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Abstract: The concept of disturbance is of transcendental importance in Quantum Mechanics
(QM). This key concept has been described in two different ways, the first one considering that
the disturbance affects observables like x and p, as in the Heisenberg’s analysis of the measurement
process and the other one takes into consideration that disturbance affects the state of the system
instead. Entropic information measures have provided a path for studying disturbance in these both
approaches; in fact, we found that initially it was studied by employing these entropic measures.
In addition, in the last decade, there was an extensive amount of analyses and several new definitions
of the disturbance concept emerged. Many crucial factors like this have inspired this concise paper
which gathers the different concepts and definitions that have emerged through time for the better
understanding of this topic.
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1. Introduction

The key concept of disturbance is inherent in Quantum Mechanics (QM) due to the nature of the
systems and the nature of the observer. In this regard, one of the most significant examples of the
importance and the necessity for a good definition of disturbance is given by the security of the BB84
scheme on quantum cryptography. In this case, the public test certifies that none of the four states that
a sender sent was disturbed, "but any measurement which fails to disturb nonorthogonal states also
yields no information about them” [1]. The key point in the demonstration of the statement of Bennett
et al. is in the fact that, if there is no a disturbance, then the eavesdropper system is left in the same
state after interacting with the state sent, i.e., the eavesdropper does not acquire any information [1].

On the other hand, the concept of disturbance represents one of the striking characteristics of
how QM differentiates from classical mechanics. Indeed, the development of QM in the early years of
its conception was driven by the idea of getting to know the microscopic world and, consequently,
understand the effects that the classical theory could not explain. In this regard, it was believed that
the interaction between the observer and the observed could not exist without a disturbance due to
the difference of size (It is a fact that the difference of proportions between us and quantum systems
is definitive to the interaction, but here we do not discuss about scales of validity for the quantum
theory. This is an issue which is absolutely left aside in classical mechanics), even though recent works
describe mesoscopic systems (or even macroscopic) employing quantum theory with very interesting
results. For a deep discussion, see [2].

The existing disturbance in the interaction was stated by Born [3,4], while discussing the statistical
interpretation of quantum mechanics in 1929. Here, the probabilities to find certain outcomes in a
measurement process were related to the fact that there are different possible results when one wants
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to know a property of a system. That is, there is not certainty about the result that one would find;
instead, in the quantum world, we lose our power of predictability.

Heisenberg was the first in getting the insight that a measurement process affects the quantum
systems by causing a kind of disturbance; however, he never provided a precise definition of it.
Astonishingly, it was only in the last few decades when an effort to formally define the concept of
disturbance was initiated. To the best of our knowledge, one of the earliest efforts that formally define
the disturbance caused by the measurement process was given by Srinivas [5], who gives an estimate
of the disturbance, when measuring one observable by using the joint probability of a sequence of
measurement as it was proposed by Wigner [6], where he deduced a lower bound for this definition
of disturbance.

On the other hand, it was Fuchs who pointed out that one of the fundamental contributions
of quantum cryptography was to focus on the state of the quantum system in order to address an
information–disturbance trade-off [7], releasing disturbance from being gauged in terms of observables.
Additionally, it is worth mentioning that Matteo G. A. Paris [8] warned us about the use, without
caution, of fidelity in quantum information because inclusive states that have a high amount of
fidelity differ substantially in their properties. Furthermore, Kochen and Specker [9] pointed out that
observables do not possess a predetermined previous value; this puts restrictions on the available
tools for defining disturbance in the case of observables’ projective measurement. All the previous
considerations are highly important when gauging disturbance, and a brief mention of them is given
in the next section.

There is no universal way of defining disturbance; its definition highly depends on the situation
studied. However, generally speaking, the concept of disturbance is associated with the process
of measurement in at least three ways: (i) noise-disturbance, which captures the notion that there
is trade-off between the noise in getting the value of an observable and the disturbance induced,
(ii) information–disturbance, which captures the trade-off between the extraction of information and
the disturbance caused, and (iii) disturbance–disturbance, which captures the trade-off of disturbing
the statistical distribution of a given initial state.

Hence, the main aim of this survey is to collect the definitions of disturbance in quantum
mechanics that have been stated in literature in recent years. One of the goals of the studies reported
in literature is to maximize the information extraction while reducing the disturbance caused; another
goal is to reduce the noise and to reduce the disturbance. We do not intend to be exhaustive, so this is a
brief review intended to show the different facets of disturbance in quantum mechanics. We apologize
for the omission of many excellent works not directly mentioned. Furthermore, our intention is to
get the attention of researchers, textbooks editors and teachers towards these new developments in
quantum mechanics.

This paper is structured as follows: in Section 2, we give some definitions. In Section 3, we describe
the concept of disturbance in the information–disturbance trade-off, whereas, in Section 4, we expose
the disturbance in the framework of the noise-disturbance trade-off, where an evident differentiation
of understanding of the concept exists. Finally, in Section 5, we present a brief discussion and
our conclusions.

2. Definitions

In this section, we introduce some quantities and definitions that will be of use in the
following sections.

