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Abstract: Landslides are one of the most frequent geomorphic hazards, and they often result in
the loss of property and human life in the Changbai Mountain area (CMA), Northeast China.
The objective of this study was to produce and compare landslide susceptibility maps for the CMA
using an information content model (ICM) with three knowledge-driven methods (the artificial
hierarchy process with the ICM (AHP-ICM), the entropy weight method with the ICM (EWM-ICM),
and the rough set with the ICM (RS-ICM)) and to explore the influence of different knowledge-driven
methods for a series of parameters on the accuracy of landslide susceptibility mapping (LSM). In this
research, the landslide inventory data (145 landslides) were randomly divided into a training dataset:
70% (81 landslides) were used for training the models and 30% (35 landslides) were used for validation.
In addition, 13 layers of landslide conditioning factors, namely, altitude, slope gradient, slope aspect,
lithology, distance to faults, distance to roads, distance to rivers, annual precipitation, land type,
normalized difference vegetation index (NDVI), topographic wetness index (TWI), plan curvature,
and profile curvature, were taken as independent, causal predictors. Landslide susceptibility maps
were developed using the ICM, RS-ICM, AHP-ICM, and EWM-ICM, in which weights were assigned
to every conditioning factor. The resultant susceptibility was validated using the area under the ROC
curve (AUC) method. The success accuracies of the landslide susceptibility maps produced by the
ICM, RS-ICM, AHP-ICM, and EWM-ICM methods were 0.931, 0.939, 0.912, and 0.883, respectively,
with prediction accuracy rates of 0.926, 0.927, 0.917, and 0.878 for the ICM, RS-ICM, AHP-ICM,
and EWM-ICM, respectively. Hence, it can be concluded that the four models used in this study gave
close results, with the RS-ICM exhibiting the best performance in landslide susceptibility mapping.

Keywords: landslide susceptibility mapping; Changbai Mountain area; rough set; AHP; entropy
weight method; Cohen’s kappa index; GIS

1. Introduction

Landslides are one of the most frequent geomorphic hazards, and they have considerable
economic and ecological consequences [1–3]. To mitigate these social and economic losses, it is
valuable and essential to assess the landslide susceptibility in a region. Therefore, in recent years,
the assessment of landslide susceptibility, which refers to the likelihood of a landslide occurring in
an area on the basis of the local terrain and environmental conditions, has become a topic of major
interest [4,5]. Landslide susceptibility mapping (LSM) is considered in the decision-making process
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involving land use management as an efficient approach to reduce property damage and economic loss
in landslide-prone areas [1,6–9]. The outcome maps would be useful for general planned development
activities and disaster management in the future, such as choosing new urban areas and infrastructural
activities, as well as for environmental protection.

Landslide susceptibility maps can be obtained using both qualitative (inventory-based and
knowledge-driven methods) or quantitative approaches (data-driven methods and physically based
models) [4,10–17].

Landslide inventory-based techniques, as a prelude to all other methods, include the collection
of past landslide data, construction of databases, and production of susceptibility maps based on
those data [18]. Landslide inventory mapping can be carried out using a variety of methods that were
updated and summarized by Corominas et al. [17].

Knowledge-driven methods that estimate landslide potential from the practical experience and
expertise of the researcher are used by geomorphologists to analyze aerial photographs or to conduct
field surveys [19].

Data-driven landslide susceptibility assessment methods are used to select and analyze factors
affecting landslides in areas with environmental conditions similar to those where past landslides have
been reported [17]. They can be grouped in bivariate statistical analysis, multivariate statistical analysis
and active learning statistical analysis. In bivariate statistical analysis, the weights of the landslide
conditioning factors are assigned based on landslide density using different methods—including
frequency ratio (FR) [13,15,20–22], the information content model (ICM) [23,24], weight of evidence
(WoE) [16], certainty factors (CF) [25], favorability functions (FF) [26], and the likelihood ratio
model (LRM) [27]. The multivariate statistical methods evaluate the combined relationship between
a dependent variable (landslide occurrence) and a series of independent variables (landslide controlling
factors), and the most popular methods to analyze the resulting matrix include logistic regression
(LR) [6,13,28–33], discriminant analysis (DA) [34,35], random forest (RF) [36–38] and active learning
statistical analysis, such as the artificial neural networks (ANNs) [3,6,39–42].

Physically based methods, such as deterministic techniques, are based on mathematical modeling
of the physical mechanisms controlling slope failure [43–49]. However, it is reported that the methods
are only applicable over large areas when the geological and geomorphological conditions are fairly
homogeneous and the landslide types are simple [17].

Moreover, several studies have used two or more models to produce landslide susceptibility maps
and compare their accuracy [3,15,16,36,50–53].

Although many approaches are available for producing landslide susceptibility maps, the focus
in this paper is on the influence of different knowledge-driven methods for a series of parameters on
the accuracy of LSM. A comparative study between the ICM using three knowledge-driven methods,
that is, rough set (RS), artificial hierarchy process (AHP), and entropy weight method (EWM), has been
considered so far in the literature. Therefore, four models, namely, ICM, AHP-ICM, EWM-ICM,
and RS-ICM, were used to produce landslide susceptibility maps in the Changbai Mountain area
(CMA). The four models were validated based on receiver operating characteristic (ROC) curves and
the Cohen’s kappa index, and the influence of different knowledge-driven methods is discussed in
the study.

