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Abstract: Mobile sensors are widely used in indoor positioning in recent years, but most methods
require cumbersome calibration for precise positioning results, thus the paper proposes a new
unsupervised indoor positioning (UIP) without cumbersome calibration. UIP takes advantage
of environment features in indoor environments, as some indoor locations have their signatures.
UIP considers these signatures as the landmarks, and combines dead reckoning with them in a
simultaneous localization and mapping (SLAM) frame to reduce positioning errors and convergence
time. The test results prove that the system can achieve accurate indoor positioning, which highlights
its prospect as an unconventional method of indoor positioning.
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1. Introduction

In outdoor environments, the Global Navigation Satellite System (GNSS) can provide satisfactory
positioning, but satellite signals are blocked by walls, causing no signal in the rooms. At the same time,
as the indoor environments become more complex, and indoor activities become more frequent, the
demand for indoor positioning is increasingly strong.

In order to achieve better indoor positioning results, a lot of research has been carried out. Many
papers focus on WiFi indoor positioning based on received signal strength, a common local positioning
approach with a number of prominent advantages such as low cost and ease of deployment. Ref. [1]
proposed an indoor positioning method based on a Monte Carlo algorithm. Ref. [2] proposed the
improved indoor position estimation algorithm based on geo-magnetism intensity, which compensates
for the flaw of particle filter. Ref. [3] also presented a novel method, and it proposed a low-cost and
easy-to-realize positioning system, which uses FM Radio Signal Strength fingerprinting.

Many of today’s localization systems for indoor and outdoor positioning are based on propagation
time measurements of radio signals. Ref. [4] proposed a new WiFi-based positioning method to make
the access point (AP) signal features more complete. Ref. [5] proposed two indoor positioning
algorithms based on channel state information (CSI). Ref. [6] proposed a new fingerprint-based WiFi
indoor positioning system, which is realized by extracting and analyzing the individual multipath
propagation delay.

However, in order to achieve high positioning accuracy in the presence of non line of sight (NLOS)
propagation, these systems require either an expensive manual calibration or additional information.
Many paper introduced unsupervised positioning without these costs. Ref. [7] proposed a Wi-Fi
radio maps (WRMs) calibration system that automates the initial construction and maintenance of
radio maps using crowdsourced fingerprints collected from numerous smartphones without location
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information. The system incorporates an unsupervised learning algorithm into an incremental and
adaptive calibration process. Ref. [8] proposed an unsupervised indoor localization scheme that uses
the combination of smartphone sensors, iBeacons and Wi-Fi fingerprints for reliable and accurate
indoor localization with zero labor cost. Ref. [9] proposed a novel approach for a channel impulse
response (CIR) based fingerprint system, which reduces the calibration and measurement effort and
simultaneously improves localization results. Inspired by this, the paper designed an unsupervised
indoor positioning system to reduce development costs and improve positioning accuracy.

Although there are many works about indoor positioning, there are still some problems: some
indoor positioning technologies rely on customized installations, which reduces their scalability [10,11].
The positioning systems based on WiFi [12,13], while providing ubiquitous positioning, require
cumbersome calibration works. Some systems can reduce the works [14–16], but most need to reduce
positioning accuracy. The dead reckoning approach based on sensors of smartphones has begun to
receive attention [17,18] in recent years, which uses an accelerometer to calculate the displacement
of the user and a compass to learn the orientation of the user. Ref. [19] proposed a method of indoor
navigation using a microelectromechanical systems (MEMS)-based strapdown inertial navigation
system (INS) aided by Wi-Fi signal strength measurements. Ref. [20] proposed an algorithm to detect
the stride using acceleration spectrogram feature by utilizing the accelerometer in a smartphone.
The dead reckoning error is quickly accumulated, so the user position needs to be recalibrated.

The paper proposes an unsupervised indoor positioning (UIP) system, using sensors on
smartphones to detect unique indoor points, such a place where a unique group WiFi APs can
be received, which can reset the errors in dead reckoning. Starting with the building layout generated
manually or automatically [21–23], the system discovers the landmarks through the crowd-sensing
method. The landmarks are then used to reset the errors in the dead reckoning, resulting in higher
positioning accuracy. The test results prove that the system can achieve accurate indoor positioning,
showing the prospect of UIP as an unconventional method of indoor positioning.

The rest of this paper is organized as follows: Section 1 introduces the shortcomings of existing
indoor positioning research and the research done in this paper. Section 2 introduces how the system
uses sensor data to get the displacement and orientation of the user, and proposes a novel method by
using landmark in the positioning process. Section 3 describes how to define landmarks by sensor data
features and how to identify different landmarks in the experiment, and it is an important innovation in
the paper. Section 4 introduces simultaneous localization and mapping and how it works in positioning
systems. Section 5 tests the system UIP from different aspects, and the results prove that it has excellent
positioning performance. Section 6 provides the conclusions.

