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Abstract: Surface texture is a very important factor affecting the anti-skid performance of pavements.
In this paper, entropy theory is introduced to study the decay behavior of the three-dimensional
macrotexture and microtexture of road surfaces in service based on the field test data collected over
more than 2 years. Entropy is found to be feasible for evaluating the three-dimensional macrotexture
and microtexture of an asphalt pavement surface. The complexity of the texture increases with
the increase of entropy. Under the polishing action of the vehicle load, the entropy of the surface
texture decreases gradually. The three-dimensional macrotexture decay characteristics of asphalt
pavement surfaces are significantly different for different mixture designs. The macrotexture decay
performance of asphalt pavement can be improved by designing appropriate mixtures. Compared
with the traditional macrotexture parameter Mean Texture Depth (MTD) index, entropy contains more
physical information and has a better correlation with the pavement anti-skid performance index.
It has significant advantages in describing the relationship between macrotexture characteristics and
the anti-skid performance of asphalt pavement.
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1. Introduction

Surface texture is a very important factor affecting the anti-skid performance of pavements [1–3].
Due to the mutual interactions between tire and pavements during driving, the surface texture
wears continuously. Some observations show that anti-skid performance decreases under the vehicle
load [2,3]. The study of texture and wear characteristics are therefore helpful for civil engineers to
better understand the anti-skid performance of pavements. Generally, according to different influences
on the anti-skid performance, the road surface texture is divided into the macrotexture (wavelength of
0.5 to 50 mm and peak-to-peak amplitude of 0.2 to 10 mm) and the microtexture (wavelength of 0 to
0.5 mm and peak-to-peak amplitude of 0 to 0.2 mm) [4]. The Mean Texture Depth (MTD) and Mean
Profile Depth (MPD) are commonly used in engineering practice to evaluate the macrotexture [5,6].
However, these indexes still need to be improved in terms of reflecting the effects of texture on anti-skid
performance [7,8]. Since it is difficult to test microtextrue on the road surface, it is not required to
evaluate it in engineering practices, which is mainly controlled in the stage of aggregate selection [9,10].
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The development of three-dimensional testing technology provides a new method for the
evaluation of pavement surface texture, as indicated in the previous study [7], like the indoor
laser profiler [11], X-ray computerized tomography (CT) [12], laser technology [13], optical
three-dimensional scanner [14], three-dimensional laser device [15], and four-source photometric
stereo technique [16,17]. With the continuous progress of three-dimensional testing technology, many
commercial three-dimensional laser scanners have been developed and applied in the measurement
of the three-dimensional texture of pavement surfaces [18–21], and the corresponding resolution is
gradually improving. At the same time, in order to meet the needs of rapid testing, researchers are also
working to develop some on-board three-dimensional testing devices for on-site road surface texture
detection [22,23].

With the fast development of three-dimensional texture testing technology for pavement surfaces,
the study of fine texture features based on three-dimensional data is also carried out, like in Fourier
analysis [12], fractal theory [7] and texture analysis methods in image processing [24,25]. In recent years,
Shannon’s Entropy theory has been widely used as a powerful tool for image analysis [26–28], being
significantly convenient for describing the complexity of texture. It should be noted that pavement
macrotexture has been analyzed using fractal theory [7], Co-occurrence Matrix [24], gray tone difference
matrix [25], and degradation analysis [29] in previous research. The introduction of entropy theory to
this area can still help civil engineers better study the decay behavior of three-dimensional macrotexture
and microtexture of road surfaces. There have been lots of studies on the bulk properties of pavements
using various numerical and testing approaches [30–33], and the mechanism of the surface properties,
e.g., pavement texture is still not fully understood. In this study, the current research progress and
methods of 3D texture data acquisition in the field are introduced first. Following this, the feasibility of
entropy theory in describing three-dimensional macrotexture and microtexture features is investigated.
Third, the entropy of the three-dimensional texture is taken as an index to investigate the decay
behavior of the macrotexture and microtexture of pavement surfaces. Finally, the advantages of
three-dimensional macrotexture entropy in describing the decay of pavement anti-skid performance
compared with a traditional MTD index are presented.

