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Abstract: Discrete entropy is used to measure the content of an image, where a higher value indicates
an image with richer details. Infrared images are capable of revealing important hidden targets.
The disadvantage of this type of image is that their low contrast and level of detail are not consistent
with human visual perception. These problems can be caused by variations of the environment
or by limitations of the cameras that capture the images. In this work we propose a method that
improves the details of infrared images, increasing their entropy, preserving their natural appearance,
and enhancing contrast. The proposed method extracts multiple features of brightness and darkness
from the infrared image. This is done by means of the multiscale top-hat transform. To improve
the infrared image, multiple scales are added to the bright areas and multiple areas of darkness
are subtracted. The method was tested with 450 infrared thermal images from a public database.
Evaluation of the experimental results shows that the proposed method improves the details of
the image by increasing entropy, also preserving natural appearance and enhancing the contrast of
infrared thermal images.

Keywords: discrete entropy; infrared images; low contrast; multiscale top-hat transform

1. Introduction

Thermal infrared imaging (TII) is emerging as a powerful and non-invasive tool to accurately
evaluate the thermal distribution of a body. TII is based on the physical phenomenon that all bodies
above absolute zero emit thermal radiation. The intensity and spectral distribution of emitted radiation
depend on the temperature, and its detection allows the creation of a thermal map of temperature
distribution. TII uses the thermal radiation to create an image similar to visible light imaging. However,
the use of this thermal radiation presents advantages over visible light in extreme situations since it can
provide valuable information from an environment independent of the quality of the environmental
light source, as is the case in foggy conditions or darkness, where TII can detect the presence of
individuals, objects, or animals [1,2]. This feature makes the utilization TII very competitive to
traditional methods in different fields as security, engineering, ecology, etc. [1–3].

Despite the advantages of TII, in some scenarios images may present low contrast, as well as
low-level and blur details. These issues are due to facts such as limitations of the cameras with
which the images are captured, conditions in the environment, etc. Therefore, contrast enhancement
techniques may yield higher image details [4,5].
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Many algorithms currently exist that enhance the contrast of infrared images. Histogram-based
algorithms are widely used to enhance the brightness areas of an infrared image [6–9]. One of the
most popular methods is the Histogram Equalization (HE). However, in the process of enhancing an
image, HE drastically changes the average brightness of the image, resulting in loss of information
and visually deteriorated images [10]. The HE variants cause the same problems, but to a lesser extent.
Hence, global histogram-based algorithms cannot improve image entropy [11–15].

Other strategies for improving thermal infrared image are based on mathematical morphology.
These are widely used to enhance contrast, improve details and edges, suppress noise, and enhance
small targets [4,5,16–22]. However, the technique has some problems associated with the shape and
size of the structuring element. In order to solve this problem, proposals have been presented where,
in the basic operations of mathematical morphology, two structuring elements of equal sizes and
different shapes are used [5,21,23]. Strategies have also been used within multiscale schemes, such as
sequential toggle operators, to achieve improvements in infrared images [4,22,24,25].

The top-hat transform is one of the most used operations of mathematical morphology. Image
enhancement by top-hat transform consists of adding bright areas and subtracting dark areas from
the original image [26–28]. To improve the performance of top-hat transform, it is normally used in
a multiscale scheme [29]. The multiscale top-hat transform can extract multiple useful features from the
image, which are then used to enhance the infrared image. The multiscale top-hat transform scheme is
widely used to make improvements in different types of grayscale images [26,30]. For example, it has
been used to enhance retinal images [31], ultrasound images [32], and infrared images [16,22,33].
It has also been used in applications such as visible and infrared image fusion [34–36], image
segmentation [37], and detection of small objects [21,22,38].

In the literature, the results obtained by infrared image enhancement algorithms based on
multiscale mathematical morphology are generally evaluated using the following metrics: Peak
Signal-to-Noise Ratio (PSNR) [21,30], which measures distortion in the improved images; and linear
index of fuzziness (γ) measure [4,5,20,33], which quantifies the improvement in blurriness of infrared
images. For the results of this work it is also of utmost importance to quantify the richness of the
details of the infrared image by means of its entropy [39,40], contrast enhancement [16] to differentiate
the objects from their background, and the mean brightness [11], which will tell us if the resulting
image maintains its naturalness after the process of enhancement.

In this article we propose a new method based on the multiscale top-hat transform.
Two geometrically proportional and flat structuring elements are used in top-hat operations [16].
The method improves the details of infrared images by increasing their global entropy. It also
introduces less distortion, preserves natural brightness, and enhances contrast in the resulting thermal
infrared images. In the proposed method, first the two structuring elements are selected to improve the
performance of the multiscale scheme. It then extracts the light and dark areas of the image on multiple
scales, and after that it sums and weighs the light and dark areas obtained. Finally, the infrared thermal
image is enhanced by adding the bright regions and subtracting the dark regions.

The contributions of this work are: (1) proposing the top-hat transform by using two structuring
elements of different sizes; (2) a new algorithm for improving entropy and contrast in TTI based on the
multiscale top-hat transform.