2. Study Area

The CMA is located in northeastern China and is bounded by North Korea (Figure 1) [54],
between approximately 41◦21′N and 43◦01′N and 127◦01′E and 128◦54′E, where the climate is
temperate continental monsoon with mean annual temperatures of −7.3 to +4.8 ◦C and average
annual precipitation ranging from 700 to 1400 mm, depending on the elevation. The vegetation
is dominated by mixed forests (600–1100 m), coniferous forests (1100–1800 m), sub-alpine Betula
ermanii forests (1800–2000 m), or alpine tundra vegetation above 2000 m [55]. The CMA is one of the
largest volcanic areas in East Asia, with volcanic tectonic geomorphology, water landscapes, glaciers,
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and periglacial landforms [56]. The east and southeast areas of the study area border North Korea and
Russia. The study area includes seven counties and cities, including Changbai, Fusong, and Antu.
The total area of the CMA is approximately 19,774 km2.
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Figure 1. Study area and shaded relief image showing the surface.

The topography is diverse, including valleys, basins, hills, and steep slopes. The overall trend
of the terrain is centered on Baiyun Mountain and gradually reduced to the surrounding area,
characterized by large height, deep cutting, and steep slopes. The highest point of the CMA is
Baiyun Mountain, with an elevation of 2694 m. The lowest point is northwest of the Songhua River,
with an elevation of 276 m.

The tectonic pattern of the area is dominated by NSS- and NNS-trending fault zones supplemented
by SW-, SN- and NW-trending faults. The main faults include the Shulan-Yitong graben fault,
the Dunhua-Mishan graben, and the Tumenjiang fault [57].

Extensive tectonic fragmentation, frequent volcanic activity, steep slopes, a dense drainage and
road network, and extensive human activity, including North Korea’s nuclear testing and other factors,
constitute a study area that is particularly prone to landslide phenomena.

3. Data Collection

Extensive field investigations and observations were identified and mapped in the CMA to
produce a detailed and reliable landslide inventory map. In all, 116 landslides were identified
and mapped in the study area by aerial photos supported by field investigation from 2012 to
2015. The landslides in the study area are characterized by two modes: slump-tensile rupture and
creep-tensile rupture, both of them eventually leading to landslide instability. Of these landslides,
70% (81 landslides) were randomly selected for model training and the remaining 30% (35 landslides)
were selected for validation. A series of field investigations were undertaken to identify the relationship
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between landslide occurrence and environmental factors. Figure 2 illustrates some typical landslides
that destroyed railways and roads.Entropy 2019, 21, x FOR PEER REVIEW  4 of 24 
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Figure 2. Field views of landslides considered in the area. (a) Wanlihe station landslide;
(b) Qinxiang landslide.

Thirteen layers of landslide conditioning factors, namely, altitude, slope gradient, slope aspect,
lithology, distance to faults, distance to roads, distance to rivers, annual precipitation, land type,
normalized difference vegetation index (NDVI), topographic wetness index (TWI), plan curvature,
and profile curvature, were taken as independent, causal predictors for producing LSM. The selection
of 13 predictors was based on the works of previous researchers, collection of data availability and
the experience and knowledge about landslide activities in the study area [24,58]. The continuous
predictors, such as altitude, slope gradient, slope aspect, distance to faults, distance to roads, distance to
rivers, NDVI, TWI, plan curvature, and profile curvature, were classified according to natural break
classes and the previous study, and the discrete predictors, including lithology, annual precipitation,
and land type, were classified based on the existing classification. The spatial database for the study
area is shown in Table 1.

Table 1. Spatial database for the study area.

Data Layers Data Type Scale

Altitude Grid 30 m × 30 m

Slope gradient Grid 30 m × 30 m

Slope aspect Grid 30 m × 30 m

Lithology Polygon 1:100000

Annual precipitation Polygon 1:100000

Land type Polygon 1:100000

Distance to rivers Polygon 1:100000

Distance to faults Polygon 1:100000

Distance to roads Polygon 1:100000

Plan curvature Grid 30 m × 30 m

Profile curvature Grid 30 m × 30 m

Topographic wetness index (TWI) Grid 30 m × 30 m

Normalized difference vegetation index (NDVI) Grid 30 m × 30 m

The details about the data collection procedure and the preparation of the thematic layers are
as follows:

The altitude map, slope gradient, slope aspect, plan curvature, and profile curvature were
produced using the digital elevation model (DEM) with a grid size of 30 m × 30 m. In the present
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study area, the altitude ranges from 276 to 2694 m and is reclassified into five categories using natural
break classes: 276–715 m, 715–924 m, 924–1162 m, 1162–1507 m, and 1507–2694 m. The slope gradient
is reclassified into six classes, namely, 0–8◦, 8–15◦, 15–25◦, 25–35◦, 35–45◦, and >45◦. The slope
aspect is reclassified into eight classes: North (−22.5–22.5◦), Northeast (22.5–67.5◦), East (67.5–112.5◦),
Southeast (112.5–157.5◦), South (157.5–202.5◦), Southwest (202.5–247.5◦), West (247.5–302.5◦),
and Northwest (302.5–347.5). The plan curvature is reclassified into three classes: <-0.5, −0.5–0.5 and
>0.5. The profile curvature is reclassified into three classes: <−0.5, −0.5–0.5 and >0.5.