2. Field Data Collection

In order to study the decay characteristics of asphalt pavement surface texture with traffic wear,
different types of asphalt surface on several highway and urban roads in Beijing were tested from
November 2010 to November 2012. Seven tests were carried out during the period, where six different
types of asphalt pavements were covered, including dense asphalt concrete (DAC), stone matrix
asphalt (SMA), rubber asphalt concrete (RAC), ultra-thin wearing course (UTWC), micro-surfacing
(MS), and open graded friction course (OGFC). The basic information of the test was described in
detail in [7]. Due to the influences of pavement maintenance during the test period, the MS and OGFC
measurement points did not result in continuous test data, and some DAC measurement points did not
include a decay analysis due to the low traffic volume. The detailed decay analysis of the measurement
points and traffic volume were presented in [29].

A commercial hand-held 3-D laser scanner (Creaform Inc., Lévis, QC, Canada), based on the
laser triangulation technique, is used to collect the three-dimensional macro and micro textures of the
pavement surface. The scanner consists of three charge-coupled devices (CCDs) and a cross laser [24].
By collecting the coordinates of a series of points on the surface of the object, the 3-D image of the
surface can be obtained. The minimum sampling point spacing is 0.05 mm, and the measuring accuracy
is 0.04 mm. The test results can be outputted to a variety of standard 3-D image file formats, such as
stl., iges., etc. For more detailed information, refer to [7]. Figure 1 shows the field test photos. For the
macrotexture, in the first two tests, the sampling size was 90 mm× 90 mm, and in the last five tests, the
sampling size was 190 mm × 190 mm. All macrotexture scanners use a sampling interval of 0.4 mm to
edit the 3-D images obtained by scanning. First, the commercial 3-D image software Geomagic Studio
(3D Systems, Inc., Research Triangle Park, NC, USA) is used to edit the images, and then the data is
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transformed into ordered point clouds with an equal spacing distribution in two horizontal directions
through the simulation scanning tool. Furthermore, the Fast Fourier Transform is used to filter the
part whose wavelength exceeds 50 mm. According to [4], these components are beyond the scope of
the macrotexture. The ordered point cloud data with a sampling interval of 0.5 mm in the x and y
directions are finally obtained, and used for the macrotexture analysis. The detailed information was
described in detail in [7]. For the microtexture, the test method was the same as for the macrotexture,
except that a sampling interval of 0.05 mm was used. Based on the scanned three-dimensional data, the
filtering process is carried out according to the frequency and wavelength range of the microtexture [4].
Finally, the ordered point cloud data with a size of 5 mm × 5 mm and a sampling interval of 0.05 mm
in the x and y directions are obtained for the analysis of the microtexture. One macrotexture and two
microtextures are collected at each test point. Figure 2 is the result of typical macrotexture testing
after filtering, and Figure 3 is the result of a typical microtexture by measuring and after filtering.
For the macrotexture, since only the part whose wavelength is larger than 50 mm is filtered out, this
wavelength value is several times the size of the particle exposed on the pavement surface, and the
filtered image has not intuitively changed. For the microtexture, because it is necessary to filter out
the part whose wavelength is more than 0.5 mm, which is much smaller than the size of the particle
exposed on the pavement surface, the filtered microtexture loses the true morphology characteristics
of the pavement surface.
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Figure 1. Field tests: (a) the 3-D scanner; (b) sand patch test for the mean texture depth (MTD); (c) 
Scanning test; and (d) dynamic friction tester (DFT) test. 
Figure 1. Field tests: (a) the 3-D scanner; (b) sand patch test for the mean texture depth (MTD);
(c) Scanning test; and (d) dynamic friction tester (DFT) test.
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3. Characterizing Surface Texture of Asphalt Pavement Using Entropy Theory

Denote a grey level image as I= {G(x, y), x = 1, 2, . . . , Nx, y = 1, 2, . . . , Ny}, where G(x, y) is the
grey level at (x, y), and Nx and Ny are the pixel numbers along the x and y directions respectively.
Following this, the probability of grey level i is

pi =

Nx
∑

x=1

Ny

∑
y=1

δ(G(x, y), i)

Nx × Ny
(1)

where δ(i,j) is the Kronecker delta function.

