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Abstract: We study the classical and quantum correlations in the minimum error discrimination (ME)
of two non-orthogonal pure quantum states. In particular, we consider quantum discord, thermal
discord and entropy generation. We show that ME allows one to reach the accessible information
between the two involved parties, Alice and Bob, in the discrimination process. We determine the
amount of quantum discord that is consumed in the ME and show that the entropy generation is,
in general, higher than the thermal discord. However, in certain cases the entropy generation is very
close to thermal discord, which indicates that, in these cases, the process generates the least possible
entropy. Moreover, we also study the ME process as a thermodynamic cycle and we show that it is
in agreement with the second law of thermodynamics. Finally, we study the relation between the
accessible information and the optimum success probability in ME.

Keywords: minimum error discrimination; accessible information; discord; second law
of thermodynamics

1. Introduction

Recently, quantum communication protocols have been studied from the point of view of the
quantum correlations between the involved parties [1–6]. This allows one to quantify the resources
that are required to carry out quantum communication protocols. Quantum correlations also allow us
to differentiate between quantum and classical properties of a quantum state. The implementation
of protocols for quantum communication requires that at least one of the parties implements a
quantum measurement. This is, in general, an irreversible process [7] that changes the quantum state,
produces decoherence and, also, entropy. Studied quantum correlations in bipartite scenarios are
entanglement [8], quantum discord [9–11], thermal discord [12] and global discord [13,14].

The total amount of correlations contained in a bipartite state is quantified by the quantum mutual
information, which represents the minimal amount of noise that is required to erase or destroy the total
correlations in a many-copy scenario [15]. Quantum mutual information is also directly connected with
Landauer’s original idea [16], which states that any logical irreversible process must dissipate entropy
into the environment [17]. It can be cast as the sum of two terms: classical correlations and quantum
discord. The latter, quantum discord, is defined in order to minimize the loss of quantum correlations
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due to quantum measurements [9]. Another measure of quantum correlation is the thermal discord.
This takes into account the entropic cost of measurements and minimizes the entropy generation
produced by quantum measurements [7,12]. Quantum discord and thermal discord are defined when
one of the parties implements measurements in specific bases. These bases, in general, are different
from each other. On the other hand, in some particular cases, such as in minimum error discrimination,
we need to implement a measurement in a determined basis. For those cases, the basis-dependent
versions of the aforementioned quantum correlations are considered [11]. In general, the discrimination
of non-orthogonal states must satisfy the second law of thermodynamics [18,19] and, to demonstrate
this, a central argument is the Landauer’s cost of erasure [12].

One of the most elemental quantum communication protocols is the discrimination among
states belonging to a predefined set of known quantum states. If the set contains two or more
non-orthogonal states, the discrimination of the quantum states cannot be carried out with certainty
and deterministically [20]. In this case, we can resort to several discrimination strategies that optimize
a predefined figure of merit. Minimum error discrimination (ME) is one of these strategies, where the
discrimination of the non-orthogonal states is carried out in such a way that the probability of mistaking
a retrodiction is minimized [21,22]. ME finds application in several quantum information processes
such as quantum teleportation [23,24], entanglement swapping [25,26], quantum cryptography [27] and
dense coding [28], among many others. The discrimination of non-orthogonal states by means of ME
has been experimentally implemented for two states [29,30], for four states [31] in a two-dimensional
Hilbert space, and for several sets of symmetric pure states in dimensions as high as 29 [32].

Here, we study the minimum error discrimination of two non-orthogonal states generated
with arbitrary probabilities, in terms of the quantum correlations involved in the process. For this
purpose, we consider the cases when Alice and Bob share a separable quantum channel. We determine
the quantum discord and the thermal discord and compare these with the loss of correlations and
the entropy generation in the case of ME. Moreover, we show that ME, when considered as a
thermodynamic cycle, is in agreement with the second law of thermodynamics. Finally, we study the
relation between the accessible information and the optimal probability of success in the ME protocol.

This article is organized as follows: In Section 2 we briefly review minimum error discrimination
for two non-orthogonal states at the Helstrom limit. In Section 3 we describe the initial and final
states of Alice and Bob after the measurement implemented by Bob according to ME. In Section 4
we study quantum and the thermal discord together with their relationship to the second law of
thermodynamics. Moreover, the relation between the information gained by Bob and the optimum
success probability in the ME, is studied. Finally, in Section 5 we summarize our results and conclude.