2. Related Work

There are also two representative indoor positioning systems: the Horus system and the MaLoc
system, and they are compared with the UIP system in the test. The Horus system identifies different
causes for the wireless channel variations and addresses them to achieve its high accuracy. It uses
location-clustering techniques to reduce the computational requirements of the algorithm. The Horus
system works in two phases. The offline phase builds the radio map, clusters radio map locations,
and conducts other preprocessing of the signal strength models. The online phase estimates the user
location based on the received signal strength from each access point and the radio map prepared in
the offline phase.

The MaLoc is built on a proposed augmented particle filter. To minimize errors in motion
estimation and improve the robustness of particle filter, it augments the particle filter with a
dynamic step length estimation algorithm and a heuristic particle resampling algorithm. It uses
a hybrid measurement model which combines a new magnetic fingerprinting model and the existing
magnitude fingerprinting model to improve the system performance and avoid calibrating different
smartphone magnetometers.
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This paper is inspired by these two methods, using a probability calculation method similar to the
Horus system, and using the magnetic signal as the positioning technology, which is the method of the
MaLoc system. At the same time, this paper has made improvements to the two systems. The main
improvements are as follows:

1. The paper uses multi-domain sensors to make up for the single signal to be easily affected by
the environment, and the positioning accuracy is insufficient. For example, Horus system is
susceptible to noise in the channel.

2. The paper proposes global landmarks, which has not been seen in past positioning systems.
Global landmarks enable the system to obtain certain environmental information in advance,
which helps to improve positioning accuracy.

3. This paper makes use of the simultaneous localization and mapping (SLAM) architecture and
framework that leverages smart phone sensors to both dead-reckon the user location and identify
semantic landmarks. These landmarks are used in a SLAM probabilistic framework to reset the
accumulated localization error. It makes the UIP system have high positioning accuracy without
initial manual calibration.

3. Mobile Sensor Positioning

3.1. Dead Reckoning

Dead reckoning is the method to estimate the track of the users and it needs to sample the user’s
motion data (e.g., acceleration). The algorithm can calculate the possible displacement and direction of
the user from these data, and finally calculate the possible position of the user at the next sampling.
In the mobile device positioning system, accelerometer and compass are used to get acceleration and
orientation, then process and calculate these data to get the possible position of the user at the next
time. Starting from a point which is known, the user’s position at time t is updated by the control
variable ut = {lt, φt}, where lt is the displacement and φt is the orientation change.

(1) Displacement: It can be calculated simply by the direct integral of the accelerometer reading
which can be obtained by acceleratometer. However, it has a bad positioning error. As shown
in Figure 1, after the actual displacement of 30 m, the deviation of the estimated value exceeds
100 m; this is due to the noise and low sampling rate of the accelerometer and the jitter of the
phone when the user is walking. The paper uses another effective method.
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Figure 1. The positioning error is quickly accumulated with the movement.



Entropy 2019, 21, 327 4 of 22

It is identifying the feature of the user’s walking [18,24]. The feature comes from the natural
upward/downward rebound of the body at every step. To capture it, the accelerometer signal is
processed by a low-pass filter, and the system identifies two consecutive local minimum, if the
difference value between maximum and minimum is larger than the given threshold, it will be
considered as a step of the user, and the displacement is calculated by multiplying the steps by
the step size.

(2) Orientation: Traditional approaches rely on the compass, which can indicate the orientation by
the magnetic field. However, it is noisy and seriously impacts positioning results. Gyroscope
is also used in the paper, and it can measure relative palstance, which is a three-dimensional
rotation matrix, and the relative angular displacement (RAD) can be obtained when the matrix
is multiplied by a time interval. The path structure of the user can be tracked by the gyroscope;
however, the estimated path has an error in the initial orientation. As shown in Figure 2a, all of
these paths are rotated versions of the real path.
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Figure 2. (a) path estimates; (b) using the landmark to correct the deviation.

Landmarks can correct the deviation. As shown in Figure 2b, the position X1 of the user at time t1

is known, dead reckoning with initial bias θ estimates that the position is X3 at time t2, and the
real position is X2. Assuming that the user encounters the landmark L2 at time t2 and the location
of L2 is X2, which is known, the algorithm thus considers that the the location of the user is X2,
which is an accuracy position.

3.2. Landmark Introduction

3.2.1. Landmark Density Indoors

According to observations, signals in indoor environments are abundant, such as sound, light,
and magnetic field. In addition, some building structures force the user to move in specific ways,
which might create some unique patterns on the sensors. Some signatures may appear after analyzing
different sensor signals.