The article is structured as follows: Section 2 presents the preliminary concepts of entropy
and contrast, Section 3 presents the proposed method to improve the TII based on the multiscale
top-hat transform, Section 4 shows the experimental results, and Section 5 concludes with the main
contributions of the work.

2. Entropy and Contrast in Digital Images

TII often presents problems at the time of capture, such as poor details and low contrast. When
you want to solve the above problems by means of strategies to improve the image, other types of
inconvenience usually appear; for instance, loss of detail and naturalness in the image.
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Entropy [39–43] quantifies the information content of the image. It describes how much
uncertainty or randomness there is in an image. The more information the image contains, the
better its quality. In [44], Wang et al. propose a method based on fractional Fourier entropy map,
multilayer perceptron, and Jaya algorithm in multiple sclerosis identification. In [45], Zhang et al.
propose a smart detection method for abnormal breasts in digital mammography. In this case, fractional
Fourier entropy was employed to extract global features. In [46], Lee et al. investigate a framework for
expressing visual information in bits termed visual entropy, based on information theory.

The entropy (E) referred to here is Shannon’s entropy. In the field of information theory, entropy,
also called entropy of information and Shannon’s entropy, measures the uncertainty of a source of
information [47]. Shannon’s entropy is defined as:

E(I) = −
L−1

∑
k=0

p(k)log2(p(k)), (1)

where I is the original image, p(k) is the probability of occurrence of the value k in the image I,
and L = 2q indicates the number of different gray levels. E(I) is a convenient notation for the entropy
of an image, and should not be interpreted here as a mathematical expectation since I is not a random
variable. It is not difficult to prove that if q is the number of bits representing each pixel in the image,
then E(I) ∈ [0, q]; for this work q = 8 for infrared thermal images in gray scale.

In Figure 1 we can observe the histogram of an 8-bit image (histogram with uniform distribution).
In this case the entropy has maximum value, i.e., the entropy has a value equal to 8. This happens
when the probabilities of all possible results are equal. Also, it can be seen that the histogram uses
all the available dynamic range, that is to say in the histogram we visualize all the values of intensity
in the range [0, 255]. Minimal entropy happens when the result is a certainty and its value is zero.
In image processing, discrete entropy is a measure of the number of bits required to encode image
data [41]. The higher the value of the entropy, the more detailed the image will be.
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Figure 1. Histogram with uniform distribution.

Contrast is defined as the difference between the light and dark areas of the image. The higher
the variance of gray intensities, the higher the contrast. When the difference between the maximum
and minimum intensities of an image is very small, the image has low entropy and poor contrast.
Niu et al. [48] introduce a contrast enhancement algorithm of tone-preserving entropy maximization.
Yoo et al. [10] propose an image enhancement method called MEDHS (Maximum Entropy Distribution
based Histogram Specification), which uses the Gaussian distribution to maximize the entropy and
preserve the mean brightness.
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Unlike the methods mentioned above, in this work we propose a new method based on
mathematical morphology. This method increases the global entropy and contrast, improving the
details of the TII.

In Figure 2 we can see the infrared thermal image with its associated histogram. Observing the
histogram of the image, we can see that it does not effectively use the whole range of available intensity
values. This indicates that the image has poor entropy and low contrast. When calculating Shannon’s
entropy (Equation (1)) we can see that it has a value of E = 6.008.

(a)
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(b)

Figure 2. Thermal infrared image. (a) Original TII; (b) Histogram of TII.

As an example, Figure 3 shows the thermal infrared image (TII) obtained with the HE algorithm
and its histogram. The HE method enhanced the contrast of the TII by making it brighter. In the
histogram of the improved image we can visualize that the intensities are redistributed towards the
available extreme values, leaving many holes. However, the method did not improve Shannon’s
entropy, obtaining a value of E = 5.933, which is less than the entropy of the unprocessed Figure 2a.
Visually it is observed in Figure 3a that there is a loss in details, for example it is not possible to
differentiate well the horse from the person.

(a)
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(b)

Figure 3. Loss of information with enhanced contrast. (a) TII enhanced with HE; (b) Histogram of the
TII enhanced with HE.

To solve the problem of improving the image without incurring in a loss of the details and the
mean brightness of the image, we will make a detailed description of the proposed method based on
multiscale mathematical morphology in the following section.
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3. Enhancement of Thermal Infrared Images

The top-hat transform is one of the most used operations of mathematical morphology to obtain
improvements in the TII [4,5,16,20–22]. Two structuring elements of proportional sizes, equal shapes
and planes, will be used to improve the performance of the top-hat transform [16].

3.1. Classic Top-Hat Transform

The top-hat transform is a composite operation of mathematical morphology; it is defined from
other morphological operations, namely erosion, dilation, opening, and closing.

The morphological operations of dilation and erosion of I(u, v) for B(s, t), denoted by (I ⊕ B) and
(I 	 B), are defined as follows [27,49]:

(I ⊕ B)(u, v) = max
(s,t)∈I

{I(u + s, v + t) + B(s, t)}, (2)

(I 	 B)(u, v) = min
(s,t)∈B

{I(u + s, v + t)− B(s, t)}. (3)

where I is the original infrared thermal image whose pixels are represented for all (u, v) spatial
coordinates and B is the structuring element whose spatial coordinates are represented by (s, t).