2.1. Uncertainty Principle

The uncertainty principle in QM was proposed by Werner Heisenberg in 1927 [10], since that
time, the principle has been enhanced, modified and extended, arriving to three main accepted
uncertainty principles in QM. For a more in-depth discussion of this topic, see Reference [11]. The best
known principle is the Heisenberg Preparation Uncertainty Principle, which shows the impossibility to
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prepare a quantum system with two properties that corresponds to two non-commuting observables,
which can be well known at the same time. The Heinseberg Uncertainty Principle is a consequence
of the formalism of the quantum theory only and it is not directly related to the act of measurement,
namely, this facet of uncertainty in QM is inherent in the theory. On the other hand, the disturbance
is ubiquitous in the measurement process; furthermore, uncertainty is the result of the disturbance
inflicted by the measurement [12,13].

Each of the three uncertainty principles mentioned above have their own uncertainty relation [11].
A direct connection between the statement of the principle and the mathematical relation is stated in
Reference [11]. These three statements are the following:

1. Preparation Uncertainty Principle: It is impossible to prepare states whose two incompatible
properties, for example position x and momentum p, are well determined at the same time.

2. Uncertainty Principle of Simultaneous measurements: It is impossible to measure two
incompatible properties of a state at the same time.

3. Noise–Disturbance Uncertainty Principle: It is impossible to measure a property of a state without
disturbing another property of the state.

As we can see, the only principle that discusses directly the disturbance is the third principle;
and it is considered as a first approach to describe disturbance in QM. In this way, it is possible to
distinguish the disturbance by using different criteria and consequently study it from many points of
view. Hence, in this paper, we differentiate the disturbance by identifying the different relations that
exist between disturbance–information and disturbance–noise; we also recognize the characteristics
of the system’s description that were subjected to the disturbance. We choose this way to classify
the disturbance due to the diversity of the existing works about this topic and as a starting point to
suitably sort the different definitions that have appeared in the recent years.

It is important to remember that the uncertainty principles and uncertainty relations have been
the topic of many research articles. In particular, the area of Entropic Uncertainty Relations (EUR)
is a leading branch in the study of uncertainty relations [13–21]. The study of EUR has given rise to
current definitions of uncertainty and disturbance in quantum mechanics. Such definitions are given
in terms of entropy, a quantity related to thermodynamics, but carried to different scientific areas in
the 20th century. The area of Information Theory (IT) is one of the areas where the concept of entropy
has had a deep impact and a close connection between QM and IT has emerged in the last few decades.
Such entailment has had significant implications in the concept of disturbance and its relation with
information has a paramount importance in these days.

2.2. The Bell–Kochen–Specker Theorem

When we talk about disturbance in the state or observables of a system, we remember almost
instantly the Bell–Kochen–Specker Theorem (BKST) [9,22,23], which shortly says that the observables of
a quantum system do not possess a predetermined value before the act of measurement. This theorem
is also important to our study due to the constraints that it imposes to disturbance.

2.3. Fidelity

Because the fidelity is broadly used to define disturbance, in this subsection, we briefly review
it. The Fidelity F of quantum states was first defined in terms of the transition probability by
Uhlmann [24] and subsequently analyzed by Jozsa [25]. These authors propose the fidelity as the
generalization of the transition probability for pure states to the case of mixed states.

For pure states, the fidelity is reduced to the transition probability and it has a simple physical
interpretation as the probability that ρ2 passes the test of being ρ1; for mixed states, it can be thought
as a measure of distinguishability [25], this interpretation comes from the representation of F as a
purification procedure, i.e., F (ρ1, ρ2) = max | 〈ψ1|ψ2〉 |, where |ψ1〉 is the purification of ρ1 and |ψ2〉 is
the purification of ρ2.
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The fidelity F is mathematically defined as:

F (ρ1, ρ2) =
{

tr (
√

ρ1ρ2
√

ρ1)
1/2
}2

. (1)

It is worth mentioning that there are many uses for the name fidelity; for example, some authors
use
√
F as the fidelity. On the other hand, the fidelity has interesting and desirable good characteristics

such as, among others: (i) being bounded, that is 0 ≤ F (ρ1, ρ2) ≤ 1, F (ρ1, ρ2) = 1 iff ρ1 = ρ2,
while F (ρ1, ρ2) = 0 iff ρ1 and ρ2 are orthogonal, (ii) is symmetric, i.e., F (ρ1, ρ2) = F (ρ2, ρ1); and (iii)
is concave, i.e., F (ρ, aρ1 + (1− a)ρ2) ≥ aF (ρ, ρ1) + (1− a)F (ρ, ρ2) for a ∈ [0, 1].

Several bounds have been found for the fidelity, for exampleF(ρ1, ρ2) ≤ (trρ1)tr(ρ2). One important
result is the following upper and lower bounds demonstrated by Miszczak et al. [26]:

F (ρ1, ρ2) ≤ trρ1ρ2 +
√
(1− trρ2

1)(1− trρ2
2), (2)

and
F (ρ1, ρ2) ≥ trρ1ρ2 +

√
(trρ1trρ2)2 − trρ1ρ2ρ1ρ2). (3)

The upper bound is called the super-fidelity and the lower bound is called the sub-fidelity [26].
It is worth mentioning that, despite being so widely used, recently, some concerns have arisen

about the use of fidelity for assessing quantum correlations; in particular, it has been showed that two
states can possess high fidelity, of the order of F ≈ 9.25; however, while one of them is an entangled
state, the other one is a separable state, hence possessing quite different physical properties [8].
This was also proven for continuous variable systems [8,27]; see also [28,29].