WiFi landmark: The indoor environments have many WiFi areas where all locations can receive a
different set of WiFi APs, and they are in different sizes. Figure 3 shows the size distribution of WiFi
AP coverage areas. If the phone can hear a group of WiFi APs in a small area, it can be considered to
be in the area. The figure measures the CDF of WiFi coverage area, for example, if x is 5, y is 0.2, which
means there are 20% WiFi APs, and every one of them covers an area not more than 5 m2. From the
figure, we can know the approximate proportion of WiFi APs that are suitable as landmarks. If the
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area is small, the positioning error is small. There are eight and five WiFi landmarks in small areas
found on the two floors of the laboratory building, and each size is less than 4 m2.
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Figure 3. WiFi area distribution.

Magnetic/accelerometer landmark: In order to search for signatures in the magnetic
sensor/accelerometer, the paper performs K-means clustering on their measurements. The members
of every cluster are mapped to the corresponding physical location. The member locations in most
clusters are widely dispersed in space. Fortunately, the members of some clusters are spatially tightly
coupled and can be used as landmarks. Different landmarks will be combined to improve positioning
accuracy and the specific method will be explained in the next section.

3.2.2. Location Estimate

Suppose the system combines the different sensor data and uses k-means clustering, and discovers
three sensor signatures that can be used as landmarks, as shown in Figure 4a.

Landmark

(Magnetic) Landmark

(Elevator)

Wifi Area

Landmark

(Wifi)

User1

User2

(a)

Actual Landmark
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Figure 4. (a) landmarks are encountered while walking; (b) the estimation of landmark location.

Considering that dead reckoning has random error, the paper calculates position of the landmark
by combining multiple dead reckoning estimates of a landmark. Intuitively, estimation errors are
random and independent due to noises on the sensor and human step size. By combining these
estimations with errors, it is expected that the mean will converge to a more accurate location. Figure 4b
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illustrates the feasibility of this method by simple calculation of centroid, where the circle represents
the center of dead reckoning estimate—each one has a large error but multiple estimates with errors
yield a better estimate. In order to avoid positioning errors due to approximation landmark patterns,
landmarks should be in small areas and they will be identified combining with the WiFi signal.
The specific method is described in the next section.

3.2.3. The Effect of Regular Error Compensation

This section is added to verify the effect of landmarks in actual positioning, and the landmarks
that are here are not the ones used in the system, but some simple alternatives. The way to get them is
also very simple. The user walks naturally in the building with a smartphone from the entrance of the
floor, and the system records readings in the inertial sensors and extracts the tuple <time, displacement,
direction>. The doors and windows are marked with different numbers, and the user enters them
into the system when passing through these places. These numbers are the alternatives of actual
landmarks. Since the mapping is known, the actual position of the user can be known, and the effect
of the landmark for the estimation error is simulated in this way. The experiment collected 10 traces
starting from the entrance.

As shown in Figure 5, when pure dead-reckoning without landmark is used (black curve), the
error is accumulated rapidly. The error can be corrected periodically by using the landmarks (blue
curve). Although the performance is improved, the average positioning error is still about 11 m. Thus,
the experiment processes the gyroscope readings to calculate the angular change during walking. Note
that gyroscope readings are relative and need to be combined with the compass to infer the absolute
orientation. Once the gyroscope and compass are combined (red curve), the error is significantly
reduced. Adding landmark calibration on the basis (pink curve), the average error is further reduced.
Figure 5 shows the effect of the landmarks, and it is necessary to further design the landmark system.
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Figure 5. Comparison of positioning errors.

4. Landmark Design

This section details the landmarks of the UIP system. Landmarks refer to signals or combinations
of signals in an indoor environment that can be captured by sensors and whose sensor patterns are
unique in the environment so that the system can determine the location of the sensor based on
landmarks. According to whether the locations can be known in advance, the landmarks are divided
into global landmarks and local landmarks.
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4.1. Local Landmark

Local landmarks (LLMs) are similar to designs in most unsupervised positioning systems.
We obtain the floor graph at first and the system can learn the structure of the building and the
coordinates of every point in the building. It is necessary for the radio map. In the offline phase, the
user walks naturally along the corridor in the building. Since there are various signals in the indoor
environment (here mainly WiFi and magnetic signals), the sensors of the mobile phone capture these
signals during walking. The application on the phone can grab the sensor data and transfer it to the
server for processing. Defining the signals with high levels of recognition on sensor pattern. The sensor
patterns of LLMs cannot be obtained in prior and they are local features of the indoor environment,
e.g., WiFi distribution in a certain area, and the phone cannot hear the same WiFi set when it leaves
the area.