The opening (I ◦ B) and closing (I • B) morphological operations of I(u, v) for B(s, t) are defined
from the dilation and erosion operations as follows [27,49]:

I ◦ B = (I 	 B)⊕ B, (4)

I • B = (I ⊕ B)	 B. (5)

The top-hat transform morphological operation [27] is defined from the morphological opening
and closing. White Top-Hat (WTH) is the top-hat transform through opening, Black Top-Hat (BTH) is
the top-hat transform through closing. WTH gets the bright areas and BTH gets the dark areas lost in
the opening and closing operations. Both transforms are defined as follows:

WTH = I − (I ◦ B) = I − ((I 	 B)⊕ B), (6)

BTH = (I • B)− I = ((I ⊕ B)	 B)− I. (7)

3.2. Modified Top-Hat Transform

The classical top-hat transform is characterised by the use of a single structuring element.
This makes its image processing performance inefficient [29]. To improve the performance of the
top-hat transform it is proposed to use two structuring elements, whose characteristics will be
proportional geometry and flat [16]. The Modified White Top-Hat (MWTH) and the Modified Black
Top-Hat (MBTH) transforms will be used for image improvement within the scheme of multiscale
top-hat transform.

Let the structuring elements be G and G′ geometrically proportional and flat. Then, the top-hat
transform that we will use in the multiscale scheme is defined as follows:

MWTH = I − ((I 	 G)⊕ G′), (8)

MBTH = ((I ⊕ G)	 G′)− I. (9)

Note that if G = G′, then Equations (8) and (9) are equal to Equations (6) and (7). Therefore,
the classical top-hat transform is a particular case of the modified top-hat transform. In [16], Román
et al. show that the modified top-hat transform improves thermal images, enhancing the contrast,
preserving the details and introducing less distortion.
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3.3. How Entropy is Changed by Top-Hat Transform

The Shannon entropy depends on both (a) the number of distinct values exhibiting a positive
frequency, and (b) how uneven the density function is, compared with a discrete uniform distribution.

The top-hat transform, working within a local region of the image, often generates new values
of grey, thereby causing a small to moderate increase in the entropy value of the region. This occurs
because Equations (8) and (9) can induce one or more new levels of grey when the logic is executed.

When one new level of grey h is added by the algorithm to a region being worked, it replaces
another value g at certain spatial position. There are two possibilities: either

• The old value g was unique in the region, with a count of 1, hence it disappears from the region
and is replaced by value h. No change in entropy occurs because in the old g bin of the histogram
the count of 1 becomes 0, and in the new h bin the count of 0 becomes 1; or

• The old value g existed in k > 1 pixels in the region. In this case the count in the g bin decreases to
k− 1, and the count in the h bin increases to 1. The following Lemma shows that this change in
the histogram increases the region’s entropy.

Lemma 1. Consider a rectangular region of m pixels in an image. Let H(X) be the original entropy of the grey
scale X in use. Suppose that grey level g appears in k pixels of the original image and grey level h does not
appear. Further, suppose that an image transformation replaces grey level g with grey level h at certain pixel of
the rectangular region. Then the entropy of the transformed region increases to

H′(X) = H(X)− pg [(1− ε) log(1− ε) + ε log(ε)] (10)

where the value of ε is 1/m, the inverse of the number of pixels in the region.

Proof. Without loss of generality assume 255 levels of grey; thus both g and h are integers in {1, ..., 255}.
As the sum of probabilities before and after the transformation equals 1, the increase in ph occurs at
the expense of a decrease in pg; that is, ph increases from 0 to εpg and pg decreases to (1− ε)pg.

For the region under consideration, Equation (1) can be written as

H(X) = −
255

∑
i=0

pi log(pi) = −[p0 log(p0) + · · ·+ p255 log(p255)].

After transformation, the probability corresponding to level g is broken down in two: a portion
εpg for newly incorporated level h and a portion (1− ε)pg for level g. Thus

H′(X) = [H(X) + pg log(pg)]− εpg log(εpg)− (1− ε)pg log((1− ε)pg)

= [H(X) + pg log(pg)]− εpg(log(ε) + log(pg))− (1− ε)pg(log(1− ε) + log(pg))

= [H(X) + pg log(pg)]− εpg log(ε)− εpg log(pg)− (1− ε)pg log(1− ε)− (1− ε)pg log(pg)

= H(X)− εpg log(ε)− (1− ε)pg log(1− ε)

> H(X).

The term −pg[ε log(ε) + (1− ε) log(1− ε)] is a positive value representing the increase in entropy
when a new level of grey is incorporated in the region. This completes the proof.

The smallest possible frequency for any level of grey in a region of m pixels is 1/m as mentioned
in the Lemma. In practice, ε may be larger than 1/m; this occurs when more than one pixel is assigned
the new grey level h. It is easy to show that ε = 0.5 would yield a maximum increase in entropy
at current iteration; however, according to the method proposed below (next subsection), entropy
increases incrementally as the algorithm iterates.
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3.4. Proposed Method Using Multiscale Top-Hat Transform

The proposed method is based on the multiscale top-hat transform. This method employs two
structuring elements in the top-hat transform to improve its performance. The proposed method
improves the image in terms of detail, contrast and mean brightness conservation. The infrared image
enhancement algorithm initially uses the following parameters: The original image I, the number of
iterations n in a range i ∈ {1, 2, . . . , n}, n > 1; and two structuring elements G and G′.