2.4. Measurement and Entropy

Many proposals for defining disturbance are made under the Generalized Measurement approach;
in this case, there exists a set of measurement operators Mm which represent the probabilities p(m)

and the output state ρ f as follows:
p(m) = tr{ρi M†

m Mm}, (4)

and

ρ f =
M†

mρi Mm

p(m)
, (5)

where ρi is the initial state.
On the other hand, the conditional entropy is defined as:

S(B|A) = − ∑
a∈A,b∈B

p(a|b) log
(

p(a, b)
p(a)

)
, (6)

where A and B are any two events, a and b are the possible outcomes of the events, p(·|·) is the
contidional probabliity and p(·, ·), the joint probability.

The joint entropy is defined as

S(A, B) = − ∑
a∈A,b∈B

p(a, b) log (p(a, b)) , (7)

for A and B two events and p(·, ·) the joint probability.
Another important definition is that of the von Neumann Entropy

S(ρ) = −Tr(ρ log ρ), (8)

with ρ a density operator and Tr the usual trace.
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Finally, the Jensen–Shannon Entropy is defined as [30]:

DPQ =

√√√√ N

∑
i=1

(
pi ln

2pi
pi + qi

+ qi ln
2qi

qi + pi

)
, (9)

with pi and qi two probability distributions.

3. Disturbance in the Information–Disturbance Trade-off (IDT)

It is indisputable the prominent position that the Information Theory (IT) has acquired in the
development of science and technology, for instance, the linkage with QM has been clearly seen for
decades. The adoption of the Shannon Entropy as a measure of information in the decade of the forties
in the previous century holds a notorious place in the history of science [31] and represents a starting
point for the development of communication sciences [12]. Certainly, the concept of disturbance has
been studied under the framework of IT, given us new definitions and trade-off relations.

Particularly, the disturbance has been a tool for the practical application of the uncertainty
principle in the quantum cryptography area, where it is believed that encoding information in qubits
could help to protect the information from eavesdropping. In fact, this idea is based on the point that
the theory of measurement in QM predicts an unavoidable disturbance of the quantum state when the
system interacts with the measurement apparatus.

Before reviewing the Information–Disturbance Trade-off (IDT), let us recall the previous and
closely related Information-Information trade-off due to M. J. W. Hall [32], who analyses the case of
gaining information of an observable A only at the expense of the information of complementary
observables. Hall calls this phenomenon the Information Exclusion Principle (IEP), this principle
predicts inequalities of the following form

∑
l

I(Al |ε) ≤ J(A1, A2, ...Al , ..., ρε), (10)

where I(Al |ε) = S(A|ρε)−∑i piS(A|ρi) is the mutual information given in terms of the conditional
entropy (6) and J(A1, A2, ...Al , ..., ρε) is a non-trivial bound, we have ρε as the density operator for an
ensemble ε and pi are the probabilities of each ρi. Equation (10) is considered by Hall as an information
theoretic analog of Heisenberg uncertainty relation, and is one of the oldest entailments between IT
and QM, as well as one of the first reformulations of the uncertainty principle.

From Hall’s definitions, we can interpret the loss of information as the disturbance. For example,
in the case of spin 1/2 particles I(σ1|ε) + I(σ2|ε) + I(σ3|ε) ≤ log 2. Therefore, we can attain the
maximum information for I(σ1|ε), namely I(σ1|ε) = log 2, only at the expense of I(σ2|ε) and I(σ3|ε).

On the other hand, taking Reference [33] as our basis, it is possible to discern the following two
approaches into IDT: an Information Theoretic approach, which here we will refer to it as Informational
IDT, and an Estimation Theoretic approach, which here we will refer to it as Estimation IDT. The former
approach is based on entropic quantities, whereas the latter is usually stated in terms of fidelity [25],
and its goal is the estimation of parameters. The main attribute of the IDT is the study of the system by
focusing on the evolutions or alterations on the state of the system, a quality that is given thanks to
their inherent relation with IT [12].

3.1. Informational IDT Approaches

Starting with the Informational IDT approach, a crucial paper by Fuchs and Peres [34] shows
for the first time the trade-off relation between information and disturbance; in this paper, they
propose one of the earliest definitions of disturbance [34]. The problem they were concerned about
is with the amount of information that an observer can extract from a quantum system and how
this action disturbs the system; this problem is related to the act of sending and receiving a message
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considering the possibility of a third party intromission, which wants to get information from this
message. The Informational IDT that they introduce is defined by considering the information gain as
the mutual information [32,34].

The definition of disturbance proposed by Fuchs and Peres is given in terms of the discrepancy
rate (which in this case corresponds to the fidelity F defined in Section 2), which is defined in terms of
the mean value as:

D = 1− 〈ψn| ρn |ψn〉 . (11)

The interpretation of disturbance related to Equation (11) is associated with the distinctness that
the receiver is able to detect a change in the state sent owing to the influence of a third party. This can
be seen in Equation (11), where ρn is the state after the eavesdropper interaction and |ψn〉 is the state
sent by the sender. It is valuable to mention that this paper can be considered as a starting point to the
Informational IDT procedures [7,25,35]. This point of view is shared by many authors, not necessarily
in the Informational IDT [36]. To the best of our knowledge, the union of the concept of information
and disturbance was accomplished for the first time here, leading to the current situation where the
trade-off between them is a common topic of study. In this interpretation, the lower bound D0 that
disturbance can attain when an amount of information is extracted is given by:

D0 =
ε4(S2 − S4)

16
, (12)

where S = 〈0|1〉 = sin 2α is the scalar product of the non-ortogonal states used by the sender and ε is
an angle parameter; see Reference [34] for details.