Due to the complexity and diversity of indoor signals, it is important to select an effective signal
from a number of signals as a local landmark. In the paper, we choose WiFi and magnetic signal as
landmarks because they are ubiquitous in indoor environments and the sensors of the mobile phone
can easily obtain these signals. The tasks of finding local landmarks need to (1) distinguish different
patterns from the sensed signals, and (2) test if the pattern is limited to a small area spatially. Figure 6
shows the operational flow, and the sensor data are collected by crowd sensing. The process can be
shown in matrix form: the element <m,n> is sensor readings of the phone m at time n. The features of
magnetic/inertial sensors include average, maximum, minimum, variance and average crossover, and
they are media access control (MAC) ID and received signal strength indicator (RSSI) for WiFi.

Time

P
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n
es

Sensor

readings
Cluster on 

Sensor feature
Locations of 

cluster members

LLM

Figure 6. The process of data collection and classification.

The collected features are normalized, and then the clustering algorithm is performed for every
sensing dimension and the combination of different signals (e.g., an accelerometer and a compass)
to find the clusters having low similarity to other clusters. Given a cluster, calculate the correlation
between it and other clusters. If every value is not larger than the threshold, the cluster will be a
candidate. Then, test the area of the cluster. Test if all members of the cluster are in the same WiFi
coverage area at first. If they do, calculate the location of each cluster member. If all members are in a
small area (about 4 m2, the same below), the cluster is considered as a landmark.

(1) WiFi landmark: The MAC ID and RSSI are used as features. K-means clustering is applied to
identify small areas with low similarity to all locations outside the regions. Assuming that a phone can
receive WiFi AP sets A1 and A2 at locations l1 and l2, respectively, and the similarity S between l1 and
l2 is

S =
1
|A| ∑

∀a∈A

min( f1(a), f2(a))
max( f1(a), f2(a))

, (1)
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where A = A1 ∪ A2, fi(a) is the RSSI of AP received by the phone at li, a ∈ A. The basic principle
of the above equation is that, when the AP signal is equally strong at two locations, the similarity of
the two locations is proportionally increased, and vice versa. S ∈ [0, 1]. The paper chooses 0.4 as the
threshold. Figure 7 shows the results of the test in a building in the university, and 0.4 is the point that
balances the quality and quantity of WiFi landmarks.
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Figure 7. The landmark number over the threshold.

(2) Magnetic/inertial landmarks: There are some turns in the indoor environment.
Since gyroscopes provide reliable angular displacement, they have the opportunity to be used as
landmarks. The feature called the bending factor is designed in the paper, which captures the concept
of path curvature. Similar turns in the same WiFi area will be in the same cluster, and the algorithm will
also check whether the cluster is limited to a small area when this coefficient and WiFi are integrated as
a feature. Magnetic landmarks are defined by the similar process, and the magnetic field somewhere
needs to be significantly different from other places and within a small area. Then, it can be considered
as a landmark.

4.2. Global Landmark

Global landmarks (GLMs) is a novel concept, and the idea comes from thinking about the user’s
own movement state: since the data from the surrounding environment can be used to calculate the
coordinates of the user, the user’s own motion characteristics may also reflect the characteristics of the
environment, and this data can be used as a new landmark. We naturally divide the user’s motion
state into elevators, stairs, escalators, walking and static state, and these motion data can be obtained
by inertial sensors. Their signal characteristics are usually unaffected by the environment, such as
the user’s movement in the elevator in any building is almost the same. On the other hand, these
movements often correspond to certain objects, such as elevators, and we can immediately know
where they are through floor plans. These two features make them well suited for indoor positioning.

The collection process of GLMs data is the same as LLMs, and it is necessary to identify different
kinds of GLMs by sensor patterns. Every one has its own pattern on magnetic sensor or inertial sensor.
The following content will analyze the patterns of different GLMs.

Elevator: The typical process includes normal walking time, waiting for a period of time,
walking into the elevator, overweight/weightlessness, then a stationary time period, the other
overweight/weightlessness and finally leaving. As shown in Figure 8, the accelerometer exhibits
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distinct features. To identify elevator motion patterns, a finite state machine (FSM) is used, which
relies on observed state transitions, and different thresholds are set for transition.
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Figure 8. Process of accelerometer signal change.

Escalator: After the elevator is identified, it is effortless to distinguish the escalator and the
static from the walking and the stairs by the variance of the acceleration. The next step is to further
distinguish the escalator from the static state, and the magnetic field’s variance can be used to identify
them since the escalator is driven by the motor and the motor affects the surrounding magnetic field.
As shown in Figure 9, the waveform of the static state is more stable.
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Figure 9. Magnetic difference between the static and escalator.