2. Minimum Error Discrimination

In the minimum error discrimination protocol, one of the communicating parties, let us say
Bob, receives a single copy of a quantum system. This can be described by one of two possible
non-orthogonal states in the set Ω = {|φ0〉B, |φ1〉B}. These states are generated with a priori
probabilities η0 and η1 = 1− η0, respectively. The set of states and a priori probabilities are known by
Bob beforehand. Bob’s task is to identify, with the lowest average error, the probability of the state in
Ω that describes the quantum system.

The states in Ω can be written as

|φ0〉B = cos
β

2
|0〉B + sin

β

2
|1〉B, (1a)

|φ1〉B = sin
β

2
|0〉B + cos

β

2
|1〉B, (1b)

where the two orthonormal states {|0〉B, |1〉B} form a base of the two-dimensional Hilbert space
of Bob’s quantum system. The inner product between the non-orthogonal states is denoted by
α = 〈φ0|φ1〉 = sin β, where β ∈ [0, π/2], so that α ∈ [0, 1].
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In order to discriminate with ME between the non-orthogonal states {|φ0〉B, |φ1〉B}, Bob first
applies a unitary transformation UB. In this case, UB can be written in the following form

UB|φ0〉B =
√

p0|0〉B +
√

r0|1〉B, (2a)

UB|φ1〉B =
√

r1|0〉B +
√

p1|1〉B, (2b)

where, now, the orthonormal states {|0〉B, |1〉B} represent the base in which Bob must implement his
measurement in order to discriminate with ME probability. Here, ri (pi) represents the probability of
failure (success) in the identification of the state |φi〉B, where pi + ri = 1. The unitarity of UB implies
that the following constraint must be satisfied

α =
√

r0 p1 +
√

r1 p0. (3)

The average probability of error in the discrimination between the non-orthogonal states
{|φ0〉B, |φ1〉B} is

Pe = η0r0 + η1r1, (4)

where, ri = |〈j|UB|φi〉|2 for i 6= j. We reach the minimum average error probability in the
discrimination process when the probabilities ri are given by [33]

ri =
1
2

1−
1− 2ηjα

2√
1− 4ηiηjα2

 , (5)

for i 6= j. Therefore, the minimal average error probability attained by the minimum error
discrimination strategy is given by

Pmin
e =

1
2
(1−

√
1− 4η0η1α2), (6)

which is equal to the Helstrom limit [20,22]. The optimal average success probability in the
discrimination is equal to Popt

s = 1− Pmin
e . In what follows, given the symmetry with respect to

the a priori probabilities, we consider the case η1 ≥ η0 for 0 ≤ η0 ≤ 1/2.

3. Channel without Entanglement

Let us consider initially that the communicating parties, Alice and Bob, share a separable quantum
state of the form

ρAB =
1

∑
i=0

ηi|i〉A〈i| ⊗ |φi〉B〈φi|, (7)

where the states {|0〉A, |1〉A} form an orthonormal base for Alice’s two-dimensional quantum system,
and {|φ0〉B, |φ1〉B} are the two possible non-orthogonal states of Bob’s quantum system given by
Equations (1). Alice prepares a single copy of a quantum system in the state |φi〉B and sends it to Bob
with a priori probability ηi. Thereby, Alice and Bob share quantum and classical correlations encoded
in the joint state ρAB of Equation (7). The initial state ρA of Alice’s quantum system, that is, prior to the
application of any transformation or measurement, is obtained by ρA = trB(ρAB), where

ρA =
1

∑
i=0

ηi|i〉A〈i|. (8)

In a similar form, the initial state of Bob’s quantum system can be obtained from ρB = trA(ρAB), where

ρB =
1

∑
i=0

ηi|φi〉B〈φi|. (9)
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Once Bob has received the single copy of the quantum system in the state |φi〉B, he implements
the optimal strategy of ME. For that purpose, Bob first applies the unitary transformation UB onto
his quantum system. Thereby, the initial joint state ρAB of Equation (7) changes to ρ̂AB = (1A ⊗
UB)ρAB(1A ⊗U†

B), where

ρ̂AB =
1

∑
i=0

ηi|i〉A〈i| ⊗ |φ̂i〉B〈φ̂i|, (10)

with |φ̂i〉B = UB|φi〉B. The unitary transformation UB of Equation (2), applied by Bob onto his quantum
system, is a reversible process [7]. Therefore, it does not change the quantum correlations between
Alice and Bob and it does not produce entropy either.

