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Abstract: In this paper, we propose the local complexity estimation based filtering method in wavelet
domain for MRI (magnetic resonance imaging) denoising. A threshold selection methodology is
proposed in which the edge and detail preservation properties for each pixel are determined by the
local complexity of the input image. In the proposed filtering method, the current wavelet kernel
is compared with a threshold to identify the signal- or noise-dominant pixels in a scale providing
a good visual quality avoiding blurred and over smoothened processed images. We present a
comparative performance analysis with different wavelets to find the optimal wavelet for MRI
denoising. Numerical experiments and visual results in simulated MR images degraded with Rician
noise demonstrate that the proposed algorithm consistently outperforms other denoising methods
by balancing the tradeoff between noise suppression and fine detail preservation. The proposed
algorithm can enhance the contrast between regions allowing the delineation of the regions of interest
between different textures or tissues in the processed images. The proposed approach produces a
satisfactory result in the case of real MRI denoising by balancing the detail preservation and noise
removal, by enhancing the contrast between the regions of the image. Additionally, the proposed
algorithm is compared with other approaches in the case of Additive White Gaussian Noise (AWGN)
using standard images to demonstrate that the proposed approach does not need to be adapted
specifically to Rician or AWGN noise; it is an advantage of the proposed approach in comparison
with other methods. Finally, the proposed scheme is simple, efficient and feasible for MRI denoising.

Keywords: local complexity estimation; wavelet; MRI denoising

1. Introduction

Magnetic resonance imaging (MRI) is a powerful medical imaging modality used to produce
detailed images of soft tissues and anatomical body structures that can be visualized non-invasively at
the millimeter scale [1,2]. MRI processing provides detailed quantitative brain analysis for accurate
disease diagnosis [3,4] (i.e., brain tumor diagnosis [5], Alzheimer’s disease (AD), Parkinson’s disease,
multiple sclerosis [6], dementia, schizophrenia, brain disorder identification and whole brain analysis
of traumatic injury), detection, treatment planning and classification of abnormalities (i.e., extracting
tissues like white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF)) [3].

In clinical evaluation and neuroscience research, MRI images are often corrupted by several artifact
sources, such as intensity inhomogeneity, abnormal tissues with heterogeneous signal intensities,
non-ideal hardware characteristics and the poor choice of scanning parameters [2,3,7]. In order to
improve the quality of noisy MRI images to facilitate clinical diagnosis, the MRI pre-processing
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operations are introduced to improve the qualities of other MRI applications such as segmentation [8],
detection [9] and classification [2,10].

Image denoising is a standard pre-processing task for MRI to precisely delineate regions of interest
between different brain tissues, to enhance the contrast between regions and to reduce noise, while
preserving, as much as possible, the image features as well as structural details [2,10].

Many denoising methods for MRI have been proposed in the literature, these methods can
be divided into three major classes [11,12]: (1) filtering techniques include linear filters (i.e., spatial
and temporal methods) and non-linear filters (i.e., anisotropic diffusion filtering (ADF) -based
methods) [10], 4th order partial differential equation (PDE) –based methods, non-local means
(NLM) –based methods [13] and combination of domain and range filters (i.e., bilateral and
trilateral filters); (2) transform domain methods, this class consider the curvelet and the contourlet
transforms [14,15] and the wavelet transform based methods (i.e., wavelet thresholding, wavelet
domain filter, wavelet packet analysis, adaptive multiscale product thresholding, multiwavelet
and undecimated wavelet) [7,12,16]; (3) Statistical methods such as maximum likelihood estimation
approach [17], Bayesian approach [18], linear minimum mean square error estimation approach, phase
error estimation approach, nonparametric neighborhood statistics/estimation approach and singularity
function analysis [11,18,19]. Additionally, there exist some hybrid methodologies that belong to both
NLM-based methods and Statistical approaches [20,21].

The spectrum of applications in medicine and biology of the wavelet transform has been extremely
large, it includes the analysis of the electrocardiogram (ECG) and imaging modalities such as positron
emission tomography (PET) and MRI [22]. The main difficulty in dealing with biomedical objects is the
variability of the signals and the necessity to operate on a case by case basis [22]. On the other hand,
the wavelet decomposition is determined by one mother wavelet function and its dilation and shift
versions [23]. There are a lot of wavelet families published in the literature, but researchers commonly
have difficulty selecting an optimal wavelet for a specific image processing application [23]. The choice
of the optimal wavelet function depends on different criteria in several applications and in some of the
distinctive properties (i.e., region of support and the number of vanishing moments) of the wavelet
function [23,24].