Stairs: Finally, the stairs and walking need to be distinguished. When using stairs, gravity will
have an obvious effect on the speed increase or decrease of the user. Compared to walking, there
is higher correlation between the acceleration in the orientations of gravity and motion when users
use stairs.
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Landmark database is built in the offline phase, and each one has its coordinates in the radio map.
The dataset of GLMs is easy to build because their location is known in advance. If we want to add a
GLM (e.g., elevator) to the map, we only need to collect the required signal near each elevator and
then mark it in the radio map according to the location of the elevator in the building. In contrast,
the collection of landmark information requires a man to continuously walk in the experimental
environment, sample various types of signals (such as user’s acceleration, environmental WiFi signal)
at a fixed frequency, and upload them to the server to choose suitable ones as landmarks according to
the above requirements.

5. Simultaneous Localization and Mapping

In an unknown environment, the user collects information from the surrounding environment
(landmarks) while walking, determines the position of the surrounding by the landmark data, and
corrects the coordinates of the landmark by its own position. This mode is consistent with SLAM,
so the previous dead reckon and landmark system are integrated into the unified SLAM framework.
This section will introduce corresponding background and the SLAM algorithm in the paper.

5.1. Background

5.1.1. EKF-SLAM

SLAM is a concept for mobile robots [25] and the idea is used for human positioning in the paper.
The system estimates the map (Θ) as well as the user’s pose (position (xt, yt) and orientation (ot)) at
time t on a probabilistic framework:

f = p(st, Θ|ut, zt, nt), (2)

where ut = u1, . . . , ut is the control variable update history, ut is the control variable (displacement
and orientation change) obtained by the sensors at time t− 1. zt = z1, . . . , zt is the user’s observation
history of the environment. nt = n1, . . . , nt are data association variables, and nt is the landmark’s
identity observed at time t.

Extended Kalman filter (EKF) is a common method [26,27] which uses a high dimensional
Gaussian density distribution. It decomposes P(st, θ|ut, zt, nt) into two independent models as
Equations (3) and (4), where θnt is the location of the landmark nt,

p(st|ut, st−1) = h(ut, st−1) + δt, (3)

p(zt|st, Θ, nt) = g(st, θnt) + εt, (4)

where h and g are nonlinear functions, δt and εt are Gaussian noise variables whose covariances are Rt

and Pt, respectively.
The method has two limitations, the computational complexity, which is the quadratic of the

landmark number, and the data association problem, i.e., how to recognize the detected landmarks
when signatures of two or more landmarks are similar.

5.1.2. FastSLAM

FastSLAM combines particle filters (PF) [28,29] and EKF, and it takes advantage of the structural
properties of the SLAM problem: given the motion path, the landmark estimations are independent
conditionally, i.e., the correlation of the uncertainty of the landmark estimation depends only on the
uncertainty of the path. When the path is known, the estimation errors of different landmarks are
independent of each other.
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Given the number N of landmarks, the path st = (s1, . . . , st) is estimated as Equation (5):

ap(st, Θ|zt, ut, nt) = p(st|zt, ut, nt)
N

∏
n=1

p(θn|st, zt, nt). (5)

Since the path of the user is unknown, FastSLAM estimates the path st through the particle filter,
and it uses particles to represent possible paths where each probability density function p(θn|st, zt, nt)

is estimated using EKF. Based on the particles, each map errors are independent conditionally.
The posterior (S[m]

t ) of the mth particle contains the path st,[m] and N landmark estimates, which

is represented by the observed landmark type f̂n,t, mean µ
[m]
n,t and covariance Σ[m]

n,t , as shown in
Equation (6),

S[m]
t = st,[m], f̂1,t, µ

[m]
1,t , Σ[m]

1,t︸ ︷︷ ︸
Landmarkθ1

, ..., f̂N,t, µ
[m]
N,t, Σ[m]

N,t︸ ︷︷ ︸
LandmarkθN

. (6)

Compared to EKF-SLAM, the computational complexity of FastSLAM is logarithmically related
to the number of landmarks. In addition, data association decisions can be performed on each particle,
thus maintaining multiple posteriors of data associations, which is more robust [30]. FastSLAM can
also handle nonlinear models, and it has been shown to converge under certain assumptions [31].
The UIP system will use the SLAM algorithm based on FastSLAM.

5.2. SLAM Algorithm

Like other SLAM algorithms, the algorithm involves sampling, map update, resampling and
assuming there is only one landmark observed at a time to keep the algorithm generic.