Lithology, annual precipitation, land type, rivers, faults, and road feature maps were obtained
from the China Geology survey. The distance to faults was classified into five classes: 0–500, 500–1000,
1000–1500, 1500–2000, and >2000 m. In the case of distance to rivers, there are five classes with
100 m intervals. For distance to roads, there are six classes: 0–500, 500–1000, 1000–1500, 1500–2000,
and >2000 m.

The hydrological factor TWI was calculated using Equation (1). The TWI can be used as an
estimate of spatial patterns for soil moisture, since topography controls the hydrological conditions of
surface runoff and groundwater flow:

TWI = ln(As/ tan β), (1)

where As is the specific catchment area and β is the slope gradient (in degrees). In the current study,
TWI is divided into five classes: <9, 9–11, 11–14, 14–18, and >18.

The NDVI is a standardized index for generating an image displaying greenness, and it was
prepared using Landsat-7 images based on the following equation:

NDVI =
NIR− RED
NIR + RED

, (2)

where NIR(band 4) and RED(band 3) are the infrared and red bands of the electromagnetic spectrum,
respectively. This index outputs values between −1.0 and 1.0, mostly representing greenness,
where any negative values are mainly generated from clouds, water, and snow, and values near
zero are mainly generated from rock and bare soil [1]. In this study, the NDVI map was divided into
five classes: <0.1, 0.1–0.3, 0.3–0.5, 0.5–0.7, and >0.7.

4. Methodology

4.1. The Rough Set Model

RS theory was proposed by Pawlak as a mathematical framework for approximate reasoning that
considers uncertainty and vagueness in decision-making processes [59,60]. A rough set is used
to modify the index weight of factor layers, which can make the distribution more reasonable.
The operation steps are as follows:

Formally, a quaternion S = (U, A, V, f ) is an information system, where U = {x1, x1, · · · , xm}
is the non-empty finite set of objects called the universe;A is the non-empty finite set of attributes;
V = U

α∈A
Va, where Va is the range of attributes; and f : U × A→ V is called an information function

such that f (x, a) ∈ Va for ∀a ∈ A, ∀x ∈ U, where A = C ∪ D and C ∩ D = Φ; C denotes the condition
attribute set; and D is the decision attribute set. The knowledge expression system, with both condition
and decision attributes, is a decision table.

The significance of different condition attribute sets for the decision attribute set is different,
and some attributes are redundant. Rough set theory, by mining the potential relationship between
the condition and the decision attribute sets in the knowledge system, obtains the weight values of
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different condition attributes. In decision-making systems, the importance sig(Ci) of the conditional
attribute Ci can be calculated as:

sig(Ci) =
γC(D)− γC−Ci (D)

γC(D)
= 1−

γC−Ci (D)

γC(D)
, (3)

where γC(D) reflects the dependency degree of the decision attribute set D on conditional set C,
so 0 ≤ sig(Ci) ≤ 1, sig(Ci) = 0 means that D does not depend on Ci; 0 < sig(Ci) < 1 means that D
partly depends on Ci; sig(Ci) = 1 means that D totally depends on Ci, and the dependency γC(D) is
calculated using Equation (4). If Ci is deleted from the conditional attribute set C, the dependency
γC−Ci (D) of the decision attribute set D to set C− Ci is calculated using Equation (5):

γC(D) =
1
|U|

m

∑
i=1
|γC(Di)|, (4)

γC−Ci (D) =
1
|U|

m

∑
i=1

∣∣γC−Ci (D)
∣∣, (5)

where |U| is the number of samples in set U.
Then, the index weight vector [α1, α2, · · · , αi, · · · , αn] can be obtained using Equation (6)”

αi =
sig(Ci)

n
∑

i=1
sig(Ci)

(i = 1, 2, · · · , n). (6)

4.2. The Analytic Hierarchy Process

The analytic hierarchy process (AHP), as a multi-criteria decision analysis method, was proposed
by Saaty [61], and have been widely used in LSM [23,24]. The weights can be derived by taking
the principal eigenvector of a square reciprocal matrix of pairwise comparisons between the criteria.
The pairwise comparison of the 9-point rating scale is shown in Table 2. This approach can be described
in four steps as follows [51,62,63]:

Table 2. Pair-wise comparison of 9-point rating scale.

