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Abstract: In this paper, a new hybrid whale optimization algorithm (WOA) called WOA-DE is
proposed to better balance the exploitation and exploration phases of optimization. Differential
evolution (DE) is adopted as a local search strategy with the purpose of enhancing exploitation
capability. The WOA-DE algorithm is then utilized to solve the problem of multilevel color image
segmentation that can be considered as a challenging optimization task. Kapur’s entropy is used to
obtain an efficient image segmentation method. In order to evaluate the performance of proposed
algorithm, different images are selected for experiments, including natural images, satellite images
and magnetic resonance (MR) images. The experimental results are compared with state-of-the-art
meta-heuristic algorithms as well as conventional approaches. Several performance measures have
been used such as average fitness values, standard deviation (STD), peak signal to noise ratio (PSNR),
structural similarity index (SSIM), feature similarity index (FSIM), Wilcoxon’s rank sum test, and
Friedman test. The experimental results indicate that the WOA-DE algorithm is superior to the other
meta-heuristic algorithms. In addition, to show the effectiveness of the proposed technique, the Otsu
method is used for comparison.

Keywords: Kapur’s entropy; color image segmentation; whale optimization algorithm; differential
evolution; hybrid algorithm; Otsu method

1. Introduction

Image segmentation is a fundamental and key technique in image processing, computer vision,
and pattern recognition, the purpose of which is to partition a given image into specific regions
with unique characteristics and then extract the objects of interest [1–4]. Hence, the segmentation
technique to be adopted determines the performance of higher level systems that introduced above [5].
At present, the main techniques of image segmentation include edge-based technique, region-based
technique, neural network-based technique, wavelet transform-based technique, and threshold-based
technique [6–10]. Among the available techniques, threshold-based technique (thresholding) is the
most popular one that many scholars have done much work in this domain.

More specifically, the thresholding technique determines the segmentation thresholds by
optimizing some criteria, such as maximum between-class variance and various entropy criteria [11].
In 1985, Kapur et al. maximized the histogram entropy of segmented classes to obtain the optimal
threshold values, which is known as Kapur’s entropy technique [12]. This thresholding technique
is adopted extensively and show remarkable performance in many image segmentation problems.
However, when dealing with complex image segmentation problem, the high threshold operation will
increase the computational complexity of the algorithm significantly. Thus, scholars introduce various
meta-heuristic algorithms into this domain with the view of reducing computational complexity
and improving segmentation accuracy. Shen et al. [13] proposed a modified flower pollination
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algorithm (MFPA)-based technique for segmenting both real-life images and remote sensing images.
The experimental results show that the MFPA algorithm gives higher values in terms of PSNR
and SSIM, which is suitable for high dimensional complex image segmentation. In 2016, Kapur’s
entropy thresholding technique was adopted by Sambandam and Jayaraman [14] for multilevel
medical image thresholding. The proposed technique was then optimized by dragonfly optimization
(DFO) with the purpose of reducing computational complexity. It can be seen from the results that
the proposed algorithm can efficiently explore the search space and obtain the optimal thresholds.
In 2017, Khairuzzaman and Chaudhury [5] proposed a grey wolf optimizer (GWO)-based technique
for multilevel image thresholding. Kapur’s entropy and Otsu methods are used to determine the
segmentation thresholds. Experimental results show that the GWO-based technique using both
Kapur’s entropy and Otsu thresholding techniques performs better than particle swarm optimization
(PSO) and bacterial foraging optimization (BFO)-based methods. Besides, there are still many other
meta-heuristic algorithms have been successfully applied to multilevel image thresholding, such
as artificial bee colony (ABC) [15], firefly algorithm (FA) [16], cuckoo search (CS) [17], wind driven
optimization (WDO) [18], krill herd optimization (KHO) [19], moth-flame optimization (MFO) [20], etc.
It is well known that the overwhelming majority of images in practical engineering problems are color
images, which are often complex and contain a lot of information, whereas, most of the techniques
above are used to segment the grayscale images rather than color images. This phenomenon motivated
us to introduce an efficient technique to satisfy the practical requirements.

The whale optimization algorithm (WOA) is a novel meta-heuristic algorithm that simulates
the behavior of humpback whales in nature [21]. There are mainly three foraging behaviors, namely
encircling prey, bubble-net attacking, and search for prey. WOA is a simple and powerful algorithm
that has attracted wide attention from scholars recently [22]. In 2018, Xiong et al. [23] used a WOA
algorithm to extract the parameters of solar photovoltaic (PV) models. Compared to the conventional
as well as recently-developed methods, the proposed algorithm can determine the parameters more
accurately. Sun et al. [24] proposed a modified whale optimization algorithm (MWOA) for solving
large-scale global optimization (LSGO) problems. Twenty-five benchmark test functions with various
dimensions were utilized to verify the performance. The experimental results indicated that the
proposed algorithm is superior to other state-of-the-art optimization algorithms in terms of accuracy
and stability. In 2017, Mafarja and Mirjalili [25] introduced two hybridization models of WOA and
simulated annealing (SA) and then applied the proposed methods to feature selection domain. The SA
was adopted to enhance the exploitation capability. It can be observed that the proposed hybrid
algorithm outperformed other wrapper-based algorithms in classification accuracy, which is suitable
for the current optimization task [25]. To sum up, these promising results motivate us to introduce the
WOA algorithm into color image segmentation domain.

It is worth mentioning that color image multilevel thresholding operations need to determine
the thresholds of every color component (red, green, and blue), while a meta-heuristic algorithm
with strong optimizing capacity can improve the accuracy of image segmentation, as it can obtain
appropriate thresholds [26]. Therefore, an improved whale optimization algorithm is proposed which
is known as WOA-DE. In the proposed algorithm, differential evolution (DE) is served as local search
technique to enhance the exploitation ability. What’s more, introducing DE operator improves the
situation that the traditional WOA is easy to fall into local optimum in the later iteration. In order to
obtain an efficient and universal segmentation method, the performance of WOA-DE using Kapur’s
entropy is investigated. A series of experiments are conducted on both natural images and satellite
images. All experimental results are compared with state-of-the-art algorithms as well as conventional
methods. It can be observed from the results that the WOA-DE based methods outperform other
meta-heuristic based methods in terms of average fitness values, standard deviation (STD), peak signal
to noise ratio (PSNR), structural similarity index (SSIM), feature similarity index (FSIM), and the
Wilcoxon’s rank sum test as well as the Friedman test. The goal of this paper is as follows:

1. Obtain an efficient segmentation technique for multilevel color image thresholding task.
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2. Improve the optimizing capability of WOA to determine the optimal thresholds.
3. Investigate the adaptability of WOA-DE based techniques in the field of natural, satellite, and

MR image segmentation.
4. Evaluate the performance of proposed technique from various aspects.

The structure of this paper is presented as follows: Section 2 gives the definition of Kapur’s entropy
thresholding technique. Section 3 introduces a brief review of the WOA algorithm. The description
of the DE algorithm is presented in Section 4. In Section 5, the proposed WOA-DE-based multilevel
color image thresholding technique is described in details. Experiments and discussion can be found
in Section 6. Finally, Section 7 presents the conclusions and future work directions.

2. Multilevel Thresholding

The image threshold methods can be summarized into two categories: bi-level thresholding
methods and multilevel thresholding methods. Bi-level thresholding methods involve one threshold
value which partitions the image into two classes: foreground and background, however if the image is
quite complex and contains various objects, the bi-level thresholding method is not very effective [27–30].
Therefore, multilevel thresholding methods are used extensively for image segmentation [31–33]. In this
paper, a famous multilevel thresholding technique is used to determine the threshold values, namely,
Kapur’s entropy. A brief formulation of this technique is given in the following subsections. In addition,
the RGB image has three basic color components of red, green, and blue, so these thresholding techniques
are executed three times to determine the optimal threshold values of each color component [16].