Another important course of action towards the definition of disturbance in the Informational
IDT approach was given by D’Ariano in his article of 2003 [20]. D’Ariano based his definition on the
probability of undoing a generalized measurement; hence, he defines disturbance as:

D(M) = 1− C(M). (13)

Here, the disturbance of the state in Equation (13) is given by the fidelity, where C(M) is the
input-output unitary correlation of M defined as the fidelity between the initial state |ψ〉 and the
final state V |ψ〉. According to D’Ariano, an attribute of the disturbance is that the disturbance
itself would be a function of the probabilities of reversing the effect it produces on the system,
which is a requirement that had been studied deeply by other authors [12,37]. For the singular value
decomposition M = XM ∑M Y†

M, the disturbance is minimum when the square of the singular value
of M fulfills σ2

i ∝ λ−1
i . As stated in the introduction, this extreme is of great interest because the

minimum of the disturbance corresponds to a maximum information gain.
By following the approach of D’Ariano [20], Maccone studies the implications of defining

disturbance as an irreversible change in the state of the system. Here, it is proposed a series of
requirements that the disturbance should fulfill in accordance with Reference [20]. Maccone presents a
definition of disturbance that has two mechanisms of state change, the dynamics of the system and the
acquisition of information from the system. In this article, this definition of disturbance is expressed
by the following quantity:

D = S(ρ)− Ic. (14)

In Equation (14), S(ρ) is the von Neumann entropy, given by Equation (8), and Ic = S(Q(ρ))−
S((Q⊗ I |ψ〉 〈ψ|)) is known as the coherent information [38], taking |ψ〉 as a purification of ρ and Q
corresponding to the map that describes the evolution of the measurement apparatus in the sense
established by Kraus [39]. Equation (14) is a definition that was explicitly made to count the invertibility
of the measurement. Thus, this article is taken as a first attempt to quantize the relations between the
information and disturbance [40]. In this approach, the information–disturbance trade-off is given by
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I ≤ D; hence, the minimum disturbance is reached when the information equals the disturbance, this
occurs when the measurement maps the different vectors of the initial state into orthogonal subspaces.

Following this line, the article of F. Buscemi, M. Hayashi and M. Horodecki of 2008 [40] is a
reformulation of the seminal idea of Maccone [37]. Here, they have as a main goal to research the IDT
by using quantum entities; in particular, the definition of disturbance is related to undoing the state
change due to a measurement. The measure of disturbance is given by the following equation

D = S(ρ)− I′c, (15)

where I′c is the coherent information, a function of the Von Neumann entropy. This definition of
disturbance generalizes the notion of coherent information loss for quantum channels. Notice the
difference between Equation (14) and Equation (15). In addition, take into account that, in this paper,
I′c is a function of genuine quantum entities and the definition of disturbance of Equation (15) is
customized for general measurements. Under this perspective, the minimum disturbance is reached
when it equals the quantum information gained.

3.2. Estimation IDT Approaches

The Estimation IDT approaches are well known for their application to the study of the IDT
by using the fidelity. In this sense, they serve as a means to estimate the parameters that describe
information and disturbance.

In this approach, we have the article of C. A. Fuchs of 1998 [7], where it was exposed clearly and
for the first time the idea of Estimation IDT. Fuchs proposed the use of the fidelity as a measure of
information and disturbance; in particular, defining the disturbance as the average fidelity between
the input ρs and the output ρA

s states

D = 1− 1
2 ∑

s
F (ρs, ρA

s ). (16)

In this equation, F (ρs, ρA
s ) is the fidelity defined in Section 2 [25]. As a preliminary for Estimation

IDT relations, the article of Fuchs is open to a wide diversity of measures of disturbance because the
arbitrariness of choosing such measure is due to the broad range of applications for the system. In this
case, the minimum disturbance d0 attained is given by d0 = 1

2 −
1
2

√
1− S2 + S4, where again S is the

scalar product of the non-orthogonal state.
Following the open path by Fuchs, there are two papers written by H. Barnum in 2001 and

2002 [35,41], where he studies the relation between information and disturbance. The given treatment
that Barnum proposes is hybrid because it describes the disturbance in terms of fidelity and the
information is described as the mutual information. In his articles, Barnum also explores the frontier
of the IDT, namely the limit of minimal disturbance for the greatest amount of information. The main
measure of disturbance that is calculated here is

D = 1−F (ρ, ∑
j

Aj(ρ)) (17)

for F (ρ, ∑j Aj(ρ)) = (tr
√

ρ
1
2 (∑j Aj(ρ))ρ

1
2 )2; that is, the fidelity in terms of the Josza [25] definition,

where ∑j Aj(ρ) are measuring operators and ρ is the initial state of the ensemble. Barnum also proposes
another measure for the disturbance, in this case, related with the entanglement fidelity [42]

De = 1−Fe(ρ, A). (18)
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Equation (18) gives the disturbance as a function of Fe(ρ, A) = ∑k | tr Akρ|2. Here, ρ is an initial
bipartite state and Ak is a bipartite measurement operator. The entanglement is a common tool for
quantum tasks, and its presence in the description of disturbance is remarkable.