We consider that Bob can implement his measurement in an arbitrary basis {|0′〉B, |1′〉B}, which
is given by

|0′〉B = x|0〉B − y|1〉B, (11a)

|1′〉B = y|0〉B + x|1〉B, (11b)

where the coefficients x and y are real positive numbers that satisfy x2 + y2 = 1. The measurement
carried out by Bob on his quantum system generates two conditional post-measurement states ρi

A|b for
Alice’s quantum system. Provided that Bob’s measurement projects his quantum system onto the state
|i′〉B, Alice’s post-measurement states can be

ρ0
A|b = (t2

00|0〉A〈0|+ t2
10|1〉A〈1|)/pb

0, (12)

ρ1
A|b = (t2

01|0〉A〈0|+ t2
11|1〉A〈1|)/pb

1, (13)

respectively, where

t00 = xt0 − ym0, (14)

t01 = xm0 + yt0, (15)

t10 = xm1 − yt1, (16)

t11 = xt1 + ym1, (17)

with

mi =
√

ηiri, (18)

ti =
√

ηi(1− ri), (19)

pb
i = t2

0i + t2
1i, (20)

for i = 0, 1 and
1

∑
i,j=0

t2
ij = 1. (21)

The final average joint state between Alice and Bob ρ′AB, when Bob implements his measurement
in the basis {|0′〉B, |1′〉B}, takes the following form:

ρ′AB =
1

∑
i=0

pb
i ρi

A|b ⊗Πi′
b , (22)
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where, Πi′
b are the projectors |i′〉B〈i′| onto the Hilbert space of Bob’s quantum system. The state ρ′AB is

a classical state because there are local measurements in Alice’s and Bob’s systems that do not perturb
it [11]. The final reduced states for Alice’s and Bob’s quantum systems are given by

ρ′A = pb
0ρ0

A|b + pb
1ρ1

A|b, (23)

ρ′B = pb
0|0′〉B〈0′|+ pb

1|1′〉B〈1′|. (24)

Thereby, the final reduced state for Alice’s system does not change, that is, ρ′A = η0|0〉A〈0|+
η1|1〉A〈1| = ρA.

In the particular case of ME, that is, for x = 1 in Equations (11), the average joint state ρ′AB of
Equation (22) takes the following form

ρ′AB(x = 1) = t2
0|00〉AB〈00|+ m2

0|01〉AB〈01|+ m2
1|10〉AB〈10|+ t2

1|11〉AB〈11|. (25)

In this particular case, if Bob successfully discriminates the state |φi〉B, the final state that Alice
and Bob share will be |ii〉AB. Otherwise, when the discrimination attempt is unsuccessful, the final
state is |ij〉 with i 6= j. The average error probability is equal to pmin

e = m2
0 + m2

1 and agrees with the
Helstrom bound given by Equation (6).

4. Correlations between Alice and Bob

4.1. Classical Correlations and Quantum Discord

In a bipartite state ρAB, the total amount of correlation, in the many copy scenario [15], is given by
the quantum mutual information. This is defined as [9,15]

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (26)

where S(ρ) is the von Neumann entropy of the state ρ, given by S(ρ) = −∑i λi log2 λi, where λi are
the eigenvalues of ρ. Hence, in our scheme of ME discrimination, we consider that Alice emits many
copies of independent identically distributed (i.i.d.) data, that is σ = ρn

AB for some large n [34].
The quantum mutual information can be written as [9,11]

I(ρAB) = J(A|{Πb}) + D(A|{Πb}), (27)

where, J(A|{Πb}) are the classical correlations and D(A|{Πb}) is the quantum discord. These two
quantities depend on the measurement implemented by Bob, through the set of projectors {Πb},
but their sum does not [2], i.e., they are complementary to each other. The classical correlations
J(A|{Πb}) between Alice and Bob are defined as [10,11]