Kapur’s Entropy

Kapur’s method is also an unsupervised automatic thresholding technique, which selects the
optimum thresholds based on the entropy of segmented classes [12]. Assuming that [th1, th2, . . . , thn]

represents the thresholds combination which divided the image into various classes. Then the object
function of Kapur’s method can be defined as:

H(th1, th2, . . . , thn) = H0 + H1 + . . . + Hn (1)

where:
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∑
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pj (2)
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H0, H1, . . . , Hn denote the entropies of distinct classes, ω0, ω1, . . . , ωn are the probability of each class.
In order to obtain the optimal threshold values, the fitness function in Equation (5) is maximized:

fKapur(th1, th2, . . . , thn) = argmax{H(th1, th2, . . . , thn)} (5)

It is worth noting that the computational complexity of the thresholding technique above will
result in exponential growth as the number of thresholds increase. Under such circumstances, Kapur’s
entropy method is not very effective for multilevel thresholding. Therefore, the WOA-DE-based
method using Kapur’s entropy is proposed to improve the accuracy and computation speed of
thresholding techniques. The ultimate goal of proposed method is to determine the optimal threshold
values by maximizing the objective function given in Equation (1).
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3. Whale Optimization Algorithm

The whale optimization algorithm, which was proposed by Mirjalili and Lewis in 2016, is inspired
by the foraging behavior of humpback whales in nature [21]. Humpback whales tend to create spiral
bubbles, and then swim to the prey along the trajectory of bubbles (see Figure 1) [25]. The encircling
prey and bubble-net attacking behaviors represent the exploitation phase of optimization. The other
phase of optimization namely exploration is represented by the search for prey behavior. It is worth
noting that the position vector of search agent is defined in a d-dimensional space, where d denotes the
number of decision variables of an optimization problem. Thus, the population X of n search agents
can be represented by a (n × d)-dimensional matrix, which is shown in Equation (6):

X =


x1,1 x1,2 . . . x1,d
x2,1 x2,2 . . . x2,d

...
... . . .

...
xn,1 xn,2 . . . xn,d

 (6)
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Figure 1. Bubble-net feeding behavior of humpback whale (a) and the position update model (b). 
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Figure 1. Bubble-net feeding behavior of humpback whale (a) and the position update model (b).

3.1. Exploitation Phase (Encircling Prey and Bubble-Net Attacking Method)

In the process of hunting, the humpback whales first encircle the prey, which can be represented
as follows:

D = |C · X∗(t)− X(t)| (7)

X(t + 1) = X∗(t)− A · D (8)

where X∗ represents the best solution obtained so far, X denotes the position vector, t is the current
iteration, || is the absolute value, · is an element-by-element multiplication, A and C are two essential
parameters that can be evaluated by:

A = 2a · r− a (9)

C = 2 · r (10)

where r is a random number in the range of [0,1] and a is a constant that will decrease linearly from 2
to 0 within the whole iterative process (both exploration and exploitation). It can be observed from
Equation (8) that search agents can update their position X(t) according the best solution X∗. The
parameters A and C determine the distance between the updated position X(t + 1) and the optimal
position X∗.
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The bubble-net attacking behavior can be mathematically represented by the following equation:

D′ = |X∗(t)− X(t)| (11)

X(t + 1) = D′ · ebr · cos(2πr) + X∗(t) (12)

where D′ shows the distance between the current search agent position and the optimal position, b is
a constant that determine the shape of a logarithmic spiral, and r is a random number in the range
of [−1,1]. In order to transform these two mechanisms (encircling prey and bubble-net attacking
method) of exploitation phase, assume that each mechanism will be executed with 50% probability.
Thus, the mathematical model of the entire exploitation phase can be expressed as:

X(t + 1) =

{
X∗(t)− A · D i f p < 0.5
D′ · ebr · cos(2πr) + X∗(t) i f p ≥ 0.5

(13)

where p is a random number in the range of [0,1].

3.2. Exploration Phase (Search for Prey)

In order to enhance the exploration capability of algorithm, a global search strategy is utilized.
The search agents update their position according to a random agent in the population rather than the
best solution obtained so far. It is worth mentioning that the absolute value of A determines the phase
of optimization to be selected, namely the exploration and exploitation phases. Thus, the search for
prey behavior can be mathematically represented as follows:

D = |C · Xrand(t)− X(t)| (14)

X(t + 1) = Xrand(t)− A · D (15)

where Xrand denotes a random individual in the current population.
Pseudo code of traditional whale optimization algorithm based multilevel thresholding has been

given in Algorithm 1.

Algorithm 1 Pseudo code of whale optimization algorithm based multilevel thresholding

Initialize the position of whales Xi.
Initialize the best search agent X∗.

WHILE t < Maximum number of iterations
FOR i = 1:n

Calculate the objective value of each search agent by using the Equation (1) for Kapur’s entropy.
Update the best search agent X∗.
Update a, A, C, r, and p
IF1 p < 0.5

IF2 |A| < 1
Update the position of search agent using Equations (7) and (8).

ELSE
Update the position of search agent using Equations (14) and (15).

END IF2
ELSE

Update the position of search agent using Equations (11) and (12).
END IF1
Correct the position of the current search agent if it is beyond the border.

END FOR
END WHILE

Return X∗, which represents the optimal threshold values of segmentation.
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4. Differential Evolution

Differential evolution (DE) algorithm is a simple and powerful algorithm for solving optimization
problems [34–36]. Basically, the DE algorithm contains two significant parameters, namely mutation
scaling factor denoted by SF and crossover probability denoted by CR [37]. For the standard DE
algorithm, the mutation, crossover, and selection operators can be summarized as follows [38]:

4.1. Mutation Operation

The mutation operation of DE algorithm is defined as follows:

mg+1
i = xg

r1 + SF×
(

xg
r2 − xg

r3

)
(16)

where mg+1
i represents the mutant individual in the (g + 1)-th generation. xg

r1, xg
r2, and xg

r3 are different
individuals from the population. In other words, r1, r2, and r3 cannot be equal. SF is a constant that
indicates the mutation scaling factor.

4.2. Crossover Operation

In the process of crossover, the trial individual cg+1
i is selected from the current individual xg

i

or the mutant individual mg+1
i on account of enhancing the diversity of population. The crossover

operation of DE algorithm is described as:

cg+1
i =

{
mg+1

i i f rand ≤ CR
xg

i i f rand > CR
(17)

where rand represents a random value which is in the range [0,1]. CR is a constant that shows the
crossover probability.

4.3. Selection Operation

After the process of selection, the individual of next generation xg+1
i is selected according to

the comparison of fitness value between the trail individual cg+1
i and the target individual xg

i . For a
problem to be minimized, the selection operation of DE algorithm can be summarized as follows:

xg+1
i =

{
cg+1

i i f f
(

cg+1
i

)
< f

(
xg

i

)
xg

i otherwise
(18)

where f denotes the fitness function value of a given problem.

5. The Proposed Method

In this section, a detailed introduction of the WOA-DE-based method is given, and the algorithm
will be used to obtain the optimal threshold values for image segmentation. A hybrid of the WOA and
DE algorithms is introduced to balance the two essential phases of optimization, namely exploration
and exploitation. The flowchart of WOA-DE for finding the optimal threshold values is shown in
Figure 2.