On the other hand, Banaszek in a remarkable article of 2001 [43] describes the estimation quality
of the state of a system (that in turn corresponds to the information gained) and the degree in which
the initial state has been altered (disturbed) by the measurement. The IDT is studied for the case of a
single copy of the system employing the fidelities F and G, currently known as operation fidelity and
estimation fidelity, respectively [44,45]. The disturbance is measured by means of the fidelity,

F =
∫

dψ
N

∑
i=1
| 〈ψ|Âi|ψ〉 |2, (19)

where Âi stands as a measurement operator for the outcome i and |ψ〉 is the initial state of the system.
This definition measures the disturbance by using the mean value of the measured observables to
display the difference between the initial and the final states. In this case, the optimal information that
is retrieved corresponding to the minimum of the disturbance occurs when the information equals the
disturbance and both of them reach the amount 2/(d + 1), where d is the dimensionality of the particle.
This article is a milestone for the Estimation IDT approaches and the use of fidelity for describing
the IDT.

The main idea of Banaszek was improved by himself and Devetak in the same year of 2001 [46].
In this paper, the authors explore a generalization of the Estimation IDT given by the fidelity trade-off
for an ensemble. This paper explains the exchange between the estimation fidelity G and the operation
fidelity F. As we see from Reference [43], the operation fidelity is related to the disturbance, but, in
Reference [46], the definition is connected with a qubit ensemble, as made evident in the expression
for F ,

F =
∫

dΩ ∑
i=1

pi(Ω) 〈Ω|ρ̂red
i (Ω)|Ω〉 |Ω〉 . (20)

In Equation (20), ρ̂red
i is the reduced density matrix over N qubits and pi(Ω) is the probability for

obtaining the outcome i for an ensemble of N qubits, each one prepared in a pure state |Ω〉.
Years later, in 2006, M. F. Sacchi [44] quantified the disturbance by using the operation fidelity,

which measures the similarity of the state of the system before and after the measurement. The trade-off
between information and disturbance is studied for a maximal entangled state, in this respect,
the disturbance proposed follows this idea. The disturbance is defined in the following equation:

D =
1− F

1− Fmin
. (21)

Notice that this is given in terms of the fidelity of Equation (19), but taking the definition for a
bipartite state and a measurement operators. Fmin is the average fidelity with the maximally chaotic
state, i.e., the minimum fidelity. Due to their possible application to quantum cryptography, this paper
focuses on maximally entangled states. By using entangled states, Sacchi improves the disturbance
given by Banazek [43], and he found that, in the same way as in previous works, the fidelity equals
the estimation.

Interestingly, the information–disturbance trade-off was extended to include continuous variable
systems; for example, in 2006, M. G. Genoni and M. G. A. Paris presented a scheme to quantify
both the information gain and the disturbance by coupling the state of the system with two probe
systems [45]. In this regard, the model they use is that of the generalized measurement; they also
explore different ranges of energies on the signal and the probe. Here, they defined disturbance in
terms of the transmission fidelity as:

Fa =
∫

dbq(b)|〈φb|ψa〉|2, (22)
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where |φb〉 is the estimated state and |ψa〉 is the initial state. They also found that the continuous
variable systems give better trade-off than the discrete ones. This information–disturbance trade-off
for continuous variables was later improved in a following work [47]; see also [48].

Another interesting point of view is given by Shitara, Kuramochi and Ueda in their article of
2016 [33]. In this paper, the information is related to the classical Fisher information and the disturbance
is characterized in terms of the average loss of quantum Fisher information, where the disturbance is
expressed as

∆JQ
θ = JQ

θ −∑
j

pθ,j J
′Q
θ,i . (23)

Equation (23) is defined as the difference between the initial and final Fisher information JQ
θ and

J
′Q
θ,i , for an ensemble Q, with θ a parameter and pθ,i the probability related to the final state. Shitara

et al. show that the lowest bound for disturbance is given by the classical Fisher information.
A new approach to the Estimation IDT was introduced in the paper by Sun et al. [49]. In this

paper, the authors propose to use the information retrieved from a first measurement of an observable
A to wipe out the bias in a sequential measurement of another observable B. Here, disturbance is
understood as the bias induced by the first measurement. The authors also warn us that their definition
could be best understood as precision rather than disturbance. Here, the measurement precision that
is proposed is given by the following equation:

IB = ∑
i

(
∂ ln pB=i

∂ 〈Φ| B |Φ〉

)2
ln pB=i, (24)

where |Φ〉 = sin α |0〉s + cos αeiφ |1〉s is the more general qubit state. In this scenario, Sun et al. use the
fact that any joint measurement can be implemented by a sequential measurement [50].

A paper by Seveso and Paris [51] worthy of mention analyses the trade-off between information
and disturbance in the Estimation IDT approach by using four measures of disturbance: the already
mentioned average information [33], the fidelity based disturbance [7], the τ-disturbance and the
π-disturbance. As a consequence, they found interesting outcomes and they also give plots of the
trade-off relations.

Finally, to end this section, we want to mention briefly the work of Hashagen and Wolf [52].
This article underlines the universalization of the IDT. They propose general measures for information
and disturbance and they also study their relation of reciprocity. The importance of this article lies in
the fact that it is a serious attempt to include all the IDTs in one formalism. This proposal reaches the
boundaries of the topic and it gives new ways to study the IDT.