In this paper, we propose the local complexity estimation based filtering method in wavelet
domain for MRI denoising. A threshold selection methodology is proposed in which the edge and
detail preservation properties for each pixel are determined by the local complexity of the input image.
Statistics of standard deviation select the pixels whose values can be changed since low-energy wavelet
coefficients correspond to the smooth regions and high-energy wavelet coefficients are in agreement
with the signal features of sharp variation (i.e., edges and textures). In the proposed filtering method,
the current wavelet kernel is compared with a threshold to identify the signal- or noise-dominant pixels
in a scale providing a good visual quality avoiding blurred and over smoothened processed images.
We present a comparative performance analysis with different wavelets to find the optimal wavelet for
MRI denoising. The purpose of this research is to eliminate the noise in the MR image as much as
possible without losing the details corresponding to image features as the structural details, which
will be of highly useful in the quantitative brain analysis for accurate disease diagnosis. Numerical
experiments and visual results in simulated MR images degraded with different percentages of Rician
noise demonstrate that the proposed algorithm consistently outperforms other denoising methods by
balancing the tradeoff between noise suppression and fine detail preservation. The proposed algorithm
can enhance the contrast between regions allowing to delineate the regions of interest between different
textures or tissues in the processed images. The proposed approach shows a satisfactory result in the
case of real MRI denoising by balancing the detail preservation and noise removal, with enhancing
the contrast between the regions of the image; otherwise, the comparative methods produce smooth
results or limited denoising effectiveness. Additionally, the proposed algorithm is compared with
other approaches using standard images degraded with different standard deviations of Additive
White Gaussian Noise (AWGN) to demonstrate that the proposed approach does not need to be
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adapted specifically to Rician or AWGN noise, it is an advantage of the proposed approach in the
denoising task of both AWGN and Rician noises against other methods. Finally, the proposed scheme
is simple, efficient and feasible for the MRI denoising, the obtained results suggest that the application
of the proposed method can benefit many quantitative techniques (i.e., segmentation, tractography
or relaxometry) that can take advantage from the denoising and enhanced data produced for the
application of the proposed method.

The paper is organized as follows. Section 2 designs the proposed filtering algorithm to MRI
denoising. Section 3 presents the performance results in image filtering. Finally, Section 4 concludes
the paper.

2. Proposed Method

Discrete wavelet transform (DWT) is an implementation of the wavelet transform using a discrete
set of wavelet scales and translations [7]. DWT decomposes an image in different (approximation and
detail) sub-bands at different frequencies (scales) with the help of high pass and low pass filters [25].
Figure 1a presents the DWT scheme using high pass filters to extract the high frequency information
(i.e., edges and fine details of the image) and low pass filters to obtain the low frequency information
(i.e., the low pass representation or the approximation of the image), these filters are first applied in
one dimension and then in another one [25]; and Figure 1b depicts the decomposition of a noisy image
using the DWT in four wavelet sub-bands labeled as the low-low (LLs) sub-band correspond to the
approximation sub-band and the low-high (LHs), high-low (HLs) and high-high (HHs) sub-bands
correspond to horizontal, vertical and diagonal details of the image, respectively, s = {1, 2, . . . , S} is the
scale and S represents the coarsest scale [12,25].

In the DWT implementation, a standard decimated filterbank algorithm is used (see Figure 1a) [22],
a high pass filter g[n] and a low pass filter h[n] are applied to a noisy signal y[n] in the following
way [26]

yhigh[k] =
∑

n y[n] g[2k− n]
ylow[k] =

∑
n y[n] h[2k− n]

(1)

where yhigh[k] and ylow[k] are the outputs of the high pass and low pass filters, respectively.
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Figure 1. Discrete wavelet transform (DWT): (a) DWT scheme using high pass and low pass filters and
(b) Decomposition of a noisy image using the DWT in four wavelet sub-bands.
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In the wavelet thresholding methods, the detail coefficients are processed with soft or hard
thresholding to estimate the signal components [7]. The DWT denoising procedure depends upon
the usage of wavelet function and thresholding [12]. The wavelet functions are used for estimating
the noiseless coefficients from noisy wavelet coefficients in wavelet domain. Various threshold
selection methodologies have been proposed to minimize the contribution of noise such as VisuShrink,
SureShrink, BayesShrink and NeighShrink [7,12].

We propose a threshold selection methodology in which the edge and detail preservation properties
for each pixel are determined by the local complexity of the input image. In the proposed method the
current wavelet kernel is compared with a threshold to identify the signal- or noise-dominant pixels
in a scale providing a good visual quality avoiding blurred and over smoothened processed images.
The steps of the proposed algorithm are given as follows.

Step 1. Apply the DWT. Let obtain the decomposition of the noisy image using the DWT and
choose the sub-band HH1 to realize the next steps.