It is worth mentioning that a better balance between exploration and exploitation plays an
important role in improving the optimization ability of algorithm. Therefore, an efficient hybrid
strategy is introduced to balance and improve these two phases. On the one hand, the WOA algorithm
has strong ability to explore the solution space and is used as global search technique. On the
other hand, the DE algorithm is adopted as local search technique, which can increase the precision
of solutions.
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In addition, the purpose of introducing DE operator is not only to enhance the local search ability
of the algorithm, but also to overcome the drawback that WOA algorithms easily fall into local optima
in the late iterations. As described above, the random variable A will change in the range [−2,2] as a
decreases progressively. If the value larger than 1 or less than −1, Equation (15) will be adopted to
enhance the exploration capability of the algorithm. On the contrary, Equation (8) will be adopted
as local search strategy when the value in the range [−1,1]. In order to more intuitively reflect the
change of random variable A during the whole iterative process, a relevant schematic diagram is
presented in Figure 3. It can be observed from the figure that the value of random variable A is fixed
in the interval of [−1,1] after 250 iterations. This means that the global search strategy has no chance
to be adopted after half of the iterative process, even if the current best solution may not the global
optimum. Therefore, the traditional WOA algorithm will fall into the local optimum, resulting in an
unsatisfactory solution accuracy. Especially for complex multi-dimensional optimization problems,
such as multilevel color image segmentation, traditional WOA algorithms cannot handle them. On the
contrary, DE operators can scale the difference between any two search agents in the population, which
makes the particles jump out of the current search area. In Equation (16),

(
xg

r2 − xg
r3

)
can be considered

as the difference between two individuals, and SF is the scaling factor. The latter term in Equation
(16) “SF×

(
xg

r2 − xg
r3

)
” is crucial to the mutation operator. For the exploration stage, particles tend

to be very far apart, and there is a big difference between the individuals. Scaling this big difference
can enhance the diversity of population. For the exploitation stage, particles tend to be close together,
scaling a small difference makes the algorithm effectively optimize in a small range, improving the
accuracy of the solution and avoiding local optimum.

In this paper, the average fitness value of the population is computed in the iterative process
to evaluate the quality of each particle. The proposed hybrid model enables particles with better
quality to exploit the current promising area to ensure the convergence speed, while the particles with
poor quality can explore the unknown area to prevent local optimization. Although the global search
strategy of traditional WOA algorithm will not be adopted in the later iteration, the introduced DE
operator can effectively overcome this shortcoming, as discussed above. Exactly speaking, if fi > f ,
the DE algorithm will be used to update the solution xg

i using Equations (16)–(18). However, if fi ≤ f ,
then the current solution will be updated using Equations (8), (12), or (15). In addition, a series of
experiments are conducted in the following section to verify the advantages of WOA-DE algorithm
from various aspects.
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6. Experiments and Results

6.1. Experimental Setup

In this paper, Kapur’s entropy thresholding technique is utilized to determine the optimal
threshold values for image segmentation. The performance of our WOA-DE-based method is evaluated
on fourteen images. Among them, five images are natural images from the Berkeley segmentation
database [39], five images are satellite images from [40], and four images are brain magnetic resonance
images (MRI) from [41]. Besides, all the images and their corresponding histogram images are shown in
Figure 4. Both state-of-the-art and conventional methods, such as the traditional WOA [21], salp swarm
algorithm (SSA) [42], sine cosine algorithm (SCA) [43], ant lion optimizer (ALO) [44], harmony search
optimization (HSO) [45], bat algorithm (BA) [46], particle swarm optimization (PSO) [47,48], betaDE
(BDE) [49], and improved differential search algorithm (IDSA) [50] are used to validate the superiority
of proposed algorithm, whose parametric settings are presented in Table 1, except for the population
size N set to 30 and the number of iterations tmax set to 500 for fair comparison. The experiments
are carried out through the simulation in “Matlab2017” (The MathWorks Inc., Natick, MA, USA) and
implemented on a computer equipped with the Microsoft Windows 10 operating system and 8 GB
memory space.

Table 1. Parameters of the algorithms.

No. Algorithm Parameter Setting Year Reference

1 WOA-DE CR = 0.9(crossover rate), SF = 0.5(scaling factor) — —

2 WOA
OA a ∈ [0, 2] 2016 [21]

3 SSA c1 ∈ [0, 2] 2017 [42]
4 SCA r1 ∈ [0, 2] 2016 [43]
5 ALO ω ∈ [2, 6](constant) 2015 [44]
6 HSO HMCR = 0.9, PAR = 0.3(pitch adjusting rate) 2001 [45]
7 BA ri ∈ [0, 1](rate of pluse emission), Ai ∈ [1, 2](loudness value) 2015 [46]
8 PSO c1 = c2 = 2, w ∈ [0.4, 0.9], vmax = 25.5 1995 [47]
9 BDE a ∈ [0, 1](beta distribution parameter) 2018 [49]

10 IDSA — 2018 [50]
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6.2. Objective Function Measure

As discussed above, Kapur’s entropy is used to determine the segmentation thresholds. The
segmented images of “Image2” and “Image10” obtained by WOA-DE using Kapur’s entropy method
with different threshold levels are given in Figures 5 and 6, respectively. Due to the stochastic nature
of meta-heuristic algorithms, the experiments are conducted over 30 runs. Then the average objective
values of “Image1” and “Image6” are presented in Table 2. It can be seen from the table that the
WOA-DE based method gives the best values in general.
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The entropy of an image reflects its average information content [51]. Therefore, higher value
of Kapur’s entropy indicates more information in the image. It can be observed from Table 2 that
the objective function value of each algorithm increases with the number of threshold values. This
promising result shows that high-quality image with more information is obtained when the threshold
level is high (such as K = 10 and 12).
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Table 2. The average fitness values and STD values obtained by all algorithms.

Measures Image K WOA-DE WOA SSA SCA ALO HSO BA PSO BDE IDSA

Mean

Image1

4 18.5843 18.5843 18.5843 18.5632 18.5843 18.5761 18.5818 18.5842 18.5843 18.5843
6 23.8418 23.73 23.8408 23.479 23.8417 23.755 23.8085 23.8412 23.8115 23.8383
8 28.5094 28.4605 28.5051 27.8225 28.4627 28.385 27.7631 28.4991 28.5118 28.5139

10 32.8462 32.8432 32.8325 31.3685 32.8443 32.6682 32.0858 32.7519 32.8455 32.7269
12 36.8534 36.7164 36.7269 34.5881 36.7313 36.6221 34.7641 36.696 36.7642 36.7764

Image6

4 18.4839 18.4784 18.4817 18.4434 18.4836 18.4778 18.4745 18.4839 18.4816 18.4836
6 24.0059 23.9988 23.9994 23.765 24.005 23.9687 23.9225 24.0015 24.0051 24.0059
8 28.937 28.8743 28.8836 27.9973 28.9272 28.8508 28.2696 28.9293 28.9342 28.9196

10 33.3483 33.3009 33.1851 31.8768 33.2743 33.0867 31.6321 33.3197 33.3079 33.2562
12 37.3674 37.271 37.1046 35.8876 37.3246 36.8644 35.1068 37.1813 37.3553 37.2569

STD

Image1

4 0 2.66 × 10−5 2.66 × 10−5 4.39 × 10−3 5.83 × 10−5 3.19 × 10−3 2.17 × 10−3 2.68 × 10−5 2.47 1.58 × 10−1

6 3.25 × 10−5 1.61 × 10−4 9.58 × 10−4 7.45 × 10−2 2.95 × 10−4 1.97 × 10−2 5.39 × 10−2 4.33 × 10−4 8.41 × 10−1 1.59
8 4.32 × 10−4 2.74 × 10−2 8.89 × 10−3 1.33 × 10−1 3.24 × 10−2 3.38 × 10−2 1.82 × 10−1 7.30 × 10−3 1.3 9.98 × 10−1

10 3.38 × 10−3 5.36 × 10−3 3.90 × 10−2 2.67 × 10−1 4.91 × 10−2 3.24 × 10−2 1.51 × 10−1 3.34 × 10−2 7.76 × 10−1 7.27 × 10−1