Multiple Brightness (MB) and Multiple Darkness (MD) areas will be obtained by top-hat
transform as follows:

MBi = I − ((I 	 Gi)⊕ G′i), (11)

where MBi is the i-scales of brightness extracted from the image, and Gi and G′i will grow in each
iteration. G

′
will always be greater than or equal to G.

MDi = ((I ⊕ Gi)	 G
′
i)− I, (12)

where MDi are the i-scales of darkness extracted from the image.
The Subtractions of the Neighboring Bright Scales (SNBS) are then calculated. This operation is

expressed as follows:

SNBSi−1 =

{
MBi −MBi−1, to i = 2

MBi − SNBSi−2, to i > 2
(13)

where SNBSi−1 are the (i− 1)-differences of the neighboring brightness scales obtained from the image.
Similarly, the Subtractions of the Neighboring Dark Scales (SNDS) are calculated. This operation

is expressed as follows:

SNDSi−1 =

{
MDi −MDi−1, to i = 2

MDi − SNDSi−2, to i > 2
(14)

where SNDSi−1 are the (i− 1)-differences of the neighboring dark scales obtained from the image.
The Sum of all the brightness (SMB and SSNBS) and darkness (SMD and SSNDS) values

obtained in the multiscale process are then calculated as follows:

SMB =
n

∑
i=1

MBi, (15)

SMD =
n

∑
i=1

MDi, (16)

SSNBS =
n−1

∑
i=1

SNBSi−1, (17)

SSNDS =
n−1

∑
i=1

SNDSi−1. (18)

Finally, the image enhancement (IE) will be obtained as follows:

IE = I + ω× (SMB + SSNBS)−ω× (SND + SSNDS), (19)

where ω ∈ [0, 1] is a weighting factor or regulator of the bright and dark areas.
The TII enhancement process is described in the following Algorithm 1.
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Algorithm 1 Proposed method for TII Enhancement

Input: I, G, G′, n, ω
Output: IE (Enhanced image)

Initialization : G, G′
1: for i = 1 to n do

2: Calculation of top-hat transform.

MBi = I − ((I 	 Gi)⊕ G′i) (Equation (11))

MDi = ((I ⊕ Gi)	 G
′
i)− I (Equation (12))

3: Calculation of subtractions from neighboring scales, obtained through the top-hat transform. The top-hat

is subtracted with the previous difference, from the first subtraction of the first neighboring top-hat.

SNBSi−1 =

{
MBi −MBi−1, to i = 2

MBi − SNBSi−2, to i > 2 (Equation (13))

SNDSi−1 =

{
MDi −MDi−1, to i = 2

MDi − SNDSi−2, to i > 2 (Equation (14))

4: end for

5: Calculation of the maximum values of all the multiple scales obtained.

SMB = ∑n
i=1 MBi (Equation (15))

SMD = ∑n
i=1 MDi (Equation (16))

SSNBS = ∑n−1
i=1 SNBSi−1 (Equation (17))

SSNDS = ∑n−1
i=1 SNDSi−1 (Equation (18))

6: TII enhancement calculation.The contrast enhancement calculation consists of adding the results of the

multiple bright scales to the original image and subtracting the results of the multiple dark scales.

IE = I + ω× (SMB + SSNBS)−ω× (SND + SSNDS) (Equation (19))
7: return IE

4. Results and Discussion

Experiments were performed by randomly selecting 450 TII of 324 × 256 from a public
repository [50]. We analyzed 9 different scenes of 50 images each one. Images were captured with an
infrared thermal camera FLIR Tau 320 with a resolution of 324× 256 pixels. Images in the database
are 8-bit and 16-bit. The database has no radiometric data. Tests were performed on the 8-bit images.
Figure 4 shows the scenes. The computer used has the following features: Pentium Dual-Core 2.3 GHz
processor, RAM 4GB, HD 1TB, and the operating system used was Windows 7.

In order to test the performance of the proposed method, we considered three different experiments:

• In the first part (Section 4.1) we perform a parameter adjustment to find good parameter values
that maximize the entropy of the output image after applying the proposed method.

• Then, in the second part (Section 4.2) we analyze the proposed method per iteration and
compare its performance with Multiscale Morphological Infrared Image Enhancement (MMIIE)
(mathematical morphology-based multiscale approach) [4].

• Finally, in the last part (Section 4.3), we apply the proposed method and compare the results
achieved with the proposed techniques with the following competitive methods from the
literature: HE, Contrast Limited Adaptive Histogram Equalization (CLAHE) [51], the method of
Kun Liang et al. [6] called IRHE2PL for infrared images, and the MMIIE method for infrared images.
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

(g) Scene 7 (h) Scene 8 (i) Scene 9

Figure 4. Examples of scenes from the database.

