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Abstract: In the development of tight gas reservoirs, gas flow through porous media usually takes
place deep underground with multiple mechanisms, including gas slippage and stress sensitivity of
permeability and porosity. However, little work has been done to simultaneously incorporate these
mechanisms in the lattice Boltzmann model for simulating gas flow through porous media. This paper
presents a lattice Boltzmann model for gas flow through porous media with a consideration of these
effects. The apparent permeability and porosity are calculated based on the intrinsic permeability,
intrinsic porosity, permeability modulus, porosity sensitivity exponent, and pressure. Gas flow in
a two-dimensional channel filled with a homogeneous porous medium is simulated to validate the
present model. Simulation results reveal that gas slippage can enhance the flow rate in tight porous
media, while stress sensitivity of permeability and porosity reduces the flow rate. The simulation
results of gas flow in a porous medium with different mineral components show that the gas slippage
and stress sensitivity of permeability and porosity not only affect the global velocity magnitude,
but also have an effect on the flow field. In addition, gas flow in a porous medium with fractures
is also investigated. It is found that the fractures along the pressure-gradient direction significantly
enhance the total flow rate, while the fractures perpendicular to the pressure-gradient direction
have little effect on the global permeability of the porous medium. For the porous medium without
fractures, the gas-slippage effect is a major influence factor on the global permeability, especially
under low pressure; for the porous medium with fractures, the stress-sensitivity effect plays a more
important role in gas flow.

Keywords: Lattice Boltzmann method; tight porous media; multiple mechanisms; porous flow

1. Introduction

Gas flows in tight porous media have recently attracted much attention because they are widely
applied in engineering fields, such as oil-gas field development, chemical processes, new energy
development, and so on. The wide applications of gas flows in tight porous media also stimulate great
interest in experimental and theoretical studies [1–13]. Gas flow in porous media usually involves
three scales: Pore scale, representative elementary volume (REV) scale, and domain scale [14]. An REV
in a porous medium is the smallest volume at which the scale characteristics of the porous flow
hold, and thus the flow in a porous medium can be simulated at the REV scale without detailed
information of the pore structures. Compared with pore-scale models, REV-scale models have a higher
computational efficiency. Therefore, recently, many REV-scale models have been proposed in the
literature, such as the Darcy model, extended Darcy models (including Brinkman-extended Darcy and
Forchheimer–Darcy models), and generalized model based on the generalized Navier–Stokes equations.
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Because the generalized Navier–Stokes equations [15] can consider the combined influences of the
fluid and solid drag forces, they have received much attention recently. In general, these REV-scale
models can be solved by the conventional numerical methods, such as the finite difference method,
finite volume method, and so on [16].

The lattice Boltzmann method (LBM) is considered a promising method for simulating fluid
flow and has been successfully applied to the flow in tight porous media [17–21]. According to the
spatial scale in simulations, the lattice Boltzmann (LB) model for porous flow can be classified into
two categories, i.e., the pore-scale LB model and REV-scale LB model, which are used to simulate
the flow in porous media at the pore and REV scales, respectively. Owing to the advantage of the
LBM in the simulation of fluid dynamics, some REV-scale LB models have been proposed [22–24].
However, the macroscopic equations derived from these REV-scale LB models are the Darcy equation
and extended Darcy equations, which cannot consider the effects of all the fluid and solid drag forces.
Guo and Zhao [14] presented a generalized REV-scale LB model for incompressible flow through
porous media, which can recover the generalized Navier–Stokes equations [15] in the incompressible
limit. Later, Guo and Zhao [25] extended the generalized REV-scale LB model [14] to thermal flow in
porous media, which can be used to simulate both the velocity and temperature fields of the porous
flow. Rong et al. [26] proposed an REV-scale LB model for axisymmetric thermal flow in porous media.
Recently, Chen et al. [27] proposed a generalized REV-scale LB model with the Klinkenberg’s effect
based on the model proposed by Guo and Zhao [14]. It was found that the Klinkenberg’s effect plays
an important role in gas flow in tight porous media, especially when the reservoir pressure decreases.

However, in practice, gas flow through porous media in