12 1.83 × 10−2 3.25 × 10−2 7.48 × 10−2 2.30 × 10−1 6.12 × 10−2 5.02 × 10−2 6.41 × 10−1 7.35 × 10−2 6.66 × 10−1 6.65 × 10−1

Image6

4 3.91 × 10−3 7.91 × 10−3 4.81 × 10−3 1.24 × 10−2 8.29 × 10−1 5.49 × 10−3 4.60 × 10−3 3.93 × 10−3 6.96 × 10−3 2.92 × 10−1

6 1.68 × 10−2 3.81 × 10−3 1.94 × 10−2 6.82 × 10−2 4.20 × 10−3 3.58 × 10−2 2.96 × 10−2 5.03 × 10−3 4.66 1.75
8 1.57 × 10−2 2.64 × 10−2 1.64 × 10−2 1.60 × 10−1 2.48 × 10−2 4.37 × 10−2 3.94 × 10−1 6.14 × 10−2 3.88 9.82 × 10−1

10 2.15 × 10−2 4.26 × 10−2 3.64 × 10−2 1.40 × 10−1 5.49 × 10−2 2.50 × 10−2 4.03 × 10−1 3.55 × 10−2 2.28 8.98 × 10−1

12 1.53 × 10−2 3.02 × 10−2 9.90 × 10−2 2.85 × 10−1 2.52 × 10−2 6.41 × 10−2 3.37 × 10−1 3.43 × 10−2 1.67 1.25
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6.3. Stability Analysis

Standard deviation (STD): a value indicates the dispersion of sample data and it is mathematically
represented as:

STD =

√
1

n− 1

n

∑
i=1

(
fi − f

)2
(19)

where n is the sample size, fi is the fitness value of the i-th individual, and f indicates the average
value of the sample.

In order to verify the stability of proposed algorithm, the STD indicator is also used. A lower
value of STD indicates better stability. The STD values of “Image1” and “Image6” obtained by all
algorithms are presented in Table 2. From the table it is found that WOA-DE based method gives
lower values as compared to other algorithms, which shows the better consistency and stability of
proposed algorithm.

6.4. Peak Signal to Noise Ratio (PSNR)

Peak signal to noise ratio (PSNR): an index which is used to evaluate the similarity of the processed
image against the original image [13]:

PSNR = 10 log10

(
2552

MSE

)
(20)

MSE represents the mean squared error and is calculated as:

MSE =
1

MN

M

∑
i=1

N

∑
j=1

[I(i, j)− K(i, j)]
2

(21)

where I(i, j) and K(i, j) denote the gray level of the original image and the segmented image in the i-th
row and j-th column, respectively. M and N denote the number of rows and columns in the image
matrix, respectively. A higher value of PSNR indicates a better quality segmented image.

Table 3 shows the PSNR values of “Image2” and “Image7” obtained by all algorithms and Kapur’s
entropy method. According to the table, the WOA-DE-based method gives the highest values in 9 out
of 10 cases using Kapur’s entropy. When the threshold level is small, all algorithms give similar result,
while the obtained values become different as the number of thresholds increases, and the proposed
method can present the best result in most cases. This phenomenon indicates that WOA-DE-based
method can determine the appropriate thresholds and then present high-quality segmented image that
are more similar to the original image. Figure 7 shows the visual comparison of all available methods
at different threshold levels. The results of proposed method are represented as “black” lines and
“square” data points.
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Table 3. The PSNR, SSIM, and FSIM values obtained by all algorithms under different threshold levels.

Measures Image K WOA-DE WOA SSA SCA ALO HSO BA PSO BDE IDSA

PSNR

Image2

4 18.6558 18.6558 18.6558 18.6533 18.6558 18.5722 18.4352 18.6558 18.6452 18.6558
6 22.2481 20.8588 21.3402 21.5799 21.3148 20.861 20.2596 21.7136 20.8588 20.9995
8 24.8821 23.1744 23.6373 23.4877 24.1624 24.5724 23.1158 23.372 23.5863 23.5837

10 27.9116 25.3956 25.9502 27.0446 27.7051 25.3211 25.1289 25.3938 25.87 25.9861
12 29.8805 29.8395 29.6719 28.6767 29.4309 26.3023 29.2218 29.34 29.0663 29.2001

Image7

4 23.2367 22.947 22.9286 22.9305 23.0442 22.9765 22.923 22.982 22.982 22.9122
6 26.6481 26.5553 26.5205 26.5953 26.656 26.4685 26.5963 26.6156 26.527 26.5732
8 29.1886 29.1004 28.9405 27.8606 29.132 29.063 27.9378 29.0088 29.1151 29.0763

10 31.2154 30.9433 31.1186 29.6665 30.9579 30.64 28.3997 30.9199 31.0374 31.169
12 32.7203 32.6538 31.7022 30.101 32.6566 31.6295 28.988 32.7035 32.6774 32.6603

SSIM

Image2

4 0.5266 0.5266 0.5266 0.5253 0.5186 0.5212 0.5212 0.5266 0.5242 0.5266
6 0.652 0.6103 0.617 0.6105 0.6192 0.6379 0.5864 0.6332 0.6103 0.6197
8 0.7361 0.6944 0.7052 0.6976 0.7281 0.7224 0.7094 0.6978 0.7004 0.6963

10 0.8064 0.7551 0.7608 0.7701 0.7996 0.7534 0.7247 0.7594 0.7705 0.7733
12 0.8505 0.8484 0.8432 0.7859 0.8411 0.8463 0.8182 0.8367 0.8483 0.8269

Image7

4 0.8494 0.8414 0.8407 0.8419 0.8456 0.8405 0.8382 0.8416 0.8416 0.8399
6 0.9136 0.9097 0.907 0.9086 0.9115 0.9091 0.9098 0.9087 0.9091 0.9079
8 0.9422 0.9409 0.9392 0.9254 0.9415 0.9412 0.9241 0.9404 0.9416 0.9418

10 0.9648 0.9608 0.9603 0.946 0.9587 0.9552 0.9255 0.9624 0.9633 0.9637
12 0.9726 0.9715 0.9624 0.9543 0.9724 0.963 0.9338 0.9718 0.9724 0.9725

FSIM

Image2

4 0.7151 0.7151 0.7151 0.7149 0.7151 0.7117 0.7115 0.7151 0.7142 0.7151
6 0.7921 0.7707 0.7723 0.7708 0.7711 0.7876 0.7577 0.7799 0.7707 0.7866
8 0.8435 0.8257 0.8289 0.8246 0.8426 0.8313 0.8093 0.824 0.8256 0.8198

10 0.8745 0.8617 0.8582 0.8423 0.8738 0.8616 0.8153 0.864 0.8686 0.8682
12 0.9041 0.9036 0.9005 0.8987 0.9007 0.8978 0.8531 0.8806 0.9022 0.8915

Image7

4 0.9012 0.8964 0.8959 0.8965 0.8991 0.8968 0.8953 0.8972 0.8972 0.8956
6 0.9469 0.9445 0.946 0.9458 0.9467 0.9449 0.9468 0.9465 0.9453 0.9464
8 0.9671 0.9666 0.9658 0.9591 0.9665 0.9659 0.9559 0.9658 0.9666 0.966

10 0.9773 0.9758 0.9752 0.971 0.9759 0.9754 0.9574 0.9765 0.9761 0.9763
12 0.9834 0.9824 0.9799 0.9729 0.9829 0.9802 0.9664 0.9828 0.9825 0.9826
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6.5. Structural Similarity Index (SSIM)

Structural similarity index (SSIM) [52,53]: a measure of the similarity between the original image
and the segmented image, which takes various factors such as brightness, contrast, and structural
similarity into account:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (22)

where µx and µy denote the mean intensities of the original image and the segmented image
respectively. σ2

x and σ2
y are the standard deviation of the original image and the segmented image

respectively. σxy denotes the covariance between the original image and the segmented image. c1 and
c2 are constants. The value of SSIM is in the range [0,1], and a higher value shows better performance.