Step 2. Compute the standard deviation. The standard deviation of wavelet coefficients shows the
corresponding energy of wavelet coefficients (i.e., low-energy wavelet coefficients appertain to the
smooth regions and high-energy wavelet coefficients appertain to the edges and textures). Let compute
the standard deviation σp in the sub-band HH1 where p is the current kernel. The standard deviation
σp is computed using a 3 × 3 kernel according with Figure 2

σp =

√√√√ np∑
mp=1

(ymp − y)2/np (2)

where ymp is the mp-th element of the current kernel p = {1, 2, . . . , N}, N is the total number of kernels in

the sub-band HH1, y =
np∑

mp=1
ymp /np is the mean value of the current kernel and np = 9 is the number

of elements in the kernel.
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Figure 2. Proposed scheme to compute the standard deviation σp in each kernel p = {1, 2, . . . , N} of the
wavelet coefficients from the noisy color image.

Step 3. Compute the threshold. The pixels are classified using a threshold based on the local values
of the standard deviations of all kernels in the sub-band HH1. The median value of the standard
deviations has been chosen for this purpose. The median is used as robust estimation of the energy of
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the wavelet kernel coefficients given by its local standard deviation [27,28]. The threshold T selects the
pixels whose values are considered as noisy

T = MED{σ1, σ2, σ3, . . . , σN} (3)

where MED is the median.
Step 4. Apply condition to the current kernel. The proposed condition provides good noise removal,

while the edges and the fine details are preserved. The proposed condition to provide denoising is
given as follows,

wco =

0, αp > T

wc, otherwise
(4)

where wco is the output of proposed procedure, wc is the original wavelet coefficient, αp =∣∣∣∣σpc−MED
{
σp1, σp2, . . . , σpn

}∣∣∣∣ is the proposed noise estimation parameter, it can be used as an impulsive
noise detector when the impulsive noise levels are high [28], it verifies the difference between the
value of the median of coefficients and the central coefficient in terms of standard deviation values;
σpc is the standard deviation located in the center of current kernel p, this is, each kernel provides such
estimation; and

{
σp1, σp2, . . . , σpn

}
are the standard deviations contained in the current kernel p.

We note that the high-energy wavelet coefficients in the sub-band HH1 involve noise and the
edges and textures. The proposed condition (4) distinguishes when a wavelet coefficient (pixel) is
noisy or is a detail (edge or texture) in the following way: If the value of the proposed noise estimation
parameter αp is bigger than the threshold T, then the current kernel p in the sub-band HH1 is classified
as noisy and in such positions the values of the wavelet coefficients are setting in zero (see Figure 2).
Otherwise, the wavelet coefficients of this kernel are classified as details and these are unaltered.

Step 5. Compute the Inverse Discrete Wavelet Transform (IDWT). We obtain the restored image
applying the IDWT according to the wavelet decomposition.

3. Simulation Results

The proposed local complexity estimation based filtering method in wavelet domain is compared
with some reference approaches commonly used in the literature in terms of objective performances
given by PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) [29] and subjective
visual denoising results. The methods used to compare our approach were computed and used in
accord with their references. Also, the parameters required by each comparative algorithm are set
equal to the values assumed in such references. The reason for choosing these methods to compare
them with the proposed one is that their performances have been compared with various known
methods and their advantages have been demonstrated.

Four tests have been proposed to determine the performance of the proposed approach. First,
a comparative performance analysis in a MRI database is done using the DWT with different wavelets
to find the optimal wavelet for MRI denoising; Second, the proposed algorithm is compared with other
approaches using standard images degraded with different standard deviations of Additive White
Gaussian Noise (AWGN); Third, comparative results in simulated MR images degraded with Rician
noise are obtained to evaluate our proposal; and Fourth, a real case of MRI denoising is shown to
demonstrate the capabilities of noise filtering of the proposed approach against other methods.

We note that the use of AWGN with different standard deviations is proposed to demonstrate the
robustness of the proposed approach in the denoising of standard images in comparison with other
methods published recently. In the case of simulated MRI, the Rician noise is built from white Gaussian
noise in the complex domain. The proposed approach does not need to be adapted specifically to
Rician noise, it is an advantage of the proposed approach in the denoising task of AWGN and Rician
noises against other methods. For this reason, we implement these test to determine the performance
of the proposed approach.
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3.1. Comparative Performance of Different Wavelets

In order to analyze different wavelets for MRI denoising, we utilize a database provided by the
National Institute of Neurology and Neurosurgery of Mexico [30]. The real dataset has been recorded
by using a Philips Achieva MRI 1.5T scanner with the following parameters: Echo and Repetition
Times equal to 102 and 5000 ms, respectively, the Field Of View is 276 × 270 mm and image size of
512 × 512 pixels. This dataset has 900 MRI of three patients (300 MRI for each patient) in a DICOM
(Digital Imaging and Communications in Medicine) format. We evaluate the wavelets Haar, Daubechis
2 (DB2), Daubechis 4 (DB4), Symlets 2 (SYM2), Symlets 4 (SYM4), Coiflets 1 (COIF1) y Coiflets 2
(COIF2) in the DWT to realize the MRI denoising. During the wavelet decomposition process, the detail
coefficients can be processed with soft or hard thresholding to estimate the signal components for
effective denoising [7,12]. Our aim is to find the optimal wavelet according to the best PSNR and SSIM
values for a hard threshold of T = 0, and with this, all high frequency information (the noise, edges
and fine details of the image) of the horizontal (LH1), vertical (HL1), and/or diagonal (HH1) details is
eliminated. After numerous simulations, we decide to apply this procedure in the wavelet coefficients
of HH1 sub-band, the value of T = 0 was chosen only to find the optimal wavelet. With this wavelet,
in Section 3.2 we apply the proposed threshold selection methodology to preserve the edges and fine
details of the image.