J(A|{Πb}) = S(ρA)−
1

∑
i=0

pb
i S(ρi

A|b), (28)

which can be interpreted as the information about Alice’s system gained by Bob by means of the
measurement {Πb}. Here, we are interested in maximizing the classical correlation J(A|{Πb}) with
respect to all possible measurements implemented by Bob, that is

J(A|B) = max
{Πb}

J(A|{Πb}) = S(ρA)−min
{Πb}

1

∑
i=0

pb
i S(ρi

A|b), (29)

which is called the accessible information [35,36]. This represents the classical mutual information
maximized with respect to the detection strategy [31].
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On the other hand, the minimum quantum discord, which quantifies the quantum correlations
that are consumed or lost in the process, is given by

D(A|B) = I(ρAB)− J(A|B). (30)

To quantify the accessible information, we minimize the expression f (x) = ∑i pb
i S(ρi

A|b),
with respect to the variable x that defines the measurement base in Equation (11). The function
f (x) can be cast as

f (x) = −
1

∑
i,j=0

t2
ij log2

(
t2
ij

pb
j

)
, (31)

and its derivative with respect to x is

d
dx

f (x) = − 2√
1− x2

1

∑
i=0

ti0ti1 log2

(
t2
i0 pb

1

t2
i1 pb

0

)
. (32)

This derivative vanishes at x = 0. In fact, this a minimum. However, the function f (x) is such
that f (x = 0) = f (x = 1) and consequently x = 1 is also a minimum. In both cases the entropy
of Alice’s conditional states are equal, S(ρ0

A|b) = S(ρ1
A|b). In fact, the cases x = 0 or x = 1 are

physically equivalent since they are connected by the transformations |0′〉 → |1′〉 and |1′〉 → |0′〉,
which is equivalent to the exchange |φ0〉B → |φ1〉B and |φ1〉B → |φ0〉B. On the other hand, to carry
out ME discrimination, Bob must consider the basis of measurement with x = 1 (or x = 0) in
Equations (11). Thereby, in these particular cases, the same measurement base reaches simultaneously
ME discrimination and accessible information [37,38].

To determine the amount of quantum discord, we consider the expression

D(A|B) = S(ρB) + min
{Πb}

1

∑
i=0

pb
i S(ρi

A|b)− S(ρAB), (33)

where the eigenvalues of Bob’s state ρB, given by Equation (9), are λb
0 = (1−

√
1− 4η0η1 cos2 β)/2

and λb
1 = 1− λb

0. Moreover, the entropy of the joint initial state ρAB, given by Equation (7), is S(ρAB) =

S(ρA) + ∑ ηiS(|φi〉B〈φi|) = S(ρA).
Figure 1a,b show the accessible information and the quantum discord, respectively, for x = 1, as a

function of the inner product α for three decreasing values of η0 (from top to bottom). The accessible
information J(A|B) takes its maximum value, for a fixed value of η0, when the states {|φ0〉B, |φ1〉B} are
orthogonal (α = 0) and it decreases with the inner product α, reaching its minimum value, J(A|B) = 0,
when α = 1. Moreover, in the particular case η0 = 1/2, Alice and Bob share the maximal mutual
information available from any ensemble of quantum states [37]. If we consider the case η0 = 0, the
ME has only one state in the discrimination and the ME strategy does not convey any information at
all. In this case we have that J(A|B) = 0.

The quantum discord D(A|B) takes its minimum value equal to zero, for any value of η0,
when the states {|φ0〉B, |φ1〉B} are orthogonal (α = 0) or their inner product is equal to one. In the
aforementioned cases, Bob’s measurement does not change the joint state ρ′AB = ρ̂AB and therefore,
the states {|φ0〉B, |φ1〉B} behave like classical states. On the other hand, for a fixed value of α the
quantum discord takes its maximal value when η0 = 0.5. Simultaneously, the accessible information
for Bob is maximal in this case. As is apparent from Figure 1b, the maximum of the quantum discord
occurs at α = 1/

√
2 for any value of η0. This happens because D(A|B) is a concave function of α2 and it

is symmetric under interchange of α2 and 1− α2. Physically, we can say that when α2 = 1/2, the states
{|φ0〉B, |φ1〉B} are in an intermediate position between the two cases α2 = 0 and α2 = 1, where the
quantum discord vanishes and, consequently, there are no quantum correlations. On the other hand,
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the case α2 = 1/2 is the least similar to the aforementioned ones and, therefore, a maximum value of
the quantum discord is to be expected.
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Figure 1. (a) Accessible information and (b) quantum discord, when x = 1, as a function of the inner
product α for η0 = 0.5 (red line), η0 = 0.2 (green line), and η0 = 0.05 (black line).

