentiated generalized
Weibull-Gompertz (BEGWG), Bivariate expatiated Pareto derived from the mixture and Gaussian
copula (BEPmG) and BPIIG and BPIImG distributions.

Models ML Estimates ` AIC BIC

BEG α̂1 = 0.04 α̂2 = 0.53 α̂3 = 1.04 λ̂ = 0.79 370.41 748.82 755.77
BEGWG α̂1 = 0.04 α̂2 = 0.19 α̂3 = 0.41 354.03 714.06 719.80
BEPmG θ̂1 = 9.95 λ̂1 = 1.38 θ̂2 = 8.01 λ̂2 = 1.14 ρ̂ = 0.927 252.27 514.56 523.25
BPIIG α̂1 = 9.91 β̂1 = 0.01 α̂2 = 2.30 β̂2 = 0.05 ρ̂ = 0.924 286.71 526.83 535.52

BPIImG α̂1 = 9.52 β̂1 = 0.01 α̂2 = 4.79 β̂2 = 0.02 ρ̂ = 0.878 218.32 446.63 455.32

6. Conclusions

In this article, we introduced BPIIG and BPIImG distributions. Parameter estimates of the
proposed bivariate distributions are obtained using the ML method. A simulation study is carried
out to show the performance of the proposed bivariate distributions. We concluded that the BPIImG
distribution is more flexible and performs better than the BPIIG distribution. A real lifetime data is
analyzed, and the results showed that the BPIImG distribution provides a more suitable fit than the
BPIIG, BEPmG, BEG, and BEGWG distributions.

Author Contributions: Conceptualization, L.B.; Investigation, L.B.; Methodology, L.B. and H.A.; Software, L.B.
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Appendix A

The second partial derivatives will be simplified as follows:

I11 = I22 = −E
[
∂2`
∂α2

j

]
= n

α2
j

I12 = I21 = −E
[

∂2`
∂α1∂α2

]
= 0
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I13 = I31 = −E
[

∂2`
∂α1∂β1

]
= −

n∑
i=1

t1i(
1 + β1t1j

)
I33 = I44 = −E

 ∂2`

∂β2
j

 = n
β2

j

+
(
αj + 1

) n∑
i=1

tji(
1 + βjtji

)2

I14 = I41 = −E
[

∂2`
∂α1∂β2

]
= −E

[
∂2`

∂β2∂α1

]
= 0

I24 = I42 = −E
[

∂2`
∂α2∂β1

]
= −E

[
∂2`

∂β1∂α2

]
= 0

I34 = I43 = −E
[

∂2`
∂β1∂β2

]
= 0

I15 = I51 = I25 = I52 = −E
[
∂2`
∂αj∂ρ

]
= 0

I35 = I53 = I45 = I54 = −E
[
∂2`
∂βj∂ρ

]
= 0

I55 = −E
[
∂2`
∂ρ2

]
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