Table 1 presents the average performance results in MRI denoising on the MRI database in terms
of PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index). From Table 1, one can see
that the best average PSNR and SSIM performances are given for DB4 and Haar wavelets, respectively.
The differences between the results obtained using the two objective quality measures are given
because the PSNR is sensitive to the energy of errors instead of real information loss in spite of it is still
employed “universal” regardless of its questionable performance in several image applications and
SSIM is designed to model any image distortion as a combination of the loss of correlation, luminance
distortion and contrast distortion factors, it is applicable to different image processing applications
because it does not depend on the images being tested, the viewing conditions or the individual
observers [29]. For these reasons, there are no coincidences between both quality measures.

Table 1. Average peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) performances
obtained from different wavelets. The best results are given in bold format.

Wavelet PSNR SSIM

Haar 31.60 0.941
DB2 33.50 0.928
DB4 35.80 0.936

SYM2 34.50 0.889
SYM4 32.65 0.891
COIF1 31.55 0.878
COIF2 34.10 0.870

Figure 3 depicts the visual results applying the DWT with different wavelets in a MRI image in
terms of PSNR and SSIM. The visual results reveal that the best performances of noise suppression and
image distortion are given for DB4 and Haar wavelets, respectively. These results are in concordance
with the PSNR and SSIM performances of Table 1.
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Figure 3. Visual results on magnetic resonance image (MRI) image applying the discrete wavelet
transform (DWT) with different wavelets: (a) Original MRI, (b) Haar (PSNR = 34.812, SSIM = 0.941),
(c) DB2 (PSNR = 36.571, SSIM = 0.922), (d) DB4 (PSNR = 38.053, SSIM = 0.913), (e) SYM2 (PSNR = 34.598,
SSIM = 0.862), (f) SYM4 (PSNR = 33.826, SSIM = 0.853), (g) COIF1 (PSNR = 34.766, SSIM = 0.852),
(h) COIF2 (PSNR = 37.054, SSIM = 0.848). The best results are given in bold format.

3.2. Comparative Performance in Standard Images

To evaluate the proposed algorithm in the task of AWGN denoising, we apply the test presented
in Reference [12] considered the same data and conditions. For this purpose, we use ten standard
images (Lena, Jetplane, Mandrill, House, Boat, Lake, Peppers, Barbara, Pirate and Texture) of size
512 × 512 pixels degraded with the standard deviation σ = {10, 20, 30, 40, 50} of AWGN with zero
mean. These images present natural noise, artifacts (noise, intensity, color inhomogeneity in the
regions, regions with similar textures, shadows, object reflections, etc.) and diverse content such as
fine structures (parallel edges), homogenous areas, texture details and structural information [12].
Comparative performance analysis is carried out for a) wavelet-based approaches such as, VisuShrink
with hard threshold [31], BayesShrink [32] and NeighSureShrink [33] and b) NLM (nonlocal means)
-based approaches, such as, the standard NLM [34], NLM-DCT (NLM-Discrete Cosine Transform) [35]
and NLM-DCT-WEIGHTED (NLM-DCT-Weighted) [12].

Table 2 shows PSNR and SSIM performances for the proposed method with the use of different
wavelets in the standard images degraded with a different standard deviation of AWGN. From Table 2,
we observe that the best PSNR performance is for the proposed method with DB4 wavelet and in the
case of SSIM performance is in favor of the DB4 wavelet in the most of cases (σ = {10, 20, 30}) followed
by DB2 and Haar wavelets for σ = {40, 50}.



Entropy 2019, 21, 401 8 of 21

Table 2. PSNR and SSIM performances for the proposed denoising method in different standard images with σ = {10, 20, 30, 40, 50} of Additive White Gaussian
Noise (AWGN).