Importance Definition

1 Equal importance
3 Moderate prevalence of one over another
5 Strong or essential prevalence
7 Very strong or demonstrated prevalence
9 Extremely high prevalence

2, 4, 6, 8 Intermediate values

Step 1: Establish the hierarchical tree model for landslide susceptibility mapping;
Step 2: Build the judgement matrix based on pairwise comparison;
Step 3: Calculate the weights or the level of influence for each element based on the minimum of

squares, the logarithmic minimum of squares, the special vector, or approximation methods;
Step 4: Check the consistency of the weights, called the consistency ratio (CR). The CR must be

equal to or less than 10%; otherwise, the pairwise comparison values have to be recalculated.

4.3. The Entropy Weight Method

The entropy method is an objective method for calculating the weight of evaluation predictors
based on measured values [19,40,64–66]. The operation steps are as follows:
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Step 1: Establish matrix X = (xij)m×n (i = 1, 2, · · · , m; j = 1, 2, · · · , n) of the original evaluation
data according to the evaluation objects and indicators, where m is the number of evaluation objects,
and n is the number of evaluation indicators.

Step 2: Normalize matrix X.
For the cost type, the larger the better:

yi =
xi − xi(min)

xi(max) − xi(min)
. (7)

For the efficiency type, the smaller the better:

yi =
xi(max) − xi

xi(max) − xi(min)
. (8)

The standardization process yields the standard-grade matrix Y = (yij)m×n.
Step 3: Calculate the entropy value Hi:

Hj = −
1

LN(m)

m

∑
i=1

IijLN(Iij), (9)

where Iij =
yij

∑m
i=1 yij

, if Iij = 0, LN(Iij) = 0.

Step 4: Calculate the weight of each indicator based on the entropy values:

ωj =
1− Hj

n−∑n
j=1 Hj

. (10)

4.4. The Information Content Model

The information content model (ICM), as a statistical analysis method that has been used with
good results for landslide susceptibility assessment [67], was introduced by C.E Shannon and derived
from information theory. The ICM is used to calculate the effects of various engineering geological
environments on landslides. The calculation procedure is as follows:

Step 1: Calculate the information content I(Xi, H) for each factor Xi that influences
landslide occurrence:

I(Xi, H) = ln
P(Xi, H)

P(Xi)
, (11)

where P(Xi, H) is the probability of occurrence of Xi in the landslide area and P(Xi) is the probability
of occurrence of Xi in the study area;

I(xi, H) = ln
Ni/N
Si/S

, (12)

where N is the number of landslides in the study area, S is the total number of pixels in the study area,
Ni is the number of pixels for factor Xi in the landslide area, and Si is the number of pixels for factor
Xi in the study area.

Step 2: Calculate the total information content for each factor Xi:

Ii = ∑n
i=1 I(xi, H) = ∑n

i=1 ln
Ni/N
Si/S

, (13)

where Ii is the total information content for factor Xi and n is the total number of predictors. The greater
the value, the more likely the landslide will occur.
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4.5. The Landslide Susceptibility Assessment

Based on the ICM and combining with AHP, RS, and EWM, the information weight for each factor
can be obtained using the following formula:

Iiw = ∑n
i=1 I(xi, H) = ∑n

i=1 (Wi × ln
Ni/N
Si/S

), (14)

where Wi are the weights for landslide conditioning predictors calculated by the AHP, RS, and EWM,
and Iiw is the comprehensive index of the landslide sensitivity.

4.6. Performance Evaluation

To assess the performance and measure the spatial consistency of the four models, the Cohen’s
kappa index, a different measure of the reliability of a classification model, was used [68–70].
The Cohen’s kappa index is obtained as:

k =
Pc − PE
1− PE

, (15)

where Pc =
TP+TN

TP+TN+FP+FN is the observed agreements and PE = (TP+FN)×(TP+FP)+(FP+TN)×(FN+TN)√
TP+TN+FP+FN

is the expected agreements. Of these, FP, FN, TP, and TN are the number of false positive,
false negative, true positive, and true negative, respectively.

In our case, a k value close to 0 means that the agreement is no better than chance, whereas a k
value close to 1 indicates a perfect agreement.

5. Results

5.1. LSM using the ICM

The information content (IC) for causative predictors was calculated with Equations (11), (12),
and (13), and the results are listed in Table 3. The final thirteen-factor landslide susceptibility map
obtained by the ICM is shown in Figure 3.

Table 3. Information content for causative predictors.

Factor Class Number of
Landslides Total Count Information

Content
Landslide density

(one/km2)

Altitude/m

276–715 46 6,092,214 0.69 0.0084
715–924 15 6,952,902 −0.57 0.0024
924–1162 12 4,897,656 −0.44 0.0027

1162–1507 4 2,570,941 −0.89 0.0017
1507–2694 4 794,775 0.28 0.0056

Slope gradient/◦

0–8 16 8,989,246 −0.76 0.0020
8–15 23 6,698,970 −0.10 0.0038

15–25 21 4,135,676 0.29 0.0056
25–35 12 1,175,687 0.99 0.0113
35–45 4 263,478 1.38 0.0169
>45 5 45,431 3.37 0.1223

Lithology group

Extra-hard
rock 45 15,716,967 −0.28 0.0032

Hard rock 30 4,450,560 0.57 0.0075
Soft rock 4 721,619 0.38 0.0062
Extra-soft

rock 2 401,503 0.27 0.0055

Distance to faults/m

<500 8 1,562,977 0.30 0.0057
500–1000 6 1,590,516 −0.01 0.0042

1000–1500 10 1,603,260 0.50 0.0069
1500–2000 4 1,593,415 −0.41 0.0028

>2000 53 14,958,243 −0.07 0.0039



Entropy 2019, 21, 372 9 of 24

Table 3. Cont.