4.1. Parameter Tuning

In this section, the goal is to find a good combination of values of the parameters of ω and the
number of iterations n. Parameter ω has real values. As we cannot perform tests for all real values,
we take a selection criteria for values that we consider representative to get good outcomes for ω

and n. The search for more optimal values of these parameters could be approached in future work
as an optimization problem. For this experiment we applied the proposed method in the selected
dataset. Since we are seeking to optimize the entropy of the resulting image, we use such Equation (1)
as evaluation metrics.

The parameter values of the proposed method are presented in Table 1. As shown, we tested
different values of the number of iterations n and w. For n, we changed the value from 2 to 10.
No larger values were considered because the larger the value is, the more the image becomes
distorted. The parameter w was changed in the range of [0, 1] in increments of 0.05. A value of 0 gives
as result the original image. The initial structuring elements G and G′ are squares of 3× 3 and 15× 15,
respectively. In each iteration the two structuring elements will side increase in sizes of two.

Table 2 presents the results obtained. Each column refers to the corresponding iteration n while
each row corresponds to a different value of ω. Higher results are highlighted in bold. The highest
result is achieved with n = 8 and ω = 0.35. It is worth stressing that the entropy increases when the
iteration rises its value until the local optima and from there, values start to decrease.
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Table 1. Parameter values for the parameter tuning experiment.

Parameter Value(s)

n [2, 10]
ω [0, 1]
G 3× 3
G′ 15× 15

Table 2. Entropy values of the enhanced thermal infrared imaging (TII) obtained by the proposed
method with parameters ω and n.

ω
n

2 3 4 5 6 7 8 9 10

0.05 6.5931 6.5962 6.6041 6.6188 6.6396 6.6656 6.6950 6.7271 6.7607
0.10 6.5971 6.6120 6.6394 6.6777 6.7224 6.7696 6.8174 6.8658 6.9129
0.15 6.6037 6.6315 6.6756 6.7326 6.7900 6.8502 6.9100 6.9653 7.0099
0.20 6.6145 6.6577 6.7190 6.7861 6.8548 6.9228 6.9848 7.0326 7.0593
0.25 6.6242 6.6821 6.7540 6.8316 6.9081 6.9788 7.0349 7.0661 7.0648
0.30 6.6293 6.6970 6.7790 6.8678 6.9498 7.0185 7.0633 7.0702 7.0348
0.35 6.6430 6.7217 6.8089 6.9025 6.9851 7.0475 7.0740 7.0519 6.9828
0.40 6.6518 6.7420 6.8398 6.9380 7.0181 7.0673 7.0688 7.0161 6.9169
0.45 6.6568 6.7545 6.8607 6.9637 7.0394 7.0735 7.0505 6.9706 6.8448
0.50 6.6806 6.7872 6.8957 6.9957 7.0596 7.0726 7.0225 6.9165 6.7668
0.55 6.6824 6.7928 6.9068 7.0085 7.0647 7.0610 6.9900 6.8619 6.6915
0.60 6.6914 6.8113 6.9314 7.0295 7.0702 7.0450 6.9516 6.8011 6.6111
0.65 6.6945 6.8201 6.9451 7.0404 7.0682 7.0249 6.9112 6.7406 6.5330
0.70 6.7066 6.8408 6.9655 7.0516 7.0631 7.0010 6.8676 6.6786 6.4556
0.75 6.7161 6.8588 6.9835 7.0602 7.0550 6.9745 6.8216 6.6152 6.3778
0.80 6.7221 6.8707 6.9979 7.0639 7.0433 6.9462 6.7747 6.5531 6.3032
0.85 6.7259 6.8791 7.0077 7.0650 7.0303 6.9167 6.7289 6.4929 6.2319
0.90 6.7309 6.8906 7.0183 7.0641 7.0140 6.8843 6.6802 6.4311 6.1612
0.95 6.7326 6.8959 7.0235 7.0604 6.9973 6.8515 6.6320 6.3702 6.0927
1.00 6.7791 6.9368 7.0460 7.0610 6.9780 6.8134 6.5783 6.3055 6.0210

In Figure 5 we can see that images of the same scene with similar entropy, but with different
configurations of ω and n, get similar visual results. For the other experiments, we select the
configuration that has the best average.

(a) (b) (c)

Figure 5. Visual results obtained with the proposed method and the configuration of ω and n.
(a) Original TII with E = 6.7893; (b) TII enhancement with proposed method with ω = 0.35, n = 8 and
E = 7.4696; (c) TII enhancement with proposed method with ω = 0.45, n = 7 and E = 7.4467.
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4.2. Performance of Proposed Method per Iteration

In this section we compare the results per iteration between proposed method and MMIIE method,
using the 450 infrared thermal images. We compare the performance of the entropy (Equation (1)) and
with the following metrics:

• The Standard Deviation (SD), which quantifies the global contrast of the infrared images, is defined
as [16]:

SD(I) =

√√√√L−1

∑
k=0

(k− A(I))2 × p(k), (20)

where k is the pixel value of the image I, L− 1 is the maximum gray level, the average intensity of
the image is represented by A(I), and p(k) is the probability of occurrence of the value k. If SD(IE)

is greater than SD(I), then there is contrast enhancement.
• The metric adopted to measure the signal-to-noise ratio of an image is the PSNR.