Image Noise(σ)

Proposed Denoising Method

HAAR DB2 DB4 SYM2 SYM4 COIF2 COIF4

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lena

10 34.16 0.881 34.22 0.883 34.98 0.883 34.14 0.878 33.92 0.874 34.15 0.880 34.08 0.878

20 32.91 0.854 32.46 0.854 33.02 0.857 32.19 0.850 32.08 0.848 32.38 0.851 32.36 0.852

30 29.90 0.816 30.00 0.819 30.07 0.822 29.91 0.812 29.86 0.812 29.89 0.814 29.88 0.813

40 28.71 0.779 28.70 0.779 28.78 0.788 28.66 0.772 28.39 0.764 28.45 0.768 28.42 0.766

50 27.36 0.703 27.40 0.699 27.43 0.701 27.34 0.689 27.29 0.686 27.31 0.686 27.33 0.684

Jetplane

10 35.05 0.919 35.14 0.922 35.17 0.922 35.01 0.906 34.89 0.902 34.92 0.910 34.99 0.904

20 31.86 0.871 31.87 0.873 31.92 0.874 31.82 0.865 31.80 0.862 31.84 0.864 31.84 0.863

30 29.92 0.819 29.92 0.821 29.96 0.827 29.90 0.816 29.87 0.815 29.91 0.817 29.90 0.815

40 28.24 0.788 28.25 0.782 28.25 0.784 28.20 0.762 20.18 0.761 28.18 0.763 28.18 0.763

50 27.09 0.745 27.08 0.744 27.11 0.744 27.03 0.726 26.98 0.724 27.00 0.724 27.01 0.726

Mandrill

10 34.39 0.922 34.44 0.922 34.46 0.924 34.36 0.913 34.35 0.905 34.37 0.917 34.36 0.909

20 31.67 0.837 31.71 0.844 31.75 0.847 31.63 0.832 31.61 0.826 31.63 0.834 31.62 0.829

30 29.56 0.779 29.57 0.786 29.61 0.791 29.54 0.763 29.53 0.763 29.54 0.771 29.56 0.773

40 27.89 0.705 27.93 0.701 27.94 0.704 27.86 0.692 27.85 0.688 27.88 0.691 27.87 0.687

50 27.08 0.661 27.11 0.661 27.15 0.660 27.05 0.650 27.01 0.639 27.03 0.654 27.03 0.638

House

10 39.21 0.939 39.23 0.944 39.23 0.945 39.16 0.936 39.15 0.921 39.17 0.937 39.18 0.924

20 36.24 0.911 36.30 0.914 36.33 0.919 36.22 0.904 36.19 0.901 36.22 0.903 36.19 0.902

30 34.66 0.867 34.67 0.863 34.74 0.866 34.55 0.869 34.52 0.865 34.59 0.867 34.58 0.866

40 33.13 0.851 33.12 0.842 33.17 0.847 33.03 0.840 32.98 0.827 32.99 0.832 33.03 0.828

50 31.67 0.836 31.70 0.834 31.72 0.836 31.64 0.819 31.64 0.814 31.65 0.818 31.67 0.818
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Table 2. Cont.

Image Noise(σ)

Proposed Denoising Method

HAAR DB2 DB4 SYM2 SYM4 COIF2 COIF4

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Boat

10 34.00 0.891 34.17 0.883 34.19 0.889 33.94 0.869 33.91 0.864 33.93 0.871 33.94 0.866

20 31.83 0.821 31.85 0.825 31.88 0.829 31.79 0.812 31.71 0.804 31.77 0.816 31.77 0.806

30 29.67 0.766 29.69 0.769 29.69 0.767 29.49 0.758 29.48 0.755 29.53 0.759 29.58 0.759

40 28.00 0.723 28.04 0.721 28.07 0.723 27.92 0.709 27.90 0.700 27.97 0.707 27.96 0.704

50 26.77 0.651 26.77 0.647 26.79 0.648 26.70 0.638 26.69 0.629 26.72 0.636 26.76 0.633

Lake

10 33.07 0.888 33.07 0.897 33.08 0.897 32.96 0.876 32.95 0870 32.98 0.875 32.99 0.867

20 30.29 0.823 30.33 0.829 30.37 0.826 30.26 0.819 30.26 0.809 30.26 0.817 30.28 0.811

30 28.78 0.780 28.79 0.783 28.81 0.784 28.73 0.766 28.72 0.766 28.76 0.774 28.75 0.769

40 27.34 0.739 27.39 0.737 27.44 0.739 27.30 0.724 27.28 0.723 27.31 0.720 27.33 0.721

50 26.76 0.701 26.84 0.696 26.88 0.699 26.77 0.689 26.72 0.689 26.74 0.691 26.74 0.692

Peppers

10 34.79 0.879 34.84 0.888 34.85 0.882 34.77 0.868 34.76 0.856 34.77 0.863 34.78 0.863

20 33.45 0.821 33.46 0.826 33.49 0.827 33.44 0.817 33.39 0.811 33.42 0.808 33.42 0.809

30 31.37 0.781 31.36 0.781 31.40 0.783 31.33 0.779 31.28 0.769 31.34 0.772 31.33 0.770

40 30.09 0.746 30.10 0.742 30.10 0.746 29.91 0.733 29.87 0.732 29.88 0.734 26.87 0.732