5.2.1. Pose Estimation

Given the control variable ût from the dead reckoning, the measure zt at time t and the pose s[m]
t−1,

the pose of the particle [m] at time t is sampled as shown in Equation (7). All data can be obtained
from the previous section, dead reckoning provides the user’s motion status, while sensor data also
provides landmark observations.

s[m]
t ∼ P(st|st−1,[m], ut, zt, nt). (7)

Equation (7) can be expressed as a product of the pose distribution and the probability of
measure zt,

p(st|st−1,[m], ut, zt, nt) = p(st|s[m]
t−1, ut)︸ ︷︷ ︸

st∼N(h(s[m]
t−1,ut),Pt)

η[m]
∫

p(zt|θnt , st, nt)︸ ︷︷ ︸
zt∼N(g(θnt ,st),Rt)

p(θnt |st−1,[m], zt−1, nt−1)︸ ︷︷ ︸
θnt∼N(µ

[m]
nt ,t−1,Σ[m]

nt ,t−1)

, (8)

where Pt is the covariance matrix of the control data at time t and Rt is the measure covariance at time
t. Given the last pose s[m]

t−1 and the control data ut = {l̂t, φ̂t}, including estimated displacement l̂t and
orientation change φ̂t, the pose at time t can be predicted as

ŝ[m]
t ∼ P(st|s[m]

t−1, ut). (9)

Assuming that the errors satisfy Gaussian distribution, l[m]
t and φ

[m]
t satisfy following

probability distributions:
l[m]
t ∼ N(l̂t, σl), (10)

φ
[m]
t ∼ N(φ̂t, σφ), (11)
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where σl and σφ are the variances of the estimation errors. Equation (9) can be rewritten as follows:

ŝ[m],φ
t = s[m],φ

t−1 + φ
[m]
t , (12)

ŝ[m],x
t = s[m],x

t−1 + l[m]
t cos(ŝ[m],φ

t ), (13)

ŝ[m],y
t = s[m],y

t−1 + l[m]
t sin(ŝ[m],φ

t ). (14)

Equations (10)–(14) are concrete implementations of the nonlinear function h in Equation (3).
The probability of measure zt involves the integration over all possible landmark locations θnt ,

and it is impossible generally. To solve this problem, the algorithm approximates g in Equation (3) to a
linear function, resulting in the function in Equation (15).

g(θnt , st) ≈ ẑ[m]
t + Gθ(θnt − µ

[m]
nt ,t−1) + Gs(st − ŝ[m]

t ), (15)

where µ
[m]
nt ,t−1 is the mean of the estimated position of landmark nt at time t, and θ

[m]
nt = µ

[m]
nt ,t−1 is the

estimated landmark location. Gθ and Gs are the Jacobian of g about θ and s. Therefore, Equation (7)
obeys the Gaussian distribution with the following parameters:

Σ[m]
st = (GT

s (Q
[m]
t )−1Gs + P−1

t )−1, (16)

µ
[m]
st = ŝ[m]

t + Σ[m]
st GT

s Q[m]−1
t (zt − ẑ[m]

t ), (17)

where Q[m]
t = GθΣ[m]

nt ,t−1GT
θ + Rt is the covariance matrix of landmark observation, and zt is the actual

observation of landmark location.

ẑ[m]
t = g(µ[m]

nt ,t−1, ŝ[m]
t ) =

∥∥∥µ
[m]
nt ,t−1 − ŝ[m]

t

∥∥∥ . (18)

It is known from Equation (18) that the algorithm measures the distance between the user and
the landmark.

5.2.2. Map Update

The map update is updating the location of the current detected landmark. The algorithm updates
the estimate of the observed landmark according to Equation (19),

p(θnt |st,[m], nt, zt) = η[m] p(zt|θnt , s[m]
t , nt)︸ ︷︷ ︸

zt∼N(g(θnt ,s[m]
t ),Rt)

p(θnt |st−1,[m], zt−1, nt−1)︸ ︷︷ ︸
θnt∼N(µ

[m]
nt ,t−1,Σ[m]

nt ,t−1)

. (19)

Recall that g is linearized to retain Gaussian distribution of the posterior. This leads to
the following update Equations (20)–(22). The derivation of them is equal to that of the EKF
measure update:

K[m]
t = Σ[m]

nt ,t−1GT
θ Q[m]−1

t , (20)

µ
[m]
nt ,t = µ

[m]
nt ,t−1 + K[m]

t (zt − ẑ[m]
t ), (21)

Σ[m]
nt ,t = (I − K[m]

t Gθ)Σ
[m]
nt ,t−1. (22)

The algorithm inherits the properties of FastSLAM and there are many possible landmark
hypotheses, each of which corresponds to an individual particle which has its own judgment about
the landmark, and this kind of multi-estimation attribute offers SLAM robustness to errors.
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5.2.3. Resampling

As the particles generated may not match the desired posterior, it is necessary to resample to
remove the particles with great errors and put more in the right area. The reason that some particles
generated do not yet match the desired posterior is η in Equation (19), which may be different
for different particle particle. The normalizer is the inverse of the probability of the measurement:
η[m] = p(zt|st−1,[m], ut, zt−1, nt)−1. To account for this mismatch, the algorithm resamples in proportion
to the following importance factor:

w[m]
t ∝ p(zt|st−1,[m], ut, zt−1, nt) =

∫∫
p(zt|θnt , st, nt)︸ ︷︷ ︸
zt∼N(g(θnt ,st),Rt)

p(θnt |st−1,[m], ut−1, zt−1, nt−1)︸ ︷︷ ︸
θ∼N(µ

[m]
nt ,t−1,Σ[m]

nt ,t−1)

dθnt p(st|s[m]
t−1, ut)︸ ︷︷ ︸

st∼N(ŝ[m]
t−1,Pt)

dst. (23)