Given the original infrared image I and the infrared image with enhancement IEN where the size
of the images is M× N, the PSNR between I and IEN is given by [30]:

PSNR(I, IE) = 10× log10
(L− 1)2

MSE(I, IE)
. (21)

The Mean Squared Error (MSE) is defined as:

MSE(I, IE) =
1

M× N

M−1

∑
u=0

N−1

∑
v=0

(I(u, v)− IEN(u, v))2. (22)

• The Absolute Mean Brightness Error (AMBE) [11], which quantifies the conservation of the mean
brightness of the processed image, is given by:

AMBE(I, IE) = |A(I)− A(IE)|, (23)

where I and IE represent the input infrared image and the image enhancement, respectively, A(I)
and A(IE) represent the mean brightness of the input infrared image and the image enhancement.
The lower the AMBE value, the better the mean brightness of the image is preserved.

• The linear blur index γ [4] is used to measure the performance of the infrared image enhancement.
It is defined as follows:

γ(I) =
2

M× N

M

∑
u=1

N

∑
v=1

min{puv, (1− puv)}, (24)

puv = sin[
π

2
× (1− I(u, v)

L− 1
)]. (25)

where M× N is the size of the infrared image. I(u, v) is the gray pixel value (u, v). L− 1 is the
maximum gray value of I. The performance of the algorithm is better if the value of γ is small.

Following the recommendations of Bai [4], we set the following parameter values for MMIIE
method. The number of iterations n was set to 10, the weights to w1 = 0.6, w2 = w3 = 1.5, and the
initial structuring element B was fixed to 3× 3. For the proposed strategy and taking into account the
parameter tuning, we fixed w to 0.35 and considered the same parameter values as in the previous
experiment; n = 10 and G and G′ to 3× 3 and 15× 15 respectively. In each iteration the two structuring
elements will increase in sizes of two. The average entropy of the 450 original thermal infrared images
is E = 6.5924. The proposed method and MMIIE was implemented using ImageJ [49].
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In Table 3 it can be seen the results on average on each iteration for the 450 images with the
proposed method and MMIIE method. Results in bold refer to the best results by iteration. According
to the results obtained we can say that the proposed method outperforms MMIIE method in four of
the five evaluation measures on every iteration, while MMIIE method achieves better results with γ.
Therefore, on average, the proposed method provides better contrast enhancement and signal-to-noise
ratio and higher level of detail. Furthermore, it also preserves better the brightness. On the other hand
MMIIEE method provides better blur effect. The computational time of the proposed method is higher
than that of the MMIIE method, but the proposed method obtains better results in fewer iterations
(lower n).

Table 3. Results achieved with the proposed method and Multiscale Morphological Infrared Image
Enhancement (MMIIE) method

n
Proposed Method MMIIE

E SD PSNR AMBE γ Time (ms) E SD PSNR AMBE γ Time (ms)

2 6.643 40.835 40.417 0.129 0.332 2328 6.324 30.247 16.236 38.072 0.194 454
3 6.722 41.969 33.564 0.286 0.320 3752 6.447 32.069 16.176 37.775 0.193 902
4 6.809 43.632 29.256 0.466 0.311 6719 6.441 33.016 16.211 37.528 0.192 1605
5 6.902 45.854 26.023 0.714 0.301 10,629 6.519 34.438 16.204 37.193 0.193 2759
6 6.985 48.556 23.509 1.107 0.293 11,947 6.515 35.486 16.216 36.902 0.194 4770
7 7.047 51.749 21.434 1.636 0.286 16,429 6.570 36.798 16.177 36.580 0.195 7187
8 7.074 55.353 19.693 2.299 0.281 19,979 6.565 37.558 16.194 36.318 0.196 9255
9 7.052 59.216 18.219 3.034 0.275 20,176 6.612 38.453 16.178 36.093 0.197 18,318

10 6.983 63.111 16.980 3.830 0.268 21,527 6.604 39.017 16.201 35.884 0.197 20,003

Figure 6 presents an example image from the dataset with its corresponding histogram.
The original image and its histogram is shown in Figure 6a,b respectively. Figure 6c is the resulting
image after applying MMIIE method and Figure 6e when applying the proposed method. In both
cases we have selected the iteration in which the entropy is maximum. It can be observed that the
proposed method presents a better redistribution of intensity levels in bright areas and has fewer peaks
according to its histogram (Figure 6d,f. It therefore leads to a better level of detail and contrast.

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. Example of a thermal infrared imaging (TII) to compare the proposed method and Multiscale
Morphological Infrared Image Enhancement (MMIIE) method. (a) Original TII with E = 6.8387 and
SD = 31.8204; (b) Histogram of the original image; (c) TII enhanced with the MMIIE method with
E = 6.8619, SD = 42.5731, and AMBE = 24.1018; (d) Histogram of the image enhanced with MMIIE;
(e) TII enhanced with the proposed method with E = 7.3629, SD = 58.8730, and AMBE = 2.1848;
(f) Histogram of the image enhanced with the proposed method.

4.3. Comparison of the Performance of the Proposed Method with State of the Art Methods

In this section we compare the proposed method with popular methods from the literature.
The methods used in this section are HE, CLAHE, IRHE2PL [6], and MMIIE. In this part we analyze
two results. First we are interested in knowing the percentage of images that are enhanced compared
to the original using each method. Then, we analyze the performance of each method on each
different scene.