50 28.87 0.716 28.90 0.713 28.94 0.715 28.85 0.698 28.82 0.681 28.83 0.697 28.81 0.694

Barbara

10 33.39 0.886 33.39 0.886 33.41 0.888 33.34 0.877 33.30 0.875 33.35 0.876 33.31 0.879

20 29.02 0.829 29.07 0.829 29.17 0.831 29.00 0.817 28.97 0.812 28.98 0.813 29.01 0.815

30 27.00 0.761 27.02 0.760 27.02 0.763 26.89 0.750 26.76 0.744 26.72 0.747 26.74 0.749

40 25.61 0.726 25.61 0.724 25.65 0.725 25.54 0.719 25.52 0.712 25.52 0.714 25.50 0.714

50 24.98 0.678 25.02 0.672 25.02 0.674 24.97 0.656 24.92 0.655 24.95 0.658 24.94 0.661

Pirate

10 34.10 0.887 34.12 0.890 34.17 0.890 34.06 0.876 34.00 0.876 34.05 0.879 34.06 0.875

20 31.94 0.827 32.01 0.833 32.01 0.835 31.86 0.820 31.83 0.814 31.88 0.808 31.89 0.813

30 29.46 0.779 29.51 0.781 29.52 0.780 29.44 0.755 29.41 0.752 29.44 0.756 29.42 0.752

40 28.64 0.722 28.69 0.720 28.72 0.720 28.61 0.711 28.59 0.710 28.61 0.712 28.60 0.708

50 26.78 0.686 26.79 0.677 26.79 0.682 26.73 0.659 26.71 0.662 26.73 0.663 26.72 0.664
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Table 2. Cont.

Image Noise(σ)

Proposed Denoising Method

HAAR DB2 DB4 SYM2 SYM4 COIF2 COIF4

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Texture

10 32.35 0.936 32.48 0.943 32.49 0.944 32.36 0.928 32.35 0.924 32.33 0.928 32.34 0.928

20 28.07 0.885 28.11 0.889 28.14 0.893 28.04 0.877 28.04 0.869 28.06 0.875 28.04 0.873

30 26.28 0.823 26.33 0.822 26.36 0.824 26.27 0.807 26.25 0.800 26.27 0.803 26.26 0.807

40 24.11 0.737 24.15 0.731 24.15 0.733 24.05 0.722 24.02 0.722 24.04 0.719 24.05 0.721

50 22.88 0.681 22.97 0.674 23.03 0.676 22.88 0.663 22.83 0.660 22.87 0.664 22.86 0.661

Average

10 34.49 0.902 34.51 0.905 34.60 0.907 34.41 0.892 34.35 0.886 34.40 0.893 34.38 0.889

20 31.72 0.847 31.71 0.851 31.81 0.853 31.62 0.841 31.58 0.835 31.64 0.838 31.64 0.837

30 29.67 0.797 29.68 0.798 29.71 0.800 26.66 0.786 29.56 0.784 29.59 0.788 29.60 0.783

40 28.28 0.751 29.09 0.749 29.12 0.750 28.10 0.738 27.25 0.733 28.08 0.736 27.78 0.734

50 27.02 0.705 27.05 0.701 27.08 0.703 26.99 0.688 26.96 0.683 26.98 0.689 26.96 0.687

Note: The best results are given in bold format.
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We note that Tables 1 and 2 show PSNR and SSIM performances but the first one presents the
performances on MRI images using the DWT with a hard threshold of T = 0 to find the best wavelet
and the second one shows the performance results for the proposed denoising method on standard
images. From these results, we can conclude that with the best (Haar and DB4) wavelets can denoise
images of different kind degraded with Rician noise (MRI images) and AWGN (standard images).
Section 3.3 will confirm the findings of Table 1 but using the proposed denoising method instead of the
hard threshold.

Figure 4 presents the PSNR and SSIM performance analysis for the proposed method and other
ones used as comparative in the ten standard images degraded with σ = {10, 20, 30, 40, 50} of AWGN.
We show experimental results in the images Lena and House, we observe in Figure 4a,b that in the case
of image Lena the best PSNR performance is for the proposed method with DB4 wavelet and for the
SSIM performance the proposed method outperforms other methods in the case of σ = {20, 30, 40} of
AWGN; and Figure 4c,d shows that the best PSNR and SSIM performances are for the proposed method
with DB4 wavelet in the image House for all standard deviations of AWGN. Then, we provide the
average PSNR and SSIM performances for each standard deviation of AWGN using the ten standard
images, these results are given in Figure 4e,f where the proposed method with DB4 wavelet provides
the best results in terms of PSNR and SSIM performances for each noise level followed by the proposal
with Haar wavelet. Figure 4g,h presents the average, minimum and maximum PSNR and SSIM values
computed for each denoising method using the ten images. Finally, the results reveal that the proposed
method outperforms other denoising methods used as comparative, in the case of average PSNR is
in favor of proposed method from 1.06 to 2.4 dB in comparison with the best comparison method
(NLM-DCT-Weighted) for the five levels of AWGN and the average SSIM changes from 0.007 to 0.042
in favor of proposed method in comparison with NLM-DCT-Weighted.