δ(i, j) =

{
1 i = j

0 i 6= j
(2)

If an image has the maximum grey level of Ng, the entropy (E) of the image can be defined as [34]

E =
Ng

∑
i=1

pi log2

(
1
pi

)
(3)

The 3-D texture measurements should be converted into grey-level images so that they can be
characterized by entropy. First, the height range of a given 3-D texture measurement is divided into
sections using a given interval. Following this, a corresponding grey-level image is obtained through
mapping each height section onto a grey level. Reference [24] describes the conversion techniques
in detail. Figures 4 and 5 depict the grey-level images corresponding to the 3-D measurements in
Figures 2 and 3, respectively. Finally, the Entropy E can be calculated for each 3-D texture measurement
in accordance with Equation (3).
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Figure 6 presents the entropy distribution of the macrotexture and microtexture of different types
of pavements, where D1 and D2 represents the DAC pavement, M represents the MS pavement, O
represents the OGFC pavement, R represents the RAC pavement, S represents the SMA pavement, and
U1 and U2 represent the UTWC pavements constructed over different years. The detailed information
of various pavement parameters is referred to in [29]. As shown in Figure 6a, there are significant
differences in the entropy of the macrotexture of different types of pavement surfaces. Among them,
the entropy of MS pavement is the smallest and that of OGFC pavement is the largest. It is noted that
there is a clear distinction between U1 and U2, in which U1 is the pavement opened in September,
2009, and U2 is the pavement opened in September, 2010; this indicates that entropy can be used to
describe the macrotexture decay of the pavement surface. Figure 6a has the same distribution trends
as those of previous research [24], indicating that the use of entropy is reasonable and accurate. For the
microtexture, the range of the entropy distribution is narrow (Figure 6b), and the difference between
different pavements is not very obvious. This may be because the microtexture is mainly affected by
mineral aggregates and is less affected by mixture gradation.
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4. Characterization of Macrotexture Degradation with Entropy

4.1. Degradation of Macrotexture Entropy

In order to analyze the decay of the macrotexture of the asphalt pavement by the entropy value,
the experimental data is grouped according to the type of pavement and cumulative traffic volume
of service. Figure 7 presents the changes of entropy of the macrotextures of DAC, SMA, RAC and
UTWC pavement surfaces with cumulative traffic volume by box-and-whisker plots, in which the
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mark inside the box is the median, the lower and the upper edges of the box are the 1st and 3rd
quartiles, respectively, and the “x” are the outliers. Before analyzing the decay trend, it is necessary
to note that the aggregate types used in the four types of pavement are not identical. DAC and RAC
pavements used one type of aggregate, while SMA and UTWC pavement used another type. In the
early service stage of roads, the entropy of the RAC surface macrotexture is the largest amongst the
four types of pavement, with an average value of 5.90 (after a 0.22 × 106 standard vehicle passes),
followed by the UTWC and SMA pavements, with an average value of 5.83 (after a 0.54× 106 standard
vehicle passes) and 5.61 (after a 0.59 × 106 standard passes), respectively. The entropy of the surface
macrotexture of DAC is the smallest, with an average value of 5.20 (after a 0.31 × 106 standard vehicle
passes). Despite some fluctuations in data, for the DAC, RAC and UTWC pavements, it is clear that
the entropy of the macrotexture of the pavement surface decreases gradually with the increase of the
cumulative traffic volume. The DAC pavement decay is the most obvious. After a 2.29 × 106 standard
vehicle passes, the average entropy of DAC’s macrotexture decays to 4.34, and the average entropy of
DAC’s macrotexture decays to 8.37% for every 1 × 106 standard vehicle passing. After a 2.20 × 106