The distribution in Equation (23) can be approximated as a Gaussian distribution by linearizing g
with the mean ẑt and covariance GsPtGT

s + GθΣ[m]
nt ,t−1GT

θ + Rt.
In addition, the algorithm selects the data association nt satisfying Equation (24):

n̂[m]
t = arg max

nt

p(zt|nt, nt−1,[m], st,[m], zt−1, ut). (24)

The distribution in Equation (24) is calculated as follows:

p(zt|nt, nt−1,[m], st,[m], zt−1, ut) =
∫

p(zt|θnt , nt, s[m]
t )︸ ︷︷ ︸

zt∼N(g(θnt ,s[m]
t ),Rt)

p(θnt |nt−1,[m], st−1,[m], zt−1)︸ ︷︷ ︸
θnt∼N(µ

[m]
nt ,t−1,Σ[m]

nt ,t−1)

. (25)

It can be seen that linearization of g generate a Gaussian distribution over zt with mean
g(µ[m]

nt ,t−1, s[m]
t ) and covariance Q[m]

t , both of which are functions of the data assocaition variable nt.

6. Results and Discussion

6.1. Experiment Introduction

This section evaluates the performance of UIP. Installing a UIP application on the phone and
granting the required permissions so that it can grab sensor data from the phone, then send them to
the server over the network. The system is implemented on an Android phone. When users walk,
the sensors on the phone will get his pose information. The data is sampled (gyroscope at highest
permissible rate; other sensors at 24 Hz) and then they are sent to the server for processing. The server
side code is written using C] and MATLAB (MATLAB2017a, MathWorks, Natick, MA, USA), and all
algorithms run on the server. When a new landmark is detected, the server will update the landmark
list. Physics laboratory building is selected as the experimental platform, and all landmarks are
decomposed into: eight turns, nine magnetic, 15 WiFi landmarks and three global landmarks. In the
experiment, three users move around the building to collect data, and each user can use the landmarks
detected by the previous users.

Figure 10 shows the plan of the experimental area and some landmarks within it. Everyone walks
along the corridor from the entrance to the floor.
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Figure 10. Experimental area plan in 54 m × 42.6 m.

6.2. Landmark Detection

6.2.1. Global Landmark

Figure 11 shows the false positive and false negative rates of different GLMs, and it can be seen
that some landmarks are easier to detect than other landmarks as the unique patterns. Most values are
zero in Figure 11, and the overall false positive rate and false negative rate are about 0.002 and 0.011,
respectively, which means that the detection of GLMs is accurate.

E l e v a t o r S t a t i o n a r y E s c a l a t o r W a l k i n g S t a i r s0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

��������� ���

 

 
 

 F a l s e  P o s i t i v e  
 F a l s e  N e g a t i v e  

���

Figure 11. Global landmark recognition.

6.2.2. Local Landmark

Figure 12a,b show the location accuracy of the calculated landmark and the number of the
observed landmarks change over time respectively. As more users explore the environment, the
number of landmarks will increase over time, and the accuracy of the landmarks will also increase as
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different paths lead to different independent estimates. In about 2 h, the average positional accuracy
can converge to less than 1 m.

Factually, data in the experiment is limited in the diversity of paths for the limitation of motion
areas, and positioning accuracy may increase due to increased path diversity in practical applications.
It can be seen from Figure 12c that the false positive rate detected by the three types of landmarks in
the experiment is less than 1%, indicating that the matching accuracies are quite high. Similar to GLM,
different LLMs have different detection accuracy due to different patterns, but each landmark has an
accuracy of more than 60%.
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Figure 12. (a) landmark positioning accuracy over time. (b) the number of landmarks discovered over
time; (c) recognition rate of different landmarks.

6.2.3. Landmark Quantity

Although there are a large number of landmarks in the experimental platform, it is difficult to
learn how many landmarks exist in other environments, and whether there will be a large impact on
positioning if there are fewer landmarks in some buildings. Figure 13 shows the positioning errors of
different numbers of landmarks, and even though there are only 10 landmarks, the average positioning
error is less than 2 m. In addition, landmarks based on more dimensions (e.g., acoustic signal) can be
selected if needed.
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Figure 13. Comparison of systems with different landmark numbers.

6.3. UIP Positioning Assessment

6.3.1. Factors Affecting Performance

This section evaluates the impact of different factors on the positioning performance, and the
main indicator is the cumulative distribution function (CDF).