Figure 5 depicts the visual results obtained with different denoising algorithms in the images Lena,
Mandrill, Lake, Pirate and Texture, degraded with noise level σ= 20 according to Figure 4. The denoised
images obtained with the proposed method (DB4 wavelet) have better visual qualities in terms of
denoising and fine detail preservation in comparison with other algorithms used as comparative.
Moreover, the proposed methodology has the best capability for preserving edges and fine structural
details and it enhances the contrast between regions of different texture. It is due to the localization
property of wavelets and the proposed condition used to classify the pixels as noisy or details.
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Figure 4. PSNR and SSIM performance analysis of various denoising methods in ten standard images
with σ = {10, 20, 30, 40, 50} of AWGN: (a) PSNR performance in the image Lena, (b) SSIM performance
in the image Lena, (c) PSNR performance in the image House, (d) SSIM performance in the image House,
(e) Average PSNR performance using ten images, (f) Average SSIM performance using ten images,
(g) Average, minimum and maximum PSNR values for each denoising method using ten images,
(h) Average, minimum and maximum SSIM values for each denoising method using ten images.
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Figure 5. Visual results for different denoising methods in the images Lena, Mandrill, Lake,
Pirate and Texture: (a) Noisy images with noise level σ = 20, (b) Denoised images obtained with
NeighSureShrink, (c) Denoised images obtained with NLM-DCT, (d) Denoised images obtained with
NLM-DCT-WEIGHTED and (e) Denoised images obtained with proposed method (DB4 wavelet).

3.3. Comparative Performance in Simulated MRI

In this subsection, we realize two tests using simulated MR images from the BrainWeb database [36]
and we compare our proposal with different state-of-art denoising methods using different percentages
levels of Rician noise.

Test 1: We implement the test realized in Reference [37] with the same data and under the same
conditions. In this case, we compare the proposed method with the standard NLM [34], UNLM
(Unbiased NLM) [38] and UNLMDCT (UNLM Discrete Cosine Transform) [37] denoising algorithms
using three images of 217 × 181 pixels simulated from the BrainWeb database [36] and degraded with
3%, 6%, 9%, 12%, 15% and 18% of Rician noise: (a) T1-weighted MR image, (b) T2-weighted MR image
and (c) proton density-weighted (PD-weighted) MR image. Figure 6 shows the PSNR performance
of various denoising methods in the simulated MR images, these results reveal that the proposed
method with DB4 wavelet provides better PSNR performance for all percentages levels of Rician noise
in comparison with other methods used as comparative, this is, the PSNR changes in favor of the
proposed method from 0.16 to 1.97 dB in comparison with the best comparison method (UNLMDCT)
for the six levels of Rician noise in the three tested images. Figure 7 depicts the visual results in the case
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of the T1-weighted and PD-weighted MR images degraded with 6% of Rician noise. This Figure shows
that in the case of the T1-weighted MR image, the denoised image with the proposed method provides
better noise removal and fine detail preservation and allowing the enhancement between different
regions corresponding to different tissues in comparison with other algorithms used as comparative.
For the PD-weighted MR image, the visual results reveal that the best performance is provided by the
proposed method.
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Figure 6. PSNR performance analysis of various denoising methods in simulated MR images degraded
with 3%, 6%, 9%, 12%, 15% and 18% of Rician noise: (a) Original T1-weighted MR image, (b) PSNR
performance in the T1-weighted MR image, (c) Original T2-weighted MR image, (d) PSNR performance
in the T2-weighted MR image, (e) Original PD-weighted MR image, (f) PSNR performance in the
PD-weighted MR image.
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Figure 7. Visual results for different denoising methods in the simulated MR images: (a) Original
T1-weighted and PD-weighted MR images, (b) Noisy MR images degraded with 6% of Rician
noise, (c) Denoised MR images obtained with NLM, (d) Denoised MR images obtained with UNLM,
(e) Denoised MR images obtained with UNLMDCT and (f) Denoised MR images obtained with
proposed method (DB4 wavelet).