standard vehicle passes, the average entropy of RAC’s macrotexture decays to 5.48, with an average
decay rate of 3.6% for every 1 × 106 standard vehicle passing. After a 7.40 × 106 standard vehicle
passes UTWC, the average entropy of the macrotexture decays to 5.40, and the average decay rate is
1.07% for every 1 × 106 standard vehicle passing, respectively. The entropy of the macrotexture of
the SMA pavement surface does not obviously decay. After a 4.61 × 106 standard vehicle passes, the
average entropy of the macrotexture is still 5.59, which is basically consistent with the mean value
of a 0.59 × 106 standard vehicle passing. The analysis using entropy theory obtains similar results
compared with our previous research [29]. Pavements with different gradations will have different
sizes of aggregates exposed on the surfaces. Due to the difference of wear performance of different
size particles, there are different decay trends in the macrotexture of different pavements. On the other
hand, the difference of aggregate types should also be noticed.
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4.2. Changing Trends of Entropy in Macrotexture

In order to quantitatively depict the decay trend of the macrotexture of the pavement surfaces,
a logarithmic model (as shown in Equation (4)) is used for a regression analysis of the change trend of
the average entropy with the cumulative traffic volume, corresponding to the different cumulative
traffic volumes of each pavement. Table 1 gives the least squares analysis results of four kinds of road
regression analyses. Table 2 lists the mean square errors (MSEs) and R-squares of regression analyses
of four kinds of pavements. The regression parameters of the model are listed in Table 3, as [29].

E = a× ln(tra f ) + b (4)

where traf is the cumulative traffic volume, and a and b are the fitting coefficients.

Table 1. Least-squares analysis of the model for the mean entropy of the macrotextures. Dense asphalt
concrete (DAC); Stone matrix asphalt (SMA); Rubber asphalt concrete (RAC); and Ultra-thin wearing
course (UTWC).

Surface Type Model Sum of
Squares

Error Sum of
Squares

Corrected Total
Sum of Squares F Value P > F

DAC 0.4518 0.3416 0.7935 6.61 0.0499
RAC 0.0893 0.0353 0.1246 12.63 0.0163
SMA 0.000343 0.0152 0.0156 0.11 0.7509

UTWC 0.1531 0.0548 0.208 22.35 0.0015

Table 2. The mean square errors (MSEs) and R-squares of the regression model for the mean entropy of
the macrotextures.

DAC RAC SMA UTWC

MSE R2 MSE R2 MSE R2 MSE R2
0.0683 0.5695 0.0071 0.7167 0.0030 0.0256 0.0068 0.7365
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Table 3. Fitting coefficients of the model for the mean entropy of macrotexture.

Surface Type DAC RAC SMA UTWC

a −0.3929 −0.1525 0.0105 −0.1609
b 4.9734 5.6611 5.6569 5.8139

As shown in Table 1, for the DAC, RAC, and UTWC pavements, the p-value is below 0.05,
indicating that the logarithmic model is significant for these three types of pavement. For the SMA
pavement, the p-value is 0.7509, much higher than 0.05, indicating that the logarithmic model is not
significant for the SMA pavement, which is mainly due to the fact that the entropy of the macrotexture
of the SMA pavement has not decayed significantly over more than two years of observation. Although
the logarithmic model is not significant for the SMA pavement, Table 2 shows that the MSE fitted
by the model is only 0.0030. Figure 8 presents the changes of the average entropy of four types of
pavement macrotextures fitted by the logarithmic model.
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According to Equation (4), the coefficient a described the decay rate. The smaller the value of a,
the faster the decay rate. As mentioned above, the DAC and RAC pavements have one same aggregate
type, and the SMA and UTWC pavements have another type. Because the aggregate type has a
potential impact on the pavement wear, the decay of the macrotexture entropy of the pavement surface
should take the difference between different aggregate types into account. From Table 3 and Figure 8,
it can be seen that the macrotexture of the DAC pavement decreases fastest. The RAC and UTWC
pavements have a similar macrotexture decay trend. The SMA pavement maintains a stable entropy
after 4.61 × 106 standard vehicle passes, which should be attributed to the specific gradation of SMA.
Note that the trends using the mean entropy are very similar to those from the previous analysis [29],
which validates our research accuracy.