4. Disturbance in the Noise–Disturbance Trade-off (NDT)

4.1. Disturbance in the Noise–Disturbance Trade-off (NDT)

As it was discussed in the Introduction section, the idea that the disturbance can affect the
observables of a system faces the fact that observables do not have predetermined values [13,23].
However, many of the best known definitions and applications of disturbance in QM have been built
on this idea [14,15]. It is not a surprise that one of the first definitions of disturbance in the history of
quantum mechanics appertain to this type of disturbance.

The article by Srinivas [5], as far as we are aware, is one of the first papers where a definition
of disturbance can be found. This paper does not provide a literal definition of disturbance, but an
intuitive idea of the concept is offered; we can see this point in the following excerpt, page 682:

“(...)Actually an estimate of the interference caused by an earlier A-measurement on the
uncertainty in the outcome of a later B-measurement can be had from the following
inequality:” [5].
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Notice that, for better understanding, the inequality that appears in the paper of Srinivas is
rewritten to fit our nomenclature as follows:

Sρ
A,B(B) ≥ log

{
1

sup ||∑i PA(ai)PB(bj)PA(ai)||

}
, (25)

where Sρ
A,B is the Shannon entropy, A and B are operators, ρ is the state of the system, PA(ai) and

PB(bj) are projection operators, and sup denotes the supremum over all of the eigenprojectors of B,
all established in the Heisenberg picture.

As we can note from the previous quotation, the stated article [5] gives us an estimate of the
interference that is found in the uncertainty of the observable B due to a previous measurement of A,
as shown in Equation (25). This main idea has some similarities to what has been discussed in recent
works about disturbance, for instance [21], where the comparison between the values that a measure
of disturbance takes in two different moments is applied. However, quantifying the uncertainty in
consecutive measurements was what Srinivas was really interested in; that is, when the measurement
of an observable A is followed by the measurement of another observable B.

Later, using a similar procedure than in his previous paper, Srinivas himself found a
stronger bound [53]

Sρ
A,B(B) ≥ log

(
1

supij | 〈ai|bj〉 |2

)
, (26)

the previous bound is greater than the Massen–Uffink lower bound. Additionally, Srinivas also extend
the latter result to successive measurements for more than two observables.

An improved form of the Srinivas uncertainty relation was given by Back et al. [54]. They have
shown that a lower bound for successive measurement is attained by the conditional entropy of the
measured observables, i.e., H(A|B) ≥ −2 ln c, which implicitly puts a lower bound to the disturbance.
This analysis was also extended to cover the case of Positive Operator Valued Measure (POVM)
in Reference [55].

On the other hand, Arthurs and Goodman in 1988 studied the concept of noise through the
description of a generalized Heisenberg uncertainty relation [56]. The uncertainty relation in this case
imposes a lower bound on the inherent extra noise in measurements and it demonstrates that the noise
is due to the measuring process. The noise in measurement appears when the measuring apparatus is
considered. To define this noise, they use a noise operator as follows:

N = Y− GY A, (27)

which describes the correlations between a tracker observable Y and the observable of the system A,
where GY is a real constant. The description that the authors gives is established on the Heisenberg
picture; thereby, this description faces the constraints imposed by the BKST. This article is a reference
for other authors that study the NDT; then, a similar idea is used to describe the disturbance as we will
see later.

To the best of our knowledge, one of the first attempts to formally define disturbance in QM was
realized by Martens and de Muynck in a seminal paper of 1992 [36], where they propose understanding
the disturbance in quantum measurements in terms of non-ideality, namely by comparing the result of
a measurement described by a POVM [31] and an ideal measurement. They proposed as a measure of
disturbance (considered as a class of non-ideality) the Conditional Entropy (6)

S(B|A) = − ∑
a∈A,b∈B

p(a, b) log
(

p(a, b)
p(a)

)
. (28)

This quantification of disturbance is viewed in terms of loss of information, an idea that was
discussed in the previous section.
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An interesting article by Appleby shows a general view of the concept of error (noise) and
disturbance in its time [57]. The concepts of predictive and retrodictive probabilities are deeply studied.
The work of Appleby is based on the articles by Arthurs and Kelly [58] and Arthurs and Goodman [56].
Here, the disturbance is measured by using disturbance operators for position and momentum:

∆x = x f − xi,

∆p = p f − pi, (29)

for xi, pi the initial position and momentum, and x f , p f the final position and momentum operators.
Here, the disturbance is measured as the root mean square of the disturbance operators

Dx,p =
√
〈ψ⊗ φap|∆x,p|ψ⊗ φap〉, (30)

where |ψ〉 is the initial state of the system and |φap〉 the initial state of the measurement apparatus.
The Heiseinberg picture is used in this article also. Additionally, it is important to say that the way in
which the disturbance is measured is similar in nature to the one related to the original point of view
of Heisenberg [10].

On the other hand, one of the best known articles about the concept of disturbance was published
by Ozawa in 2003 [59]. In this work, the disturbance is treated as a mean value in the Heisenberg
picture as follows:

η(B, ψ, A) = (〈ψ| (Bout − Bin)2 |ψ〉)1/2, (31)

where B is an observable of the system, ψ the state of the system, A represents the measurement
apparatus and Bout and Bin the B observable represented in two different times before and after the
measurement of A with the apparatus A. It is worth mentioning that this proposal uses an ancilla in
the model of measurement [60], a tool related to the generalized measurement formalism [31,61] but
nowadays commonly used in the development of topics such as uncertainty relations or quantum
information theory.