The SSIM values obtained by all algorithms are given in Table 3 and Figure 8, respectively. It can
be seen from the table that the WOA-DE-based method gives competitive results again compared with
other methods in terms of SSIM indicator. The values obtained by all algorithms increase with the
number of thresholds, which indicates that the segmented image is more similar to the original image
in terms of brightness, contrast, and structural similarity. The experimental results in this section verify
the remarkable performance of the proposed algorithm from another perspective.
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6.6. Feature Similarity Index (FSIM)

Feature similarity index (FSIM) [54,55]: another measure of the image quality through evaluating
the feature similarity between the original image and the segmented image:

FSIM =
∑x∈Ω SL(x)× PCm(x)

∑x∈Ω PCm(x)
(23)

where Ω represents the whole image pixel domain. SL(x) is a similarity score. PCm(x) denotes the
phase consistency measure, which is defined as:

PCm(x) = max(PC1(x), PC2(x)) (24)

where PC1(x) and PC2(x) represent the phase consistency of two blocks, respectively:

SL(x) = [SPC(x)]α · [SG(x)]β (25)

SPC(x) =
2PC1(x)× PC2(x) + T1

PC2
1(x)× PC2

2(x) + T1
(26)

SG(x) =
2G1(x)× G2(x) + T2

G2
1(x)× G2

2(x) + T2
(27)

SPC(x) denotes the similarity measure of phase consistency. SG(x) denotes the gradient magnitude of
two regions G1(x) and G2(x). α, β, T1, and T2 are all constants. The value of FSIM is also in the range
[0,1], and a higher value shows better segmented image quality.

On comparing the FSIM values, which are given in Table 3 and Figure 9, it can be observed
that WOA-DE-based method again outperforms the other methods. The feature similarity between
the original image and the segmented image is considered in this experiment to verify the quality
of segmented image comprehensively. The relevant results indicate that the proposed method has
a strong feature preserving ability as compared to other methods.
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6.7. Convergence Performance

In this section, the convergence performance of all algorithms is evaluated and discussed in
details. In order to reflect the performance of WOA-DE more intuitively, the convergence curves of
Kapur’s entropy function (for K = 12) are shown in Figure 10. Four different images are selected for
testing, namely “Image1”, “Image4”, “Image7”, and “Image10”. It can be found that the proposed
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algorithm outperforms other algorithms in general. In other words, the WOA-DE-based method gives
higher position curves using Kapur’s entropy technique.
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As discussed above, the main drawbacks of the standard WOA are premature convergence and
unbalanced exploration-exploitation, which are clearly reflected in the curves. For example, under the
circumstance of “Image1” segmentation, the objective function value of WOA is almost never updated
after 100 iterations, while the optimal value obtained is not the best. This phenomenon illustrates the
premature convergence shortcoming of WOA. However, the proposed WOA-DE algorithm gives the
highest objective function value under the premise of ensuring the convergence speed. In fact, the
remarkable performance of the proposed algorithm is not only reflected in the segmentation task of
“Image1”, but also in other images. The experimental results in this section indicate that WOA-DE
algorithm can better balance the exploration and exploitation, and the complex image segmentation
tasks are also competent.

6.8. Computation Time

The average CPU time of different algorithms considering all cases is given in Table 4. It can be
found from the table that HSO is the fastest among available methods, but the segmentation accuracy
discussed above is not ideal. The standard WOA algorithm gives competitive results in some cases,
and the proposed algorithm namely WOA-DE is slightly slower than the standard WOA. The reason
for this phenomenon is the premature convergence of HSO algorithm, which cannot well balance
exploration and exploitation. On the contrary, the WOA-DE algorithm combines the advantages of
both WOA and DE, which determine the most appropriate threshold value, despite not being the
fastest. To sum up, WOA-DE is a high-performance hybrid algorithm that improves segmentation
precision while maintaining runtime.
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Table 4. The average computation time (s) considering all images under different threshold levels.

K WOA-DE WOA SSA SCA ALO HSO BA PSO BDE IDSA

4 1.40087 1.047 1.49062 1.49438 7.8046 1.03739 1.97122 1.70887 2.21335 1.41216
6 1.55259 1.14527 1.63902 1.62171 9.66773 1.10338 2.08452 1.88491 2.40389 1.5397
8 1.67041 1.18449 1.72857 1.6764 12.09074 1.18478 2.31804 1.99103 2.48257 1.56885
10 1.74287 1.24446 1.79294 1.86849 15.31865 1.23933 2.36836 2.13532 2.58595 1.67435
12 1.88104 1.39335 1.95442 1.98369 17.19651 1.30339 2.513 2.23487 2.74791 1.70745

6.9. Statistical Analysis

In this section, a non-parametric statistical test known as “Wilcoxon’s rank sum test” is used to
evaluate the significant difference between algorithms [56]. The experiments are conducted 30 runs
at significance level 5%. All experimental data obtained based on Kapur’s entropy are used for
testing. The alternative hypothesis (H1) assumes that there is a significant difference between the two
algorithms being compared. The null hypothesis H0 considers that there is no significant difference
between the algorithms. The results of the statistical experiments are given in Table 5.

Table 5. Wilcoxon’s rank sum test results.

Comparison p-Value

WOA-DE versus WOA 2.3197 × 10−4

WOA-DE versus SSA 9.0193 × 10−8

WOA-DE versus SCA 6.8546 × 10−7

WOA-DE versus ALO 4.2264 × 10−10

WOA-DE versus HSO 7.6791 × 10−7

WOA-DE versus BA 3.2115 × 10−9

WOA-DE versus PSO 7.6473 × 10−8

WOA-DE versus BDE 4.5474 × 10−5

WOA-DE versus IDSA 7.0546 × 10−4

It can be observed from the table that the p-values acquired are far less than 0.05. This promising
result indicates that H0 can be rejected in all cases and there is a significant difference between the
proposed algorithm and other methods.

6.10. Comparison of Otsu and Kapur’s Entropy Methods

In order to obtain a simple and powerful technique for color image segmentation, an experiment
of comparison between Otsu and Kapur’s entropy thresholding techniques based on WOA-DE is
conducted in this section. More details of Otsu thresholding technique can be found in [11].

The PSNR, SSIM, and FSIM values obtained by WOA-DE-based method are given in Table 6.
It can be seen that WOA-DE-based method using Kapur’s entropy gives higher values than using
Otsu technique in general for PSNR values. However, the Otsu-based technique performs better
when comparing SSIM values. Considering the FSIM indicator, these two thresholding techniques
are equal. Precisely speaking, on comparing the PSNR values, the Otsu technique presents better
results in 11 out of 50 cases (10 images and five thresholds), whereas, Kapur’s entropy technique gives
better results in 39 out of 50 cases. Considering other two indicators, the Kapur’s entropy technique
outperforms in 21 cases for SSIM and 25 cases for FSIM, while the Otsu technique outperforms in
29 cases for SSIM and 25 cases for FSIM. To sum up, the WOA-DE-based method through Otsu gives
better results in 65 out of 150 cases (10 images, five thresholds, and three performance measures) and
the WOA-DE-based method through Kapur’s entropy gives satisfactory results in 85 cases. To some
extent, these satisfactory results prove that WOA-DE-based method using Kapur’s entropy is superior
to the method using Otsu. However, as the no free lunch (NFL) theorem goes, there is no technique
that can handle all image segmentation tasks [57]. Thus, the WOA-DE algorithm based on different
thresholding techniques has potential in the field of color image segmentation, which may exhibit
superior performance in some engineering problems that have not been solved so far.
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Table 6. Comparison of Kapur’s entropy and Otsu methods based on WOA-DE algorithm.