4.3. Relationship of Macrotexture Entropy and MTD with DFT60

In the field tests from November 2010 to November 2012, the mean texture depth (MTD) was
tested by a sand patch method at each test point, and the friction performance of the pavement was
tested by a dynamic friction tester (Nippo Sangyo Co., Ltd., Tokyo, Japan), which is described in detail
in [29]. In order to investigate the potential advantages of the entropy theory in describing the texture
characteristics of asphalt pavement surfaces, based on the mean values of entropy, MTD and DFT60 for
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each pavement with different cumulative traffic volumes, the correlation among E, MTD and DFT60
are analyzed. The Pearson correlation coefficients are listed in Table 4.

Table 4. Pearson correlation coefficients between the Mean E, Mean texture depth (MTD), and
Mean DFT60.

Surface Type DAC RAC SMA UTWC

Mean E VS Mean MTD 0.6041 0.7139 −0.0932 0.7997
Mean E VS Mean DFT60 0.8283 0.3407 0.7036 0.9169

Mean MTD VS Mean DFT60 0.5323 0.7298 −0.0635 0.8474

It can be seen from Table 4 that for the DAC, RAC, and UTWC pavements, there is a certain
correlation between entropy and MTD. However, the Pearson correlation coefficients are below 0.8,
and there is no significant correlation between the entropy and MTD of the SMA pavement. This
shows that entropy describes some features of the macrotexture of the pavement surface, which the
MTD indexes fail to describe. Comparing the correlations between entropy, MTD and DFT60, it is
found that the Pearson correlation coefficients of entropy and DFT60 are significantly higher than
those of MTD and DFT60 except for RAC. For the DAC, SMA and UTWC pavements, the correlation
coefficients of entropy and DFT60 are 0.2960, 0.6401 and 0.0695 higher than the Pearson correlation
coefficients of MTD and DFT60, respectively. This shows that entropy has more advantages than MTD
in describing the impact of macrotexture on the anti-skid performance of asphalt pavement. Figure 9
plots DFT60 against the entropy E and MTD of different types of asphalt pavements, which could
more intuitively reflect the advantages of E.
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5. Characterization of Microtexture Degradation with Entropy

5.1. Degradation of Entropy of Microtexture

In the field test, two microtextures were collected at each test point, and the mean value of the
two microtextures’ entropy is used as the evaluation basis for the feature evaluation. Similar to the
macrotexture, the experimental data is grouped according to the cumulative traffic volume of different
pavement types and services. Figure 10 gives the variation of the microtexture entropy of the DAC,
SMA, RAC and UTWC pavement surfaces with the cumulative traffic volume by box-and-whisker
plots, where the mark inside the box is the median, the lower and the upper edges of the box are the
1st and 3rd quartiles, respectively, and the “x” are the outliers. Note that the aggregate types used in
the four types of pavement are not identical. The DAC and RAC pavements used one same type of
aggregate, while the SMA and UTWC pavements used another. In the early service stage of roads, the
average values of DAC, SMA, RAC and UTWC are 6.54 (after a 0.31 × 106 standard vehicle passes),
6.68 (after a 0.59 × 106 standard vehicle passes), 6.66 (after a 0.22 × 106 standard vehicle passes), and
6.59 (after a 0.54 × 106 standard vehicle passes).

Because the decay of microtexture is mainly caused by the polishing of aggregate particles on the
surface of pavements, the decay of microtexture is relatively slow, and the absolute value of entropy
decay is much smaller than that of macrotexture. Nevertheless, Figure 10 could identify that the
entropy of the four types of pavement surface microtextures gradually decreases with the increase of
the traffic volume. After a 2.29 × 106 standard vehicle passes, the average entropy of the DAC texture
decays to 6.19, and the average decay rate is 2.71% for every 1 × 106 standard vehicle passing. The
average entropy of the microtexture of the RAC pavement decays to 6.27 after a 2.20 × 106 standard
vehicle passes, and the average decay rate is 2.97% for every 1 × 106 standard vehicle passing. The
average entropy of the SMA pavement texture decays to 5.93 when a 4.61 × 106 standard vehicle
passes, with an average decay rate of 2.80% for every 1 × 106 standard vehicle passing. After a
7.40 × 106 standard vehicle passed the UTWC pavement, the average entropy of the microtexture
decays to 5.96, and the average decay rate is 1.37% for every 1 × 106 standard vehicle passing. The
microtexture decay behavior of different types of pavements is similar.
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5.2. Changing Trends of Entropy of Microtexture