Otherwise, Branciard explores in a 2013 article [62] a way to study the uncertainty principle
by using as a premise the original idea of Heisenberg. The work done in this paper consists in
approximating a joint measurement of two observables of a system, even if the observables are
incompatible. The author follows the work of Ozawa closely [59]; in this way, the disturbance is
defined as the root mean squared deviation,

〈ψ, ξ|Ba − B⊗ I|ψ, ξ〉1/2 , (32)

in Equation (32), Ba is an approximation of B which fullfils [Aa, Ba] = 0. The approximation of B is
obtained from taking Ba in an extended Hilbert space, where |ψ〉 is the state of the system and |ξ〉 is
the state of a probe or ancillary system [60].

Following the framework established by Ozawa, Kaneda et al. [63] experimentally tested the NDT
proposed by Ozawa [59] and Branciard [62] in generalized polarization measurements by utilizing
weak measurements. For more details, see [63]. We emphasize that this work seems to be experimental
evidence of Ozawa’s ideas; however, it must be recalled that this approach faces the constraint imposed
by the Bell–Kochen–Specker Theorem [9,22,23].

On the other hand, an article by Lu et al. [64] studies the NDT relations and proves that it is
possible for the total error in a measurement to be decomposed into two terms. These two terms are the
operation bias and the fuzziness. See Reference [64] for a complete treatment. In this way, they obtain
a stronger error trade-off than the proposed by Ozawa [59]. The disturbance is measured as the root
mean square of a disturbance operator, taking the idea of [59]. In addition, the authors propose a
circuit for testing their NDT, which adds to the work a complete description of the topic.
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Moreover, an article by Mandayam and Srinivas from 2014 [65] is of considerable interest because
they propose a different approach to the NDT. The main idea of this article is to measure the noise
and disturbance by using probability distributions instead of observables [59,62]; consequently,
they express the distinguishability of states by comparing the probability distributions before and after
the measurement. Curiously, the two measures of disturbance that they proposed, which are based on
the fidelity and the trace distance [25], are regarded as functions of the probability distributions. In this
way, this article proposes the study of the NDT by means of a seminal idea, which will be exploited by
other authors later [21,66,67].

Following the studies of Mandayam and Srinivas [66], they describe the NDT relations using the
Tsallis Entropy as a measure of disturbance,

T(pi) =
1

1− β

(
∑

i
pβ

i − 1

)
. (33)

In Equation (33), pi is a probability distribution and β > 0 a real constant different from 1.
The authors demonstrate that the entropy of Tsallis is equivalent to the fidelity based measure of the
disturbance for pure states [66]. In this case, the disturbance is characterized by comparing probability
distributions as we see in [65].

Furthermore, Coles and Furrer proposed a disturbance measure in terms of the family of Relative
α-Renyi entropies [67],

Dα(P|Q) =
1

α− 1
log

(
∑

i
Pα

i Q1−α
i

)
, (34)

where α ∈ [1/2, ∞] and P, Q are two probability distributions. This work is a generalization of the
NDT for a wider variety of probability metrics such as the relative entropy or the fidelity. This study
implements the idea of distinguishability of states that uses the probability distribution before and
after the measurement.

It is worth mentioning that a 2003 paper by Ozawa [59] has been a milestone in the development
of uncertainty relations because the concepts of noise and disturbance proposed by him were not
widely explored previously, although, as we mention above, Arthurs has used the noise operator
before [56,58]. There are many works which take the idea of Ozawa’s article as a starting point for
studying several ideas and scenarios.

Among the works which are influenced by this paper, we have an article by Dressel and Nori [13].
Here, we find a complete reformulation of Ozawa’s work [59], but taking into consideration the BKST.
We must also mention that they study other articles besides [59], however their main description is
based on this one. Additionally, the article is constructed with demonstrations for the incorrectness of
distinct definitions of noise and disturbance due to the violation of the BKST. The main proposal of
Dressel and Nori is to quantify the noise and disturbance by the implementation of single outcome
measurements and the concepts of retrodictive and interdictive measurements, which are related to a
priori and a posteriori probabilities. Here, the disturbance is defined as

ηB,k =

[
∑
b,b′

(Bb − Bb′)p(b, b′|k)
]1/2

, (35)

for an observable B and a single measurement of other observable A, whose outcome is k. The complete
description of these quantities requires definitions and concepts that are properly explained in the
original paper, however those are beyond the treatment of our work. We will only mention that
(Bb − Bb′) is a function of the commutator between B and the measurement operators related to a
priori and a posteri probabilities that are given in terms of the value b′, which is the possible value
after the outcome k of A and p(b, b′|k) is the conditional probability of the joint probability distribution
given the outcome k. The main difference between (31) and (35) is that, while the former expresses
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the disturbance like a change between observables, the latter sets forth the disturbance in terms of
state changes.