The parameters of the various methods are as follows. For CLAHE, the method was implemented
with the MATLAB program, using its default values. For the IRHE2PL method the parameters are
described in [6]. For MMIIE method we set the number of iteration n to 9 and the weights to w1 = 0.6,
w2 = w3 = 1.5. Finally, the initial structuring element B was fixed to 3× 3 square. Results for this
method use the number of iterations that maximize the entropy. Finally, for the proposed method
we selected the best combination found in the first part. In this case n = 8, ω = 0.35, and the initial
structuring elements G and G′ are squares of 3× 3 and 15× 15, respectively. The HE, IRHE2PL, MMIIE
methods and the proposed method were implemented using the ImageJ library [49].

Table 4 shows the percentage of images that have been enhanced in terms of contrast. An image
is considered improved if the value of the standard deviation of the processed image is greater than
the original image. As we can see, the proposed method enhances the contrast of the 450 TII. HE has
a very high value with 98.89%, followed by IRHE2PL method, CLAHE method, and MMIE method
with 90.22%, 82.67%, and 47.56%, respectively.

Table 4. Contrast improvement percentage.

Methods Percentage of Images Improved (%)

HE 98.89%
CLAHE 82.67%

IRHE2PL 90.22%
MMIIE 47.56%

Proposed method 100%

4.3.1. Analysis of Methods by Scenes

The performance of each method in each scene is presented in Table 5. For each scene the first
row refers to the original image followed by the different methods used in this study. The two best
values for each metric are highlighted in bold. Results of each scene are presented are averaged over
all the images that belong to such scene. At the end the average over all images is also presented.
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Table 5. Average of the assessments of the 9 scenes obtained by the methods.

Methods E SD PSNR AMBE γ

Scene 1

I 6.814 32.336 - - 0.284
HE 6.596 73.420 11.543 48.519 0.406

CLAHE 7.557 50.808 15.984 24.259 0.401
IRHE2PL 6.814 36.776 29.603 7.065 0.293
MMIIE 6.910 43.573 17.005 25.392 0.164

Proposed method 7.418 60.136 16.767 1.887 0.273

Scene 2

I 7.039 55.330 - - 0.454
HE 6.844 73.364 20.479 3.101 0.400

CLAHE 7.500 53.721 21.237 1.657 0.488
IRHE2PL 7.036 58.604 33.310 6.802 0.453
MMIIE 7.038 45.486 13.085 48.345 0.273

Proposed method 7.601 69.425 18.215 1.534 0.419

Scene 3

I 5.945 18.269 - - 0.477
HE 5.881 73.063 10.789 47.807 0.408

CLAHE 6.970 32.154 19.839 18.275 0.485
IRHE2PL 5.945 42.197 20.011 13.270 0.326
MMIIE 6.133 20.900 17.288 32.819 0.127

Proposed method 6.826 30.332 23.205 0.136 0.273

Scene 4

I 6.808 41.521 - - 0.342
HE 6.642 73.148 12.977 41.972 0.407

CLAHE 7.482 48.135 18.560 19.816 0.422
IRHE2PL 6.808 56.144 22.617 11.306 0.313
MMIIE 6.848 35.941 16.106 33.095 0.149

Proposed method 7.566 56.723 19.019 1.328 0.312

Scene 5

I 7.052 40.839 - - 0.356
HE 6.901 73.319 14.793 32.298 0.404

CLAHE 7.620 50.630 17.786 15.352 0.433
IRHE2PL 7.048 45.807 32.631 11.444 0.307
MMIIE 7.025 44.123 15.660 34.956 0.173

Proposed method 7.505 61.669 17.599 2.584 0.317

Scene 6

I 6.272 24.626 - - 0.152
HE 6.158 72.882 8.091 86.636 0.408

CLAHE 7.200 42.379 16.477 31.714 0.263
IRHE2PL 6.272 37.308 21.316 17.733 0.179
MMIIE 6.035 28.802 21.602 15.389 0.048

Proposed method 6.702 40.545 20.893 2.284 0.114

Scene 7

I 6.990 67.015 - - 0.348
HE 6.783 73.516 18.535 19.921 0.398

CLAHE 7.548 66.298 19.828 7.159 0.400
IRHE2PL 6.987 75.173 33.982 14.009 0.295
MMIIE 7.125 53.062 12.017 54.459 0.327

Proposed method 7.204 75.462 19.735 1.405 0.323

Scene 8

I 6.219 28.522 - - 0.237
HE 6.131 72.805 8.042 89.033 0.409

CLAHE 7.134 41.543 16.828 31.090 0.309
IRHE2PL 6.219 62.031 11.319 60.173 0.334
MMIIE 5.952 23.883 21.792 14.567 0.077

Proposed method 6.589 37.486 23.014 2.426 0.118

Scene 9

I 6.191 53.458 - - 0.448
HE 6.001 80.909 13.975 41.396 0.329

CLAHE 6.459 59.638 19.045 13.075 0.440
IRHE2PL 6.188 67.644 30.537 10.979 0.386
MMIIE 6.438 50.305 11.052 65.813 0.433

Proposed method 6.254 66.401 18.794 7.105 0.378
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Based on the averages of the metrics E, SD, PSNR, AMBE, and γ we can conclude that:

• E metric: The CLAHE method and the proposed method are the methods that have the best
performance in terms of entropy for scenes 1 to 8. However, in scene 9 the CLAHE and MMIIE
methods have the best results.