In order to quantitatively depict the decay trend of the microtexture of the pavement surface,
based on the average value of entropy corresponding to the different cumulative traffic volume of each
pavement, the power function model (as shown in Equation (5)) is used to analyze the trend of the
average entropy with the cumulative traffic volume by comparing various models. Table 5 shows the
least squares analysis results of four kinds of road regression analyses. Table 6 lists the mean square
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errors (MSEs) and R-squares of a regression model. The regression parameters of the model are listed
in Table 7, as [29].

E = a× tra f b (5)

where traf is the cumulative traffic volume, and a and b are the fitting coefficients.

Table 5. Least-squares analysis of the model for the mean entropy of the macrotextures.

Surface Type Model Sum of
Squares

Error Sum of
Squares

Corrected Total
Sum of Squares F Value P > F

DAC 229.9 0.1848 0.2590 2487.7 <0.0001
RAC 276.1 0.3141 0.3848 2197.2 <0.0001
SMA 270.9 0.267 0.4222 2536.0 <0.0001

UTWC 358.6 0.2981 0.3765 4210.4 <0.0001

Table 6. The MSEs and R-squares of the regression model for the mean entropy of the microtextures.

DAC RAC SMA UTWC

MSE R2 MSE R2 MSE R2 MSE R2
0.0462 0.2864 0.0628 0.1836 0.0534 0.3676 0.0426 0.2082

Table 7. Fitting coefficients of the model for the mean entropy of microtextures.

Surface Type DAC RAC SMA UTWC

a 6.2081 6.279 6.412 6.4559
b −0.0257 −0.0216 −0.0357 −0.0183

For the four types of pavements, all the p-values below are 0.0001. Table 5 shows that the R-square
value is low, and the SMA pavement with the largest R-square value is only 0.3676, indicating that the
regression model is not very ideal. This is mainly due to the small decay variation of the microtexture
entropy and the fluctuation of the test data. Figure 11 presents the variation curves of the average
entropy of the four types of pavement microtextures fitted by power model. Although the regression
model is not perfect, the model can still be used for some simple analyses.
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According to Equation (5), coefficient b describes the decay rate, and the larger the value b, the
faster the decay rate. As mentioned above, the DAC and RAC pavements use one same aggregate
type and the SMA and UTWC pavements use another type. This difference should be noticed when
analyzing the difference of microtexture entropy between the different pavements. According to
Table 7 and Figure 11, the SMA pavement surface texture decay rate is the fastest, followed by the
DAC and RAC pavements, and the UTWC pavement decay rate is the slowest. The average decay of
entropy is less than 2.7% for every 1 × 106 standard vehicle passing, for all four types of pavements.

6. Discussion

According to the definition of pavement texture entropy in Equations (1) to (3), it can be seen that
the possible range of entropy of the macro- or micro- textures of the pavement surfaces is [0, log2(Ng)].
In a plane, if there is only one grey value, the pi of this grey value is 1, which leads to zero entropy.
For the same texture with Ng, when all grey values correspond to the same pi, the entropy reaches the
maximum value [34]. The larger the Ng, the greater the maximum value. For the pavement surface
texture, the complexity of the texture increases with the increase of the entropy. Under the polishing
action of the vehicle load, the surface of the pavement tends to be smooth, showing the entropy
decreasing gradually. Compared with the MTD index, entropy contains more physical information. At
the same time, the correlation between macrotexture entropy and DFT60 is significantly higher than
for MTD. The entropy has obvious advantages over the traditional MTD index in the macrotexture
evaluation of pavement anti-skid performance.