Images K
PSNR SSIM FSIM

Otsu Kapur Otsu Kapur Otsu Kapur

Image1

4 20.3428 17.7781 0.5798 0.4681 0.7771 0.734
6 22.6702 24.977 0.6815 0.6559 0.8458 0.8197
8 24.0516 28.6092 0.7446 0.8033 0.9122 0.8798

10 25.2164 30.6687 0.7898 0.833 0.9225 0.9039
12 26.1897 32.2054 0.8059 0.8672 0.926 0.9271

Image2

4 18.459 18.6558 0.608 0.5266 0.7582 0.7151
6 20.9182 22.2481 0.7095 0.652 0.8245 0.7921
8 24.5622 24.8821 0.8164 0.7361 0.8684 0.8435

10 25.7585 27.9116 0.8421 0.8064 0.8878 0.8745
12 28.4144 29.8805 0.8964 0.8505 0.917 0.9041

Image3

4 17.5776 20.8247 0.6971 0.7109 0.6972 0.7182
6 22.7555 23.6059 0.7431 0.7592 0.7469 0.7619
8 27.8967 26.0132 0.7948 0.8036 0.795 0.8017

10 29.5405 29.0184 0.8341 0.8433 0.8322 0.8329
12 31.6891 32.6886 0.8633 0.8729 0.8619 0.8646

Image4

4 19.0015 23.013 0.6151 0.612 0.7012 0.6484
6 24.4296 26.9872 0.7631 0.7188 0.8129 0.7665
8 27.9781 29.7682 0.8434 0.7953 0.8793 0.8415

10 32.0713 31.7603 0.8888 0.8456 0.9193 0.8907
12 33.9227 33.096 0.9194 0.8767 0.9431 0.9203

Image5

4 23.4509 23.4495 0.8082 0.7231 0.8469 0.7925
6 27.2396 27.2417 0.8948 0.8286 0.9142 0.8716
8 29.6073 29.5852 0.926 0.8903 0.9415 0.9229

10 31.5024 31.4704 0.9345 0.919 0.9585 0.9452
12 32.9105 32.782 0.9457 0.9429 0.9672 0.9614

Image6

4 19.2192 20.597 0.6626 0.5995 0.7712 0.7443
6 23.4934 25.4883 0.8061 0.7587 0.8673 0.8562
8 27.6467 28.6898 0.8732 0.8427 0.9192 0.9136

10 29.7289 31.292 0.9104 0.9002 0.9416 0.9489
12 32.0406 32.7058 0.9384 0.9227 0.9599 0.9615

Image7

4 18.9474 23.2367 0.7898 0.8494 0.848 0.9012
6 23.6742 26.6481 0.8938 0.9136 0.9198 0.9469
8 26.8294 29.1886 0.9383 0.9422 0.9513 0.9671

10 30.559 31.2154 0.9626 0.9648 0.9728 0.9773
12 32.9021 32.7203 0.9781 0.9726 0.9828 0.9834

Image8

4 20.3695 19.4801 0.5372 0.4881 0.786 0.7807
6 23.4982 25.5717 0.6365 0.7043 0.8643 0.8705
8 25.5399 27.8173 0.7326 0.7823 0.9007 0.9102

10 27.2326 30.6727 0.8174 0.8479 0.9228 0.9361
12 30.4945 32.0442 0.8483 0.8849 0.943 0.9514

Image9

4 20.5858 22.1696 0.6759 0.6581 0.8498 0.8671
6 25.1403 26.3449 0.7465 0.7492 0.9174 0.9197
8 28.672 29.2954 0.7938 0.8082 0.9476 0.9524

10 30.9026 31.126 0.8711 0.8716 0.9664 0.9661
12 32.5855 32.9878 0.9012 0.8757 0.9761 0.9764

Image10

4 20.2121 22.6128 0.7399 0.7551 0.8312 0.8499
6 24.9168 27.0397 0.8128 0.8355 0.9075 0.9179
8 29.1254 29.5441 0.8865 0.8649 0.9503 0.947

10 30.9532 31.447 0.9196 0.8774 0.9641 0.9645
12 32.5129 32.8351 0.9284 0.8923 0.9729 0.9734

Rank 2(11) 1(39) 2(29) 1(21) 1(25) 1(25)

6.11. Robustness Testing on Noisy Images

In order to further investigate the performance of proposed algorithm, an experiment is conducted
on two famous benchmark test images with various noise levels. “Lena” and “Peppers” images are
used in this section (see Figure 11), which can be obtained from [58]. The mean value is fixed in this
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experiment, and the level of Gaussian noise is adjusted by setting the variance as 0.00625, 0.0125,
0.025, 0.05, and 0.1, respectively. The experiment is carried out at 12 threshold level, in which case the
difference between algorithms is the most obvious. The relevant results are presented in Figures 12–15.
It can be observed from the results that the value of performance measures and quality of segmented
image decrease with the increase of noise level, and the WOA-DE-Kapur outperforms other methods
using Kapur entropy. The promising results indicate that the proposed technique has strong robustness,
which can be competent for complex image segmentation tasks with noise.

Entropy 2019, 21, x  21 of 28 

 

Image4 

6 24.4296 26.9872 0.7631 0.7188 0.8129 0.7665 
8 27.9781 29.7682 0.8434 0.7953 0.8793 0.8415 
10 32.0713 31.7603 0.8888 0.8456 0.9193 0.8907 
12 33.9227 33.096 0.9194 0.8767 0.9431 0.9203 

Image5 

4 23.4509 23.4495 0.8082 0.7231 0.8469 0.7925 
6 27.2396 27.2417 0.8948 0.8286 0.9142 0.8716 
8 29.6073 29.5852 0.926 0.8903 0.9415 0.9229 
10 31.5024 31.4704 0.9345 0.919 0.9585 0.9452 
12 32.9105 32.782 0.9457 0.9429 0.9672 0.9614 

Image6 

4 19.2192 20.597 0.6626 0.5995 0.7712 0.7443 
6 23.4934 25.4883 0.8061 0.7587 0.8673 0.8562 
8 27.6467 28.6898 0.8732 0.8427 0.9192 0.9136 
10 29.7289 31.292 0.9104 0.9002 0.9416 0.9489 
12 32.0406 32.7058 0.9384 0.9227 0.9599 0.9615 

Image7 

4 18.9474 23.2367 0.7898 0.8494 0.848 0.9012 
6 23.6742 26.6481 0.8938 0.9136 0.9198 0.9469 
8 26.8294 29.1886 0.9383 0.9422 0.9513 0.9671 
10 30.559 31.2154 0.9626 0.9648 0.9728 0.9773 
12 32.9021 32.7203 0.9781 0.9726 0.9828 0.9834 

Image8 

4 20.3695 19.4801 0.5372 0.4881 0.786 0.7807 
6 23.4982 25.5717 0.6365 0.7043 0.8643 0.8705 
8 25.5399 27.8173 0.7326 0.7823 0.9007 0.9102 
10 27.2326 30.6727 0.8174 0.8479 0.9228 0.9361 
12 30.4945 32.0442 0.8483 0.8849 0.943 0.9514 

Image9 

4 20.5858 22.1696 0.6759 0.6581 0.8498 0.8671 
6 25.1403 26.3449 0.7465 0.7492 0.9174 0.9197 
8 28.672 29.2954 0.7938 0.8082 0.9476 0.9524 
10 30.9026 31.126 0.8711 0.8716 0.9664 0.9661 
12 32.5855 32.9878 0.9012 0.8757 0.9761 0.9764 