Factor Class Number of
Landslides Total Count Information

Content
Landslide density

(one/km2)

Slope aspect

North 6 2,874,520 −0.60 0.0023
Northeast 6 2,665,103 −0.52 0.0025

East 6 2,713,061 −0.54 0.0025
Southeast 8 2,311,122 −0.09 0.0038

South 14 2,559,523 0.36 0.0061
Southwest 24 2,584,545 0.89 0.0103

West 12 2,931,061 0.07 0.0045
Northwest 5 2,669,553 −0.71 0.0021

Distance to roads/m

<500 41 1,099,232 2.28 0.0414
500–1000 2 982,690 −0.63 0.0023

1000–1500 2 921,682 −0.56 0.0024
1500–2000 1 882,297 −1.21 0.0013

>2000 35 17,416,244 −0.64 0.0022

Distance to rivers/m

0–100 9 1,924,137 0.21 0.0052
100–200 27 1,868,346 1.34 0.0161
200–300 14 1,790,363 0.72 0.0087
300–400 8 1,682,849 0.22 0.0053

>400 23 14,042,793 −0.84 0.0018

Annual
precipitation/mm

<700 18 4,524,190 0.05 0.0044
700–800 41 7,781,530 0.33 0.0059
800–900 9 5,299,708 −0.80 0.0019
900–1100 3 1,846,085 −0.85 0.0018

>1100 10 1,849,861 0.33 0.0059

Land type

Cultivation 13 929,169 1.30 0.0155
Bush 2 662,587 −0.23 0.0034
Grass 1 176,242 0.40 0.0063

Residential
land 1 236,892 0.10 0.0047

River 3 192,095 1.41 0.0174
Forest 61 19,105,160 −0.17 0.0035

NDVI

<0.1 7 1,306,736 0.34 0.0060
0.1–0.3 11 1,534,455 0.63 0.0080
0.3–0.5 22 3,657,943 0.46 0.0067
0.5–0.7 40 14,605,211 −0.33 0.0030

>0.7 1 187,856 0.34 0.0059

TWI

<9 43 7,275,471 0.44 0.0066
9–11 23 9,193,638 −0.42 0.0028

11–14 8 3,649,323 −0.55 0.0024
14–18 5 964,716 0.31 0.0058
>18 2 225,340 0.85 0.0099

Plan curvature
<0.5 18 3,382,177 0.34 0.0059
−0.5–0.5 43 14,431,242 −0.24 0.0033

>0.5 20 3,495,068 0.41 0.0064

Profile curvature
<0.5 24 4,378,283 0.37 0.0061
−0.5–0.5 30 12,458,967 −0.46 0.0027

>0.5 27 4,471,238 0.46 0.0067
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Figure 3. The study area’s influencing factor maps: (a) altitude; (b) slope gradient; (c) slope aspect;
(d) lithology; (e) distance to faults; (f) distance to roads; (g) distance to rivers; (h) annual precipitation;
(i) land type; (j) normalized difference vegetation index (NDVI); (k) topographic wetness index (TWI);
(l) plan curvature; (m) profile curvature.

It is clear that the landslide occurrence increases with the slope gradient. The slope gradient
class >45◦ has the highest IC value, and the lowest IC value is −0.76 for slope class 0–8◦.

In the case of slope aspect, the IC value is positive from south to east, with the maximum value
(0.89) at southeast-facing slopes followed by south-facing (0.36) slopes.

In terms of altitude, the IC values indicate they are positive for the ranges of 276–715 and
1507–2694, with the highest value for altitudes between 276–715 m.

For the lithology groups, Hard rock class is associated with a higher IC value, whereas the
Extra-hard rock determines a lower IC value.

The plan and profile curvature IC values are negative only for the range of −0.5–0.5 and at −0.24
and −0.46, respectively. The concave (>0.5) and convex (<−0.5) slopes are positive for landslide
susceptibility in the study area.

As for land types, Cultivation and River are more susceptible to landslides.
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The relation between TWI landslide probabilities showed that >18 has the highest value of IC,
and class 0.5–0.7 has the lowest NDVI value.

In terms of distance to faults, the highest and lowest IC values are located in the intervals of
1000–1500 m and >2000 m, respectively.

In the case of distance to roads, the interval <500 m has the highest IC value, which means that
the landslide susceptibility is higher in this area.

The river incision can cause instability of slopes by changing groundwater level and toe erosion.
Generally, with the increase of the distance to rivers the IC values decrease, and the IC value is positive
only for the class >400 m.

In the case of annual precipitation, the landslides are mainly distributed within 700–800 mm and
>1000 mm, and their IC values are all 0.33.