According to the test results in this paper, the difference of microtexture entropy between different
pavements is not very significant, and the law of decreasing with traffic volume is not very significant.
On one hand, the microtexture is mainly influenced by aggregate particles, and the difference of
aggregates between different pavements is not prominent. On the other hand, the polishing process of
the aggregate surface is relatively slow, and may require a larger load to show a significant decay trend.

It should be noted that the wavelength of microtextures is less than 0.5 mm according to
the division of the texture scale, which requires a very small sampling interval to reflect the real
microtexture. Some researchers used a 0.001 mm sampling interval to test and analyze microtextures
in laboratory experiments [11]. However, in order to evaluate the microtexture of real pavements, it
is necessary to sample the pavement by drilling holes, which causes great damage to the pavement
surface. At present, there is no report on pavement field test equipment which can reach a 0.001 mm
sampling distance. In this paper, a 3-D scanner with a 0.05 mm sampling distance is used to test and
analyze the microtexture of the pavement field. Although the microtexture cannot be fully reflected in
this study, the present research can, as an exploration, still provide guidance for future studies.

The valuation of pavement surface texture has important engineering application values. On the
one hand, it can directly establish the relationship between the texture of road surfaces and anti-skid
performance, which can be used to evaluate anti-skid performance. On the other hand, the pavement
surface texture depends on the gradation of the asphalt mixture and the morphological characteristics
of aggregates. The pavement surface texture is a bridge connecting the asphalt mixture design and the
anti-skid performance of the pavement. The description of texture featured by traditional evaluation
indexes provides an insufficient connection between texture evaluation and anti-skid performance,
and thus the engineering value of texture evaluation has not been fully revealed, while the widely-used
design method of anti-skid performance of asphalt pavement has not been formed. Our research
results show that the use of entropy to describe the macrotexture of pavement surfaces contains more
physical information, and indicates the relationship between macrotexture and anti-skid performance.
On the one hand, with the accumulation of data by the popularized 3-D texture testing method
in engineering practice, using entropy as a texture index can improve the evaluation of pavement
anti-skid performance. On the other hand, it is feasible to use entropy as a texture index to connect
the anti-skid performance of asphalt mixture and pavement and improve the design method of the
anti-skid performance of asphalt pavement.



Entropy 2019, 21, 208 20 of 22

7. Conclusions

In this paper, based on the data of seven field tests on the surface texture and friction characteristics
of various types of asphalt pavements over more than two years, the macro-/micro- texture
characteristics and decay of 3-D asphalt pavement surfaces were studied using the theory of entropy.
Through this research, the following conclusions can be drawn:

(1) The entropy distribution range of the 3-D macrotexture of asphalt pavements is wide, and there
are significant differences among different gradation pavement types. There are significant
differences in the entropy of the 3-D macrotextures of asphalt pavements with different mixture
designs. The difference of 3-D microtextures is not very obvious. Furthermore, the distribution
range of macrotexture entropy is wider than that of microtextures. The macrotexture of asphalt
pavements is mainly affected by the gradation of mixture, while the microtexture is mainly
affected by the surface morphology of aggregates.

(2) There are significant differences in the decay characteristics of 3-D macrotextures of asphalt
pavements with different mixture types, which indicates that the decay characteristics of
the macrotexture of asphalt pavement surfaces could be significantly improved by choosing
appropriate mixture types and optimizing the design.

(3) Compared with the traditional macrotexture parameter MTD, entropy contains more physical
information and a better correlation with the pavement anti-skid performance index. It has
significant advantages in describing the relationship between macrotexture characteristics and
anti-skid performances of asphalt pavements.

(4) This paper attempts to collect the 3-D microtexture of pavement surfaces with a 0.05 mm sampling
interval. The decay law of the 3-D microtexture of different types of asphalt pavements is not
very significant; this may require a longer observation time and more innovative methods to
obtain more detailed microtextures for further studies.
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