Image10 

4 20.2121 22.6128 0.7399 0.7551 0.8312 0.8499 
6 24.9168 27.0397 0.8128 0.8355 0.9075 0.9179 
8 29.1254 29.5441 0.8865 0.8649 0.9503 0.947 
10 30.9532 31.447 0.9196 0.8774 0.9641 0.9645 
12 32.5129 32.8351 0.9284 0.8923 0.9729 0.9734 

Rank 2(11) 1(39) 2(29) 1(21) 1(25) 1(25) 

6.11. Robustness Testing on Noisy Images 

In order to further investigate the performance of proposed algorithm, an experiment is 
conducted on two famous benchmark test images with various noise levels. “Lena” and “Peppers” 
images are used in this section (see Figure 11), which can be obtained from [58]. The mean value is 
fixed in this experiment, and the level of Gaussian noise is adjusted by setting the variance as 0.00625, 
0.0125, 0.025, 0.05, and 0.1, respectively. The experiment is carried out at 12 threshold level, in which 
case the difference between algorithms is the most obvious. The relevant results are presented in 
Figures 12–15. It can be observed from the results that the value of performance measures and quality 
of segmented image decrease with the increase of noise level, and the WOA-DE-Kapur outperforms 
other methods using Kapur entropy. The promising results indicate that the proposed technique has 
strong robustness, which can be competent for complex image segmentation tasks with noise. 

  
(a) “Lena” image (b) “Peppers” image 

Figure 11. Original “Lena” and “Peppers” images from Berkeley Segmentation Dataset. Figure 11. Original “Lena” and “Peppers” images from Berkeley Segmentation Dataset.Entropy 2019, 21, x  22 of 28 

 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(a) Original “Lena” image with different levels of noise 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(b) Segmented “Lena” image with different levels of noise 

Figure 12. The original “Lena” image and the corresponding segmented results under various noise levels. 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(a) Original “Peppers” image with different levels of noise 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(b) Segmented “Peppers” image with different levels of noise 

Figure 13. The original “Peppers” image and the corresponding segmented results under various 
noise levels. 

   
(a) PSNR (b) SSIM (c) FSIM 

Figure 14. The value of various performance measures over “Lena” image with different levels of 
noise. 

Figure 12. The original “Lena” image and the corresponding segmented results under various noise levels.

Entropy 2019, 21, x  22 of 28 

 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(a) Original “Lena” image with different levels of noise 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(b) Segmented “Lena” image with different levels of noise 

Figure 12. The original “Lena” image and the corresponding segmented results under various noise levels. 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(a) Original “Peppers” image with different levels of noise 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(b) Segmented “Peppers” image with different levels of noise 

Figure 13. The original “Peppers” image and the corresponding segmented results under various 
noise levels. 

   
(a) PSNR (b) SSIM (c) FSIM 

Figure 14. The value of various performance measures over “Lena” image with different levels of 
noise. 

Figure 13. The original “Peppers” image and the corresponding segmented results under various
noise levels.



Entropy 2019, 21, 318 22 of 28

Entropy 2019, 21, x  22 of 28 

 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(a) Original “Lena” image with different levels of noise 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(b) Segmented “Lena” image with different levels of noise 

Figure 12. The original “Lena” image and the corresponding segmented results under various noise levels. 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(a) Original “Peppers” image with different levels of noise 

Var: 0.00625 0.0125 0.025 0.05 0.1 
(b) Segmented “Peppers” image with different levels of noise 

Figure 13. The original “Peppers” image and the corresponding segmented results under various 
noise levels. 

   
(a) PSNR (b) SSIM (c) FSIM 

Figure 14. The value of various performance measures over “Lena” image with different levels of 
noise. 
Figure 14. The value of various performance measures over “Lena” image with different levels of noise.Entropy 2019, 21, x  23 of 28 

 

   
(a) PSNR (b) SSIM (c) FSIM 

Figure 15. The value of various performance measures over “Peppers” image with different levels of 
noise. 

6.12. Application in MR Image 

In this section, the WOA-DE-Kapur-based multilevel thresholding technique is applied to the 
field of MR image segmentation. The purpose of this experiment is to investigate whether the 
proposed algorithm is capable of producing high quality segmented MR images. Two other 
threshold-based MR image segmentation techniques are used for comparison, namely the crow 
search algorithm-based method using minimum cross entropy thresholding (CSA-MCET) [59] and 
adaptive bacterial foraging algorithm-based method using Otsu (ABF-Otsu) [60]. The combination of 
thresholds (K = 2, 3, 4, and 5) selected is the same as that used by above two algorithms in their 
corresponding articles. Besides, the parameter values are set according to the original literature, 
except for the population size 𝑁  set to 30 and the number of iterations 𝑡୫ୟ୶  set to 500 for fair 
comparison. All experiments are performed 30 times to eliminate errors. 

The experimental results are shown in three tables. Table 7 presents the optimal thresholds and 
PSNR values, Table 8 gives the SSIM and FSIM values, and Table 9 indicates the segmented images 
obtained by all methods. It can be found from these results that WOA-DE-Kapur method can 
determine more accurate thresholds compared to other methods. For quantitative analysis, the values 
of performance measures obtained by proposed method is higher, which indicate the better quality 
of segmented image. For visual analysis, WOA-DE-Kapur method gives more informative segmented 
MR images, and the details of image become more prominent as the number of thresholds increases. 

Table 7. Comparison of Optimal threshold and PSNR value obtained by WOA-DE-Kapur, ABF-Otsu, 
and CSA-MCET. 

Images K 
Optimal Threshold Value PSNR 

WOA-DE-
Kapur 

ABF-Otsu CSA-MCET 
WOA-DE-

Kapur 
ABF-Otsu 

CSA-
MCET 

Slice20 

2 94 167 28 97 13 84 16.8586 16.524 15.9746 
3 9 118 219 29 87 151 18 64 134 23.9008 23.1061 22.4605 
4 8 29 129 210 7 53 100 153 16 64 98 147 24.6228 25.4972 24.3967 
5 16 36 94 171 211 21 54 98 156 190 3 40 61 113 150 30.4912 27.3411 28.5034 

Slice24 

2 111 182 48 145 19 118 19.7345 21.0839 20.8004 
3 34 117 182 40 108 172 7 56 136 23.4428 22.9913 23.5030 
4 17 73 129 193 23 70 118 182 6 50 101 161 26.7848 26.2061 24.7095 
5 14 70 115 165 210 20 63 102 143 196 4 27 66 111 170 28.9204 28.3318 25.3871 

Slice28 

2 114 179 52 151 20 121 19.6991 18.6884 19.1865 
3 20 81 156 46 110 175 7 56 139 24.8983 24.3616 23.7032 
4 22 78 137 192 27 76 126 187 6 48 103 161 26.9455 27.0419 25.8075 
5 13 72 117 157 203 23 68 109 149 203 6 36 74 115 174 29.6822 29.1884 28.1382 

Slice32 

2 115 175 53 159 20 137 23.3496 22.888 22.6576 
3 16 76 143 50 120 189 8 54 148 24.711 23.2735 25.9537 
4 16 74 131 186 21 70 122 191 7 52 107 172 27.5852 27.958 27.947 
5 18 71 118 162 205 19 63 105 147 206 3 28 67 116 180 29.7914 28.6183 29.598 

Rank — — — 1(10) 2(4) 3(2) 

Figure 15. The value of various performance measures over “Peppers” image with different levels
of noise.

6.12. Application in MR Image

In this section, the WOA-DE-Kapur-based multilevel thresholding technique is applied to the field
of MR image segmentation. The purpose of this experiment is to investigate whether the proposed
algorithm is capable of producing high quality segmented MR images. Two other threshold-based MR
image segmentation techniques are used for comparison, namely the crow search algorithm-based
method using minimum cross entropy thresholding (CSA-MCET) [59] and adaptive bacterial foraging
algorithm-based method using Otsu (ABF-Otsu) [60]. The combination of thresholds (K = 2, 3, 4, and
5) selected is the same as that used by above two algorithms in their corresponding articles. Besides,
the parameter values are set according to the original literature, except for the population size N set to
30 and the number of iterations tmax set to 500 for fair comparison. All experiments are performed
30 times to eliminate errors.

The experimental results are shown in three tables. Table 7 presents the optimal thresholds
and PSNR values, Table 8 gives the SSIM and FSIM values, and Table 9 indicates the segmented
images obtained by all methods. It can be found from these results that WOA-DE-Kapur method can
determine more accurate thresholds compared to other methods. For quantitative analysis, the values
of performance measures obtained by proposed method is higher, which indicate the better quality of
segmented image. For visual analysis, WOA-DE-Kapur method gives more informative segmented
MR images, and the details of image become more prominent as the number of thresholds increases.

Since the experiments of three methods are the same, it is necessary to carry out relevant statistical
tests. In this section, Friedman test [61] and Wilcoxon’s rank sum test [56] are used as non-parametric
statistical test to evaluate the performance of these methods considering 5% as significant level. Null
hypothesis (H0) in Friedman test states equality of medians between the algorithms, and the alternative
hypothesis (H1) indicates the difference. A more detailed description of Friedman test can be found in
literature [62]. The results of the relevant statistical tests can be observed in Tables 10 and 11. Table 10
presents the average rank and p-value of all algorithms at different threshold levels. As can be found,
ABF-Otsu obtains the first rank for K = 3, and WOA-DE-Kapur provides the first rank in other cases.
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In other words, the proposed technique gives the best result in general. The p-value for all threshold
levels is very small indicating the significant difference among available methods. Table 11 gives
the result of Wilcoxon’s rank sum test. It can be observed that the p-value is less than 0.05 in most
cases, which verifies the remarkable performance of WOA-DE-Kapur technique in a statistical and
meaningful way.

Table 7. Comparison of Optimal threshold and PSNR value obtained by WOA-DE-Kapur, ABF-Otsu,
and CSA-MCET.

Images K
Optimal Threshold Value PSNR

WOA-DE-Kapur ABF-Otsu CSA-MCET WOA-DE-Kapur ABF-Otsu CSA-MCET

Slice20

2 94 167 28 97 13 84 16.8586 16.524 15.9746
3 9 118 219 29 87 151 18 64 134 23.9008 23.1061 22.4605
4 8 29 129 210 7 53 100 153 16 64 98 147 24.6228 25.4972 24.3967
5 16 36 94 171 211 21 54 98 156 190 3 40 61 113 150 30.4912 27.3411 28.5034

Slice24

2 111 182 48 145 19 118 19.7345 21.0839 20.8004
3 34 117 182 40 108 172 7 56 136 23.4428 22.9913 23.5030
4 17 73 129 193 23 70 118 182 6 50 101 161 26.7848 26.2061 24.7095
5 14 70 115 165 210 20 63 102 143 196 4 27 66 111 170 28.9204 28.3318 25.3871

Slice28

2 114 179 52 151 20 121 19.6991 18.6884 19.1865
3 20 81 156 46 110 175 7 56 139 24.8983 24.3616 23.7032
4 22 78 137 192 27 76 126 187 6 48 103 161 26.9455 27.0419 25.8075
5 13 72 117 157 203 23 68 109 149 203 6 36 74 115 174 29.6822 29.1884 28.1382

Slice32

2 115 175 53 159 20 137 23.3496 22.888 22.6576
3 16 76 143 50 120 189 8 54 148 24.711 23.2735 25.9537
4 16 74 131 186 21 70 122 191 7 52 107 172 27.5852 27.958 27.947
5 18 71 118 162 205 19 63 105 147 206 3 28 67 116 180 29.7914 28.6183 29.598

Rank — — — 1(10) 2(4) 3(2)

Table 8. Comparison of SSIM and FSIM value obtained by WOA-DE-Kapur, ABF-Otsu,
and CSA-MCET.

Images K
SSIM FSIM

WOA-DE-Kapur ABF-Otsu CSA-MCET WOA-DE-Kapur ABF-Otsu CSA-MCET

Slice20

2 0.7923 0.7726 0.7882 0.8743 0.8565 0.8421
3 0.8784 0.8061 0.8811 0.9411 0.9305 0.9594
4 0.9225 0.8408 0.9208 0.9608 0.9614 0.9599
5 0.9435 0.8862 0.9249 0.9882 0.9674 0.9723

Slice24

2 0.6809 0.7886 0.7865 0.7772 0.8178 0.8117
3 0.8391 0.8318 0.8343 0.8686 0.8660 0.8394
4 0.8791 0.8770 0.8742 0.9081 0.9026 0.8944
5 0.9015 0.8959 0.8997 0.9277 0.9253 0.9099

Slice28

2 0.7832 0.7678 0.7792 0.813 0.8394 0.8274
3 0.8365 0.8238 0.8275 0.8849 0.8846 0.8585
4 0.8672 0.8687 0.8691 0.9084 0.9136 0.9156
5 0.8993 0.8937 0.9010 0.9371 0.9355 0.9366

Slice32

2 0.8123 0.7973 0.7862 0.8617 0.8388 0.8589
3 0.8465 0.832 0.8513 0.8864 0.8943 0.9009
4 0.8794 0.8824 0.8784 0.9199 0.9271 0.9275
5 0.9023 0.8705 0.8991 0.9477 0.9237 0.9347

Rank 1(10) 3(2) 2(4) 1(9) 3(3) 2(4)
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Table 10. Friedman test for WOA-DE-Kapur, ABF-Otsu, and CSA-MCET on MR images.

K
Average Rank

p-Value
WOA-DE-Kapur ABF-Otsu CSA-MCET

2 1.6667 2.0000 2.3333 2.2619 × 10−7

3 1.5833 2.5833 1.8333 1.1603 × 10−8

4 2.0000 1.6667 2.3333 7.2217 × 10−9

5 1.0833 2.7500 2.1667 5.3467 × 10−9
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Table 11. Wilcoxon’s rank sum test for WOA-DE-Kapur, ABF-Otsu, and CSA-MCET on MR images.

K
WOA-DE-Kapur vs. ABF-Otsu WOA-DE-Kapur vs. CSA-MCET

p-Value h p-Value h

2 < 0.05 1 < 0.05 1
3 < 0.05 1 0.0926 0
4 < 0.05 1 < 0.05 1
5 < 0.05 1 < 0.05 1

7. Conclusions

In order to obtain an efficient technique for color image segmentation, an improved WOA-based
method is introduced in this paper, which is known as WOA-DE. In the proposed algorithm, DE is
adopted as a local search strategy with the purpose of enhancing exploitation capability. Compared
to the traditional WOA, the WOA-DE algorithm can effectively avoid falling into a local optimum
and prevent the loss of population diversity in the later iterations. A series of experiments have been
conducted on various color images including natural images and satellite images. Seven meta-heuristic
algorithms are utilized for comparison. The experimental results indicate that the proposed techniques
outperform other methods in terms of average fitness values, standard deviation (STD), peak signal
to noise ratio (PSNR), structural similarity index (SSIM), and feature similarity index (FSIM) as well
as the Wilcoxon’s rank sum test. In addition, to give more convincing and reliable results, another
thresholding technique namely Otsu is adopted for testing. The experimental results indicate that
WOA-DE-based technique through Kapur’s entropy gives better results than using the Otsu technique
in most cases. However, there is no technique that can handle all image segmentation tasks. Thus,
it is necessary to introduce more and better techniques to meet the requirements of different image
segmentation problems and this is also the motivation for our future research. The performance of
some novel meta-heuristic algorithms will be evaluated in this domain, such as salp swarm algorithm,
spotted hyena optimizer, emperor penguin optimizer, etc.
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