The final ICM method landslide susceptibility map is shown in Figure 4.

Figure 4. The landslide susceptibility map for the CMA extracted with the ICM.

5.2. LSM Using the RS-ICM Method

The following predictors were selected as indices for LSM: slope gradient, slope aspect, lithology,
distance to faults, distance to roads, distance to rivers, annual precipitation, land type, NDVI, TWI,
plan curvature, and profile curvature. The 13 causative predictors were classified into grades 1, 2, 3,
4, 5, 6, 7, 8, and 9 according to landslide density as shown in Table 4. In ArcGIS software (version
10.2, Esri Co. Ltd., California, CA, USA), the value of all evaluation factor layers is extracted into
landslides, and the results are used as condition attributes. We generated landslide density maps
(Figure 5) based on the landslide distribution. The landslides were divided into six levels, 1, 2, 3, 4,
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5, and 6, using natural break classification according to the landslide density, and the results were
used as decision attributes. The initial decision table, with 85 rows and 8 columns, was established
by defining the density of landslides as the decision attribute set. The weights of 13 predictors were
calculated using the rough set method, as shown in Table 5. The final landslide RS-ICM susceptibility
map is shown in Figure 6.

Table 4. Evaluation class based on landslide density.

Landslide Density (one/km2) Landslide Susceptibility Grade

0.001–0.002 1
0.002–0.003 2
0.003–0.004 3
0.004–0.005 4
0.005–0.006 5
0.006–0.007 6
0.007–0.008 7
0.008–0.009 8

>0.009 9
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Table 5. Weights of 13 predictors using the rough set approach.

Predictors X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Weights 0.0610 0.0244 0.0976 0.1585 0.0366 0.0122 0.0976 0.0732 0.1829 0.0488 0 0.1220 0.0854

Notes: X1: Altitude; X2: Slope gradient; X3: Slope aspect; X4: Lithology; X5: Distance to faults; X6: Distance to roads;
X7: Distance to rivers; X8: Annual precipitation; X9: Land type; X10: NDVI; X11: TWI; X12: Plan curvature; X13:
Profile curvature.
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Figure 6. The landslide susceptibility map of the CMA extracted with the RS-ICM method.

5.3. LSM Using the AHP-ICM Method

In the study area, the 13 layers of landslide conditioning predictors were compared with each
other to determine their relative importance using the analytic hierarchy process (AHP) mentioned
above. The judgement matrix for these evaluation predictors is shown in Table 6. The CR = 0.0183,
which is <0.1, indicates that the calculated weights are reasonable. The final landslide susceptibility
map of the AHP-ICM method is shown in Figure 7.
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Table 6. Pair-wise comparison matrix for influencing factor weights.

Heading X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 Weights

X1 1 1/6 1/2 1/7 1/3 1/4 1 1/4 1/5 1/4 1/3 1/2 1/2 0.0218

X2 6 1 4 1/2 3 2 5 3 1 1 2 3 3 0.1386

X3 2 1/4 1 1/5 1 1/3 2 1/2 1/3 1/2 1/2 1 1 0.0405

X4 7 2 5 1 4 2 5 3 1 2 3 4 4 0.1832

X5 3 1/3 1 1/4 1 1/2 2 1/2 1/2 2 1 1 1 0.0586

X6 4 1/2 3 1/2 2 1 3 1 1 1 1 2 2 0.0889

X7 1 1/5 1/2 1/5 1/2 1/3 1 1/3 1/4 1/4 1/3 1/2 1/2 0.0252

X8 4 1/3 2 1/3 2 1 3 1 1/2 1 1 2 2 0.0773

X9 5 1 3 1 2 1 4 2 1 1 2 3 3 0.1221

X10 4 1 2 1/2 1/2 1 4 1 1 1 1 2 2 0.0864

X11 3 1/2 2 1/3 1 1 3 1 1/2 1 1 1 1 0.0661

X12 2 1/3 1 1/4 1 1/2 2 1/2 1/3 1/2 1 1 1 0.0457

X13 2 1/3 1 1/4 1 1/2 2 1/2 1/3 1/2 1 1 1 0.0457

Figure 7. The landslide susceptibility map for the CMA extracted with the AHP-ICM method.

5.4. LSM Using the EWM-ICM Method

The weights of causative predictors based on EWM were calculated according to the principles
of entropy weighted theory and are listed in Table 7. At first, the IC values were multiplied by the
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weights in Table 4 and all the weighted factor maps were then aggregated. Finally, the maps were
reclassified to produce the EWM-ICM-generated LSM (Figure 8).

Table 7. The weights of 13 predictors using the EWM approach.

Predictors X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Weights 0.06 0.30 0.05 0.02 0.02 0.25 0.08 0.04 0.07 0.02 0.05 0.02 0.04

Figure 8. The CMA landslide susceptibility map extracted with the EWM-ICM method.

5.5. Validation

To determine the statistical reliability of the results, it is essential to perform validation of the
four models. To perform this validation, the ROC curve was constructed, and the area under the ROC
curve (AUC) was used for the quantitative comparison of the four models.