Test 2: This test is realized according to Reference [39] with the same data and conditions.
For this purpose, the proposed method is compared with the ADF (Anisotropic Diffusion Filter) [40],
WIENER Filter [41], TV (Total Variation minimization) [42], standard NLM [34] and NLNS (Nonlocal
Neutrosophic Set) [39] denoising algorithms using three images of 217 × 181 pixels simulated from the
BrainWeb database [36]: (a) T1-weighted MR image degraded by 7% of Rician noise, (b) T2-weighted
MR image degraded by 9% of Rician noise and (c) T1-weighted MR image with multiple sclerosis
(MS) lesion degraded by 15% of Rician noise. Figure 8 presents the PSNR and SSIM performance for
the three MR images, the PSNR results indicate that the best performance is a favor of the proposed
method, this is, the PSNR changes in favor of proposed method from 1.89 to 2.39 dB in comparison with
the best comparison method (NLNS) but the SSIM performance of proposal disappoint in comparison
with the NLNS from 0.0435 to 0.1192. The SSIM behavior differs from the PSNR because the PSNR is
an objective criterion measurement, whereas the SSIM better captures human perception. Figure 9
depicts the visual results for the three MR images according to the results presented in Figure 8.
From Figure 9, one can see that the use of the proposed methodology appears to have better visual
qualities in comparison with other algorithms used as comparative.
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Figure 8. Performance analysis of various denoising methods in simulated MR images degraded with
Rician noise: (a) Original T1-weighted MR image, (b) PSNR and SSIM performances in the T1-weighted
MR image degraded by 7% of Rician noise, (c) Original T2-weighted MR image, (d) PSNR and SSIM
performances in the T2-weighted MR image degraded by 9% of Rician noise, (e) Original T1-weighted
MR image with MS lesion, (f) PSNR and SSIM performances in the T1-weighted MR image with MS
lesion degraded by 15% of Rician noise.
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Figure 9. Visual results for different denoising methods in the simulated MR images degraded with
different Rician noise: (a) Original MR images, (b) Noisy MR images, (c) Denoised MR images obtained
with ADF, (d) Denoised MR images obtained with WIENER, (e) Denoised MR images obtained with
TV, (f) Denoised MR images obtained with NLM, (g) Denoised MR images obtained with NLNS and h)
Denoised MR images obtained with proposed method (DB4 wavelet).

3.4. Comparative Performance in Real MRI

Here, a real case of MRI denoising is presented using the dataset provided in Reference [18].
In this work, Baselice et al. reported comparative results in the real MR image shown in Figure 10a.
Denoising visual image results are depicted in Figure 10b–f for the proposed method (DB4 wavelet)
and the LMMSE (Linear Minimum Mean Squared Error) [43], BM3D (Block-Matching and 3D) [44],
MAP (Maximum A Posteriori estimator) [18] and ADF (Anisotropic Diffusion Filter) [45] denoising
algorithms, respectively. From this Figure, the denoising image provided by the proposed approach
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shows a satisfactory result by balancing the detail preservation and noise removal, by enhancing
the contrast between the regions of the image. Otherwise, comparative methods produce smooth
results or limited denoising effectiveness. Finally, the obtained results of the proposed approach
suggest that it can use as pre-processing stage in MRI applications such as segmentation, detection,
and/or classification that can take advantage from the denoising and enhanced data produced for the
application of the proposed method.
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(b) Denoised MR image obtained with proposed method (DB4 wavelet), (c) Denoised MR image
obtained with LMMSE, (d) Denoised MR image obtained with BM3D, (e) Denoised MR image obtained
with MAP, (f) Denoised MR image obtained with ADF.

4. Conclusions

We propose the local complexity estimation based filtering method in wavelet domain for MRI
denoising. In the proposed methodology, the edge and detail preservation properties for each pixel
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are determined by the local complexity of the input image to identify the signal- or noise-dominant
pixels in a scale providing a good visual quality avoiding blurred and over smoothened processed
images. Numerical experiments and visual results in simulated MR images degraded with different
percentages of Rician noise have demonstrated that the proposed denoising algorithm provides better
image denoising while preserving image features as well as structural details in comparison with other
denoising methods proposed in the literature in most cases. This is due to the proposed condition used
to classify the pixels as either noisy or details. In the case of real MRI denoising, the proposed approach
produces a satisfactory result by balancing detail preservation and noise removal with enhancing the
contrast between the regions of the image; otherwise, the comparative methods produce smooth results
or limited denoising effectiveness. Additionally, performance results in standard images degraded
with different standard deviations of AWGN indicate that the proposed approach does not need to
be adapted specifically to Rician or AWGN noise; it is an advantage of the proposed approach in the
denoising task of both AWGN and Rician noises, compared with other methods. The main advantages
of the proposed scheme for the MRI denoising and other kinds of images are: a) it is simple because in
each iteration to decide if the current pixel is noisy or is a detail only compute one standard deviation
and two median values, for this reason, we assume that the time complexity of the proposed approach
is much less than other methods such as the NLM-based methods; b) it is efficient because the objective
results in terms of PSNR and SSIM criteria and subjective results produced by the visual denoised
images reveal that the proposed method provides better results in comparison with other methods;
and c) it is feasible because the obtained results suggest that the application of the proposed method
can benefit many quantitative techniques (i.e., segmentation, tractography or relaxometry) that gain an
advantage from the denoising and enhanced data produced for the application of the proposed method.
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