(1) Particle number: The comparison result is shown in Figure 14. It can be seen that the
positioning accuracy of 50 particles is greatly improved compared with that of 25 particles; however,
if the number of particles continues to increase, the positioning accuracy will not be significantly
improved, and the amount of calculation will increase greatly. Therefore, the performance is saturated
with about 50 particles where the median accuracy is about 0.53 m, and the number is used in
subsequent experiments.
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Figure 14. Comparison of systems with different particle numbers.

(2) Global Landmark: Figure 15 compares the CDF of positioning error with/without GLMs.
In Figure 15, the average error still can be less than 1.5 m without GLMs, and in the case of using
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global landmarks, the performance is greatly improved, CDF within one meter increases by about two
times, which is 0.8; the value is over 0.9 within 2 m, which increased by 0.1, indicating that the GLM is
a successful idea.
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Figure 15. Comparison of systems with/without global landmarks.

(3) Error over time: The Euclidean distance error of the system is calculated to evaluate the
positioning accuracy, and Figure 16 shows the variation of the error over time, which is undulating.
Due to noise in the sensor readings, the error increases as the user walks, and it will decline when a
landmark is observed. As more landmarks are observed, map accuracy increases and user positioning
errors decrease, hence the overall trend of the curve is decreasing. The average positioning error does
not exceed one meter, which is enough to satisfy most indoor positioning tasks.
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Figure 16. Positioning error over time.

(4) Online and offline: Figure 17 shows the error distributions in two patterns. In offline patterns,
the system learns its error when a user encounters a landmark, so it can track and partially correct
past traces, which is not available in online mode. The figure shows that offline system can observably
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improve the smearing of distribution in online positioning, and the median distance error is slightly
enhanced too. Moreover, although the positioning accuracy of the online mode is not as good as offline
mode, its error is basically controlled within 1 m.
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Figure 17. Comparison of online/offline systems.

6.3.2. SLAM Framework

In order to evaluate the SLAM framework in Chapter 4, the systems with/without the SLAM
framework are compared in convergence time and positioning accuracy. Uncertainty of landmarks or
user locations is considered in the SLAM system, which is not available in the non-SLAM system.

(1) Convergence time: It is the time from the beginning to the point where the positioning accuracy
tends to be stable. The length of convergence time affects the positioning efficiency of the system.
Figure 18 shows that the accuracy of the SLAM system converges quickly within 1 h and eventually
achieves an average accuracy of approximately 0.83 m, and it is better than the non-SLAM system,
which converges to an average accuracy of about 1 meter after 2 h.
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Figure 18. Positioning accuracy over time.
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(2) Error distribution: Figure 19 compares the error distribution of the systems with/without
SLAM. It can be seen that, after using the SLAM framework, the positioning accuracy is improved
significantly, and the median positioning error goes down by about one meter. In the SLAM system,
CDF of the positioning error within one meter is about 0.8, while it is about 0.3 in the non-SLAM
system. The error of system with SLAM is basically controlled within two m, it can significantly
improve the accuracy. As can been seen from Figures 18 and 19, the SLAM system can obtain a high
positioning accuracy in a short period of time.
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Figure 19. Positioning error distributions.

6.3.3. Other Systems

The UIP system is compared with two classical systems: the WiFi fingerprint identification
system [32] and the magnetic fingerprint recognition system [33]. Figure 20 shows that the UIP has
a smaller median positioning error which is about 0.5 m, while it is about 0.7 m in the WiFi system
and it exceeds one meter in the magnetic system. In addition, CDF of the localization error in UIP
exceeds 0.8 within one meter and 0.9 within 1.5 m, which has an obvious advantage over other systems.
However, they have better worst-case errors due to the initial manual calibration, and the distribution
has a shorter tail.
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Figure 20. Comparison of unsupervised indoor positioning(UIP) with two other systems.
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7. Conclusions

In order to avoid the complicated calibration of indoor positioning, an unsupervised indoor
positioning (UIP) system is proposed in the paper, which uses landmarks to compensate for the
error of dead reckoning. The dead reckoning and landmark observation data are input into the
SLAM algorithm to realize online positioning of users.This paper validates the feasibility of the
idea of landmarks and provides detailed descriptions of the landmarks and the SLAM framework.
The experiments are carried out in many aspects, showing that UIP can find different landmarks
accurately, and the probability of error identification is less than 1%. In addition, the positioning error
can converge quickly, eventually achieving a median positioning error of 0.53 m, which is better in
the offline mode. Compared with the two classical algorithms, UIP also has obvious advantages in
positioning accuracy. Future works will be expanding the system, including coordinated positioning
of multiple people, using other sensors such as acoustic sensors and optical sensors.
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