The comparison results are shown in Figure 9. The success rate (Figure 9a) comes from the
training dataset (70%, 81 landslides), and the prediction rate (Figure 9b) comes from the validation
dataset (30%, 35 landslides). As shown in Figure 9, the ICM, RS-ICM, AHP-ICM, and EWM-ICM
success rates were 0.931, 0.939, 0.912, and 0.883, and their prediction accuracy rates were 0.926, 0.927,
0.917, and 0.878, respectively. The Cohen’s kappa indexes were 0.721, 0.743, 0.720, and 0.663 for the
ICM, RS-ICM, AHP-ICM, and EWM-ICM. It indicates a substantial agreement between the observed
and the predicted values for all four models.

The susceptibility maps were classified as low, moderate, high, and very high based on a natural
break approach. Table 8 displays the total area and ratios of low, moderate, high and very high
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susceptibility for the four models. The ICM, RS-ICM, and AHP-ICM methods with better LSM
performance in the CMA have approximately the same result in area ratio of different landslide
susceptibility classes, and they have relatively large differences compared to EWM-ICM.

Figure 9. Receiver operating characteristic (ROC) curve evaluation of the four models: (a) success rate
curve; (b) prediction rate curve.

Table 8. Distribution of area in different landslide susceptibility classes.

Model Area (km2) and Ratio (%)
Susceptibility

Low Moderate High Very High

ICM
Area 642.67 676.50 414.96 181.83

Ratio 33.54 35.31 21.66 9.49

RS-ICM
Area 522.98 727.38 486.82 178.77

Ratio 27.30 37.96 25.41 9.33

AHP-ICM
Area 515.62 697.16 505.96 197.22

Ratio 26.91 36.39 26.41 10.29

EWM-ICM
Area 165.52 704.41 824.07 221.96

Ratio 8.64 36.77 43.01 11.58

6. Discussion

6.1. Spatial Consistency of the Four Models

The Cohen’s kappa indexes were calculated to measure the spatial consistency of the four models.
The results of their spatial consistency are shown in Table 9, which indicates a substantial agreement
between the ICM and AHP-ICM, and a moderate agreement between the RS-ICM and AHP-ICM
and between the ICM and RS-ICM. For the RS-ICM and EWM-ICM, the Cohen’s kappa index was
estimated to be equal to 0.140, characterizing with slight agreement. It should be noted that the
Cohen’s kappa indexes between EWM-ICM, which has the lowest performance for LSM in the CMA,
and the other three models are very small, which indicates that they have relatively large differences
in spatial consistency compared to EWM-ICM, and the ICM, RS-ICM, and AHP-ICM methods yield
similar results.
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Table 9. Cohen’s kappa index between two models.

Models ICM and
RS-ICM

ICM and
AHP-ICM

ICM and
EWM-ICM

RS-ICM and
AHP-ICM

RS-ICM and
EWM-ICM

AHP-ICM and
EWM-ICM

Cohen’s
Kappa Index 0.595 0.698 0.325 0.484 0.140 0.286

6.2. Predisposing Factors Analysis of Information

The ICM is a simple and effective tool in landslide susceptibility assessment, and the information
values represent the contribution ratio of different predictor classes to landslide occurrence.

With the increase of slope gradient, the landslides increase. The reason for this is that the slope
gradient not only affects the stress distribution inside the slope masses but also affects weathering
layer depth and slope surface runoff [58]. However, the landslides are mainly concentrated in the
altitude range of 276–715, which is due to the fact that the catchment areas are mainly concentrated in
this range.

It should be noted that landslides primarily developed within the hard rock lithology group
rather than soft rock. The hard rock group is mainly composed of basalt and trachyte, which are prone
to rock fall, and the landslides in the study area are characterized by two modes: slump-tensile rupture
and creep-tensile rupture, which are related to the development of rock fall. The landslides develop in
the weak layer of the high-steep slope of the hard rock lithology group. Once the rock fall occurs at the
front edge of the slope, the trailing edge will break through the weak layer along the weak edge and
gradually form a connecting slip surface, forming a stepped rock fall-landslide, with conditions that
are consistent with the occurrence conditions of landslide disasters.

In the case of distance to faults, distance to roads, and distance to rivers, there was a decreasing
tendency with the increase in distance. The reasons for this phenomenon can be summed up as follows:
(a) With strong weathering and a well-developed rock structure plane in a fault zone, it provides
favorable conditions for a landslide occurrence; (b) Roads increase stress and strain on the back of
the slope, resulting in slope disturbance and failure; (c) The strength of degree of surface incision is
directly related to the development of drainages. The closer to the rivers, the more severe erosion,
and the more landslides.

For slope aspect, the slope aspects in the south direction (south, southeast, and southwest) were
more prone to landslides. The reason for this is that these direction slopes are exposed to more sunlight
or affected by the orientation of discontinuities controlling the landslides, which is the same as the
conclusion proposed by Du [58].

Annual precipitation is one of the major initiating factors of landslides [71]. It is accepted that
with the increase of rainfall, the probability of landslide occurrence increases, but the results show that
the IC values in the intervals of 800–900 and 900–1000 are negative, mainly because the two intervals
are distributed in the Extra-hard rock group that is not prone to landslides.