• SD metric: The HE, CLAHE, IRHE2PL methods and the proposed method enhance the contrast
of the TII in the 9 scenes. The MMIIE method did not enhance the contrast of scenes 2, 4, 7, 8,
and 9. The HE method is the best performing method for all scenes and the proposed method is
in second place.

• PSNR metric: The methods that produce the less distortion to TII are the IRHE2PL, the proposed
method, and CLAHE.

• AMBE metric: For all scenes, the best method in regards to maintaining the average brightness is
the proposed method.

• γ metric: The MMIIE method and the proposed method present the best results in terms
of blurring.

In the results of scenes 7 and 9 we can see that the IRHE2PL method does not improve the entropy
of the image, but has a higher PSNR than the proposed method. This is because IRHE2PL generates
an image very similar to the original image. Figure 7 shows that the TII (scene 9) enhanced with the
IRHE2PL method (Figure 7b) is very similar to the original image (Figure 7a), contrary to the proposed
method, which improves the entropy and contrast of the image (Figure 7c).

(a) (b) (c)

Figure 7. (a) Original TII 449.png, E = 7.2210, SD = 53.1827; (b) TII enhanced with IRHE2PL method,
E = 7.2058, SD = 53.3164, and PSNR = 48.0940 and (c) TII enhanced with the proposed method,
E = 7.2411, SD = 62.8887, and PSNR = 20.6578.

4.3.2. General Analysis of Methods

In general none of the methods presented outperforms the other techniques in all evaluation
criteria. In almost all cases, the proposed method is the strategy that achieves the best performance in
entropy, contrast, and AMBE. Therefore, it is the one that provides better details and keeps a better
brightness. HE is the algorithm that yields higher contrast according to its good performance, in all
cases, with SD. The CLAHE method performs the best in entropy, so it preserves the details better.
The best signal-to-noise ratio is achieved by the IRHE2PL method and, so, it is the one that provides
the lowest distortion. Finally, the MMIIE method improves the blur effect in all cases. The proposed
method provides the best values in AMBE in almost all cases and in E, SD, PSNR, and γ results are
very competitive since it achieves high values that are close to the best value in many cases.

Now we can see a couple of examples in Figures 8 and 9. For each image enhancement method,
images were selected so that each method achieved the highest entropy value. In Figure 8 represents
a patio scene images with Figure 8a the original image. The results of HE is in Figure 8b and it presents
an excess of brightness. In Figure 8c the CLAHE method makes a moderate enhancement to the image.
However, in Figure 8d the IRHE2PL method does not enhance the contrast of the TII. In Figure 8e
the MMIIE method adds distortion to TII. Finally, in Figure 8f the proposed method enhances the
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contrast and improves the details of the TII. The second example, which represents a person with
a horse, is in Figure 9. The analysis is similar to the previous case. Therefore we can emphasize the
good performance of the proposed technique.

(a) (b) (c)

(d) (e) (f)

Figure 8. An example of comparison of a TII with a dark background. (a) Original TII, (b) TII enhanced
with HE method, (c) TII enhanced with Contrast Limited Adaptive Histogram Equalization (CLAHE)
method, (d) TII enhanced with IRHE2PL method, (e) TII enhanced with MMIIE method, and (f) TII
enhanced with the proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 9. This example shows a TII with a dark background and semi-bright objectives. (a) original
TII, (b) TII enhanced with HE, (c) TII enhanced with CLAHE, (d) TII enhanced with IRHE2PL, (e) TII
enhanced with MMIIE, and (f) TII enhanced with the proposed method.
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Finally, in Figure 10 we analyze the level of detail of the resulting image before and after applying
the proposed strategy. Numerical results suggest that the level of details increase with the proposed
method and this feature can be visually corroborated. For example, the resulting image in Figure 10b
presents an excellent contrast, and a well-defined detail, which makes easier its identification.

(a) (b)

Figure 10. TII with improved contrast and detail, (a) the Original TII with E = 6.9334 and SD = 58.24
and (b) the TII enhanced with the proposed method with E = 7.5783 and SD = 70.7615

5. Conclusions

In this work we have introduced an iterative contrast enhancement method for TII. This approach
is based on multiscale top-hat transform that improves the entropy of images, which implies an
improvement in the level of detail of the resulting image. Furthermore, the proposed method not only
improves the entropy but also preserves the brightness and enhances contrast.

The proposed method was compared with state of the art algorithms and has proved to be
competitive. It is noteworthy that the proposed method is the only algorithm that improved the
original image for all input images in terms of contrast.

Visually, the resulting image after applying the proposed method presents a higher quality than
the original image. This result is consistent with the performance of the algorithm. This proposed
method could be very useful for infrared thermal image analysis, object recognition, people tracking,
and other applications based on infrared thermal images.
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