Ozawa himself improved his previous work in 2014 with the collaboration of Buscemi, Hall and
Wilde [14]. The main idea of this article is to study the noise and disturbance by means of different
types of loss of correlations in the framework of IT, i.e., in an information theoretic-approach, hereby,
the lack of fulfillment of BKST is dismissed. This article provides a definition of disturbance related to
the irreversibility of a measurement, given by the following expression

D(M, Z) = min
ε

H(Z|Ẑ), (36)

where ε is an error correction operation, M an apparatus and Z an observable, H(Z|Ẑ) is the conditional
entropy given by equation (6) for the joint probability distribution, where p(ẑ, z) = p(z)p(ẑ|ψz),
and p(z) and p(ẑ|ψz) are the a priori probability of observable Z and the conditional probability of
observable Z, respectively, given an initial state |ψz〉, for estimating the value ẑ adequately.

In this line of investigation, Sulyok et al. [68] describe a method for testing the improved
proposal for the NDT of Ozawa [14]. The authors show the experimental validity of the relation
for the qubit measurements. In this case, they utilized spin -1/2 neutrons to conduct the work.
We want to emphasize the importance of this paper, considering the fact that it is crucial to have an
experimental validation of the theory, which is necessary to complete an acceptable explanation of
physics phenomena. Additionally, interesting experimental schemes were implemented by Iinuma et
al. to test the error in the measurement outcomes by using photon pairs [69,70].

On the other hand, another interesting article is a recent paper by Benítez Rodríguez et al. [21],
where a proposal is given in terms of an entropic uncertainty relation for disturbances of two
observables of a system, the disturbance measure is related with the Jensen Shannon Entropy (9),
and takes the following form

DB
PQ =

√√√√ N

∑
i=1

(
pi ln

2pi
pi + qi

+ qi ln
2qi

qi + pi

)
, (37)

where pi and qi are two probability distributions, associated with a priori and a posteriori probabilities
of a given observable B due to a projective measurement of another observable A. As we can see,
this definition is formulated by relating probability distributions, and using the distance between
two probability distributions, an idea showed by Werner [71], but also parallel to the concept of
distinguishability of states [72].

4.2. Precision–Disturbance Trade-off

To the best of our knowledge, Hofmann presented one of the earliest studies for the case of the
original Heisenberg’s idea of precision–disturbance relation [73], i.e., that the resolution of measuring
an observable M causes a disturbance on another observable B. To define disturbance, Hofmann firstly
defines a measurement error as ∆B2

m f = δB2
m f + (B f − Bm f )

2, where δB2
m f is the random that limits

the possibility to estimate B, and B f is the output value of B and Bm f is the best possible estimate.
Then, the averaged disturbance ∆B2

m of B associated with the result m when measuring the generalized
observable M is given by:

∆B2
m = ∑

B f

wm(B f )∆B2
m f , (38)

where

wm(B f ) =
〈B f |Mm M†

m|B f 〉
tr{Mm M†

m}
. (39)
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Here, the disturbance ∆B2
m can be associated with the loss of information as in previous sections.

A key feature of the Hofmann’s analysis is the characterization of the uncertainties in terms of the
physical properties of the system. That is, the measurement outcome m can be associated with
the measurement of the observable M when the result Mm was obtained, and the resolution δM2

m
is attained [73]; this idea was extended to test entanglement [74]. In successive papers, Hofmann
developed a significant work around this idea; for example, he found that the change of the density
operator due to the measurement process can be expressed in terms of a dephasing factor η =

1− PM, where PM corresponds to the relative frequency of back-action disturbance in the sequential
measurement of two non-commuting observables [75]; see also [76]. The relation between measurement
outcomes and the physical properties of quantum systems is studied in Reference [77].

On the other hand, a recent proposal by Busch et al. defines ∆Q as the accuracy for position
measurement and ∆P as the momentum disturbance incurred by measuring the position [78].
Conceptually, this approach shows some similarities with the approach of Srinivas for successive
measurements [5,53–55]. Busch et al. also define the precision as the error that occurs when measuring
P, i.e., the difference between the real value P and the value measured P′. To define disturbance in this
work, the authors take the root mean square deviation between an arbitrary distribution and a sharp
value ξ. That is, D = 〈(p′ − ξ)2〉1/2. Then, the disturbance as a measure of the error in a successive
measurement of Q and P, is defined as ∆P = limε→0 sup{D|ρ, ξ; D ≤ ε}.

5. Conclusions

The concept of disturbance is commonly related to the uncertainty principle of quantum mechanics
through the well-known statement: when one makes a measurement of the position, then the
momentum is disturbed. However, the disturbance in quantum mechanics is more complex and
versatile than what it is stated in many textbooks of quantum mechanics [11,21].

In-depth studies on the uncertainty principle have given birth to definitions of disturbance closely
related to a wide variety of measurement frameworks. The measurement in quantum mechanics has a
great significance, either theoretically and experimentally; therefore, it is expected to have such variety
of definitions of disturbance as ways of implementing a quantum measurement in different scenarios.
As we have previously showed in this paper, the definition of disturbance strongly relies on the context
of the system that is analysed [20], saying it in a rough manner, it relies on the path that is chosen to
measure it.

The disturbance is also studied alongside the information [7,34], thus setting the famous trade-off
relations between the information gain and disturbance. Such has been the impact of the trade-off
relations that the information gain–disturbance principle [7,12] is considered at the same level of
importance as the uncertainty principle [7,12]. In addition, the trade-off relations between noise
and disturbance are commonly studied as a different view of the uncertainty principle [14,21,59].
The previous branches of study provide new ways to conceive the disturbance in quantum systems
and it gives theoretical and experimental originality to QM.
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