It is generally accepted that Land type plays a crucial role in the landslide distribution [36].
The landslides are primarily developed with Cultivation and Residential in the study area, which are
the most dramatic locations of human activity.

6.3. Comparative Analysis of Three Knowledge-Driven Methods

The ICM, an objective evaluation method commonly applied for statistical analysis, is suitable
for the evaluation of LSM [24]. Four landslide susceptibility maps were produced based on the
ICM with three knowledge-driven methods to mitigate the social and economic losses induced by
landslides in the CMA. In the comprehensive evaluation process, the key issue is to determine the
weight of each predictor, which reflects the relative importance of each evaluation indicator. It should
be noted that the LSM is completely dependent on the value of the weight when the evaluation
object and evaluation indicators are determined. Hence, the reasonable choice of the weighting
method directly affects the rationality and credibility of the landslide-prone partition evaluation



Entropy 2019, 21, 372 20 of 24

results. In this study, three knowledge-driven methods, including subjective evaluation and objective
evaluation, were used to produce landslide susceptibility maps. The RS theory is an effective tool in
dealing with vagueness and uncertainty information. Peng et al. [60] mentioned that the RS theory
is an attribute reduction tool to identify the significant environmental parameters of a landslide.
Liu et al. [72] used RS theory to clarify the relationship between landslide and environmental factors
in the Qinggan River of the Three Gorges area. The AHP is an expert-based evaluation method that is
often applied in landslide susceptibility assessment and mapping [63]. However, it should be noted
that the AHP has been criticized for its inability to adequately handle the ambiguity and imprecision
associated with the conversion of linguistic labels attached to the ratio scale, to crisp numbers used
in the comparison matrix [73]. The EWM is an objective weighting method, which determines the
criteria weights by solving mathematical models without any consideration of the decision maker’s
preferences. However, it is sometimes contrary to the actual situation, and it is difficult to give
a clear explanation for the obtained results. According to the results in the success accuracy section,
the RS-ICM (AUC = 0.939) had the best effect for LSM in the CMA, and the ICM (AUC = 0.931) with
AHP-ICM (AUC = 0.912) performed better than EWM-ICM (AUC = 0.883).

6.4. Importance of Predictors

The weight assignment of landslide conditioning predictors is the basis of LSM. This paper
focuses on the influence of different knowledge-driven methods for a series of parameters on the
accuracy of LSM. Figure 10 displays the weights of the RS, AHP, and EWM methods. According to
the results, lithology (0.1585), land type (0.1829), and plan curvature (0.1220) had the highest weights
using RS. Slope gradient (0.1386), lithology (0.1832), and land type (0.1221) had the highest weights by
AHP, and slope gradient (0.3) and distance to roads (0.25) had the highest weights using EWM.
The results show that lithology and land type are crucial predictors for LSM in the CMA for
RS-ICM (AUC = 0.939) and AHP-ICM (0.912), which have better performance than EWM-ICM (0.878).
However, Chen et al. [52] found that slope gradient, altitude, and rainfall had the highest importance in
landslide occurrence. Kawabata and Bandibas [74] mentioned that geology is the most important factor.
Meinhardt, et al. [75] reported that slope gradient, lithology, and precipitation increase have higher
importance in landslide occurrence. Pham, et al. [76] mentioned that distance to roads, slope gradient,
elevation, and rainfall have higher importance on landslide occurrence, which is consistent with the
results of Youssef et al. [77]. It can be found that slope gradient, lithology, distance to roads, and land
type are the four most important predictors affecting the susceptibility of landslides in the CMA.
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7. Conclusions

Landslides are one of the most frequent geomorphic hazards that often result in loss of property
and human life in the CMA. In this research, 13 layers of landslide conditioning predictors, namely,
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altitude, slope gradient, slope aspect, lithology, distance to faults, distance to roads, distance to rivers,
annual precipitation, land type, NDVI, TWI, plan curvature, and profile curvature, were taken as
independent, causal predictors, and three knowledge-driven methods, that is, RS, AHP, and EWM,
were applied to produce CMA landslide susceptibility maps and their performance was compared.

The influence of different knowledge-driven methods for a series of parameters on the accuracy
of LSM was explored. The results demonstrate that the four models are good at predicting landslide
susceptibility, and the RS-ICM had the best effect for LSM in the CMA; the next best were ICM and
AHP-ICM, as their accuracies were slightly higher than that of EWM-ICM. In addition, the importance
of different predictors in landslide occurrence was investigated. It was concluded that lithology and
land type are crucial predictors for LSM in the CMA.

The four landslide susceptibility maps illustrated that the high-susceptibility areas were mainly
composed of three parts: the region with a radius of 13,000 m around the Tianchi volcanic cone and
mountain area in southwest Changbaishan Tianchi, the hard rock group area, and the surrounding
area of roads. The outcome of this research is useful for general planned development activities and
disaster management in the future and for engineers to reduce losses caused by existing and future
landslides using prevention, mitigation, and avoidance.
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