4.2. Thermal Discord

Another measure of quantum correlations that we consider in the analysis of ME discrimination,
is the thermal discord. This takes into account the entropic cost of realizing local measurements.
The thermal discord is defined by [11,12]

Dth(A|B) = min
{Πb}

[S(ρ′B) +
1

∑
i=0

pb
i S(ρi

A|b)]− S(ρAB). (34)

In this case, the term S(ρ′B) + ∑1
i=0 pb

i S(ρi
A|b) to be minimized in the Equation (34) turns out to be

equal to the entropy S(ρ′AB) of the state ρ′AB of Equation (22), which corresponds to the joint state after
Bob’s measurement. Hence, the thermal discord is equal to the minimum entropy generation due to
the measurement implemented by Bob, which is also equal to the one-way quantum deficit [7,11,39].
Then the measurement-dependent thermal discord (DTD) is

Dth(A|{Πb}) = S(ρ′AB)− S(ρAB), (35)

and it corresponds to entropy generation due to Bob’s measurement in a particular basis {Πb}.
In general, the thermal discord is higher than or equal to the quantum discord [7,12,40], that is,

Dth(A|B) ≥ D(A|B). (36)

This indicates that the minimal generation of entropy must be higher or equal to the minimum
of the quantum correlations that are destroyed due to Bob’s measurement [16]. This inequality is
related to the second law of thermodynamics [12], by means of the entropic cost to take Bob’s system
to the initial state. Given that a projective measurement does not decrease the entropy [41], we have
S(ρ′B) ≥ S(ρB) and this is valid for any base chosen by Bob for implementing his measurement. On the
other hand, from the condition I(ρAB) ≥ J(A|B) we obtain that S(ρB) ≥ J(A|B). Thus, we have that

J(A|B) ≤ S(ρ′B). (37)

Equation (37) can be understood if we consider the scheme of ME as a thermodynamic cycle [17,42].
The second law establishes that the net work after completing a cycle cannot be positive, that
is Wout −Win ≤ 0. The work Wout that can be extracted is proportional to the classical mutual
information J(A|B) between Alice and Bob. The work invested Win is proportional to the Holevo
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bound S(ρB)−∑ ηiS(|φi〉B〈φi|) = S(ρB) plus the minimal erasure work to take the final state ρ′B to
the initial state ρB, which is equal to S(ρ′B)− S(ρB) ≥ 0. From this, it is clear that Win = kBTS(ρ′B)
and Wout = kBTJ(A|B), where kB is the Boltzmann constant and T is the temperature of the thermal
reservoir. Thereby, the second law of thermodynamics is satisfied [17–19].

In our case, to determine the thermal discord and the entropy generation in Bob’s measurement,
we consider that S(ρ′B) = −pb

0 log2 pb
0 − pb

1 log2 pb
1. For the entropy generation in ME, we evaluate the

function of Equation (35) for x = 1. On the other hand, the DTD in Equation(35) is a function of the
variable x that defines the measurement base in Equations (11) and it can be cast as

Dth(A|{Πb})(x) = −
1

∑
i,j=0

t2
ij log2(t

2
ij)− S(ρA). (38)

In order to find the thermal discord, we need to minimize it with respect to the variable x, then
we consider the restriction d

dx Dth(A|{Πb})(x) = 0. The last condition takes the following form

1√
1− x2

(
t00t01 log2

(
t2
00

t2
01

)
+ t10t11 log2

(
t2
10

t2
11

))
= 0. (39)

We solve Equation (39) numerically in order to find the values of x where the function
Dth(A|{πb})(x) takes its minimum values.

Figure 2a displays the values of x that allow us to attain the minimal value of the
measurement-dependent thermal discord, that is, the thermal discord as a function of the inner
product α for three values of η0. For η0 = 0.05 and η0 = 0.2 the variable x is close to the unity
in the complete interval of α values. For η ≈ 0.5 the values of x depart from the unity when α is
approximately equal to or larger than 0.5.

0 0.2 0.4 0.6 0.8 1,
0.6

0.7

0.8

0.9

1

x 
pa

ra
m

et
er

(a)

0 0.2 0.4 0.6 0.8 1,
0

0.2

0.4

0.6

0.8

1

E
nt

ro
py

 g
en

er
at

io
n 

an
d 

th
er

m
al

 d
is

co
rd

(b)

Figure 2. (a) Values of x that attain the thermal discord. (b) Entropy generation in minimum error (ME)
(solid line) and thermal discord (dashed line) as a function of the inner product α for: η0 = 0.49 (red
line), η0 = 0.2 (green line), and η0 = 0.05 (black line).

In the interval α ∈ [0, 0.5] the minimum error probability increases very slowly and is upper
bounded by the value 0.07 for any value of η0. Therefore, the discrimination process achieves a high
accuracy. In this regime, the coefficients m2

i are very small. As can be seen from Equation (5), the m2
i

coefficients are upper bounded by the value 0.035. In this case, the post-measurement state for ME
is approximately given by ρ′AB ≈ t2

0|00〉AB〈00|+ t2
1|11〉AB〈11|. A similar state can also be obtained

from Equation (22) considering a first order Taylor series expansion for mi and
√

1− x2. The latter is
suggested because it is easy to show that the base-dependent thermal discord is optimized at x = 1 for
α2 = 0. Thus, for small values of α2 the Taylor series expansion is a good guess. The state obtained in
this way has four eigenvalues that are functions of x. In order to minimize the entropy of this state, we
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can vanish two of the eigenvalues by choosing x = 1 independently of the value of η0. This procedure
leads to a state that agrees with the state ρ′AB above. Therefore, when the minimum error probability
Pmin

e is very small, that is, for α ≤ 0.5, entropy generation in the ME process approximately agrees
with the value of the thermal discord.

Figure 2b shows the generation of entropy in ME in solid lines and the thermal discord in dashed
lines, as a function of the inner product α and for three values of η0. We obtained that the entropy
generation in ME is higher than or equal to the thermal discord. This means that, in general, the base
for the thermal discord and for ME do not coincide. However, for small values of α the entropy
generation is very close to the thermal discord and consequently, in these cases, ME is also almost
optimal from the point of view of the entropy generation.

When the states {|φ0〉B, |φ1〉B} are orthogonal (α = 0) the entropy generation and thermal discord
are zero because in this case, as already pointed out, the joint state does not change, that is, ρ′AB = ρAB.
On the other hand, in the case α = 1 and η0 = 0, the state ρAB is a product state and thus the entropy
generation and thermal discord are also zero. The maximum value of entropy generation in ME
occurs for η0 = 0.5 as in the case of the maximum accessible information J(A|B) between Alice and
Bob. As in the case of quantum discord, thermal discord is a concave function of α2 and also has its
maximum when α2 = 1/2 for any value of η0. This means that quantum correlations (quantum discord
and thermal discord) indicate that the biggest disturbance, due to the quantum measurement, of the
initial joint state ρAB will be produced if α2 = 1/2. However, in general, the process of ME generates
more entropy than thermal discord as we see in Figure 2b. The maximum of the entropy generation
now arises at values closer to α2 = 1, depending on the value of η0. We see that for large overlaps
(which means a more difficult discrimination process) the entropy generation departs from the thermal
discord. In addition, as η0 increases, this departure becomes more “dramatic”. Large values of η0

implies in less bias towards some state in the set. So, large overlaps and large η0 bring more difficulty
in the discrimination process and require a larger effort to perform ME. The extreme case would be
η0 = 0.5 and α = 1. Finally, we would like to point out that the choice of η0 = 0.49 was considered in
order to show that when α = 1 the entropy generation goes to zero.

Figure 3a compares the average error probability of ME (solid lines) to the average error probability
obtained when employing the base that optimizes the thermal discord (dashed lines). As is apparent
from the figure, the base associated with the thermal discord discriminates the states {|φ0〉B, |φ1〉B}
almost as good as ME in the interval α ∈ [0, 0.5] for the three inspected values of η0. For α equal or
larger than 0.5, ME delivers the smallest average error probability. Thus, the base that optimizes the
measurement-dependent thermal discord provides a discrimination almost as good as optimal ME in
the interval α ∈ [0, 0.5] for the inspected values of η0.
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Figure 3. (a) Average error probability in ME (solid lines) and for the case when the measurement
base leads to the thermal discord (dashed lines). (b) Accessible information versus average success
probability in ME for η0 = 0.49 (red line), η0 = 0.2 (green line), and η0 = 0.05 (black line).
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4.3. Accessible Information and Optimum Success Probability

Finally, we study the relation between the accessible information J(A|B) and the optimal average
success probability in the minimum error discrimination. This can be done because the bases for
accessible information and optimal ME coincide. Figure 3b shows that for a fixed value of η0, the
accessible information J(A|B) increases as a function of the optimum probability of discrimination Popt

s .
When the states are orthogonal, i.e., α = 0, then Popt

s = 1 and the accessible information is maximal
for a fixed value of η0. On the other hand, if the states are equal, i.e., α = 1, then Popt

s = η1 and the
accessible information is equal to zero.

5. Conclusions

We studied ME discrimination for two non-orthogonal states generated with arbitrary a priori
probabilities from the point of view of the quantum correlations involved in the process. We recovered
a previously known result, namely, optimal ME allows us also to attain the accessible information
between the communicating parties, Alice and Bob. Thereby, in the ME discrimination process it is
possible to optimize simultaneously the average success probability as well as the information gained
by Bob through the measurement.

In general, the base that optimizes the measurement-dependent thermal discord does not agree
with the base that leads to ME. This implies that ME generates more entropy than the minimum
possible given by the thermal discord. However, for values of the inner product α in the interval [0, 0.5],
the entropy generated in the ME process is very close to the one obtained in the thermal discord. This
indicates that for these cases, the ME process is also efficient in terms of the generation of entropy.
Furthermore, when the discrimination process is carried out by measuring onto the base that leads
to the thermal discord, the average error probability becomes very close to the optimal value when
α ∈ [0, 0.5].

Quantum discord and thermal discord are zero when the states are orthogonal (α = 0) or when
we have only one state α = 1 or η0 = 0. Hence, in these cases, the ME protocol presents only a
classical behavior, i.e., the initial state does not change and there is no entropy generation with Bob’s
measurement. Otherwise, the scheme of ME presents quantum properties given that the quantum
discord and the thermal discord are greater than zero. Moreover, the quantum discord maximum and
the thermal discord maximum occur when α2 = 1/2, which is the intermediate point between the two
classical cases α = 0 and α = 1.

We showed that the process of ME discrimination satisfies the second law of thermodynamics
when it is considered as a thermodynamic cycle. Finally, we obtained that the amount of accessible
information increases as a function of the optimal average success probability of discrimination in the
minimum error discrimination strategy.

Here, we have studied the case of ME for two pure states. ME can also be formulated for
an arbitrary finite number of states, which points out to the possibility of generalizing our results
to this scenario. However, analytical solutions for ME are known in very few special cases such
as, for instance, sets of equally likely pure symmetric states [43] or two states with arbitrary prior
probabilities. Furthermore, in certain situations, when the number of states is larger than the dimension
of the underlying Hilbert space, the solution of ME requires the use of a positive-operator valued
measure, which is not analytically known. Therefore, the lack of analytical solutions prevents us
from extrapolating our results to more complex scenarios for ME. This also applies to other optimal
discrimination strategies, being these also complex optimization problems.

A feasible extension of our results might appear in the so-called sequential discrimination [44].
In this scenario, several parties attempt to discriminate among a set of states in such away that each
one of them has access to the post-measurement states generated by the other parties. All parties
cannot resort to classical communications. The strategy optimizes the joint discrimination probability.
Here, we could study the change of the classical and quantum correlations as the quantum system
encoding the unknown states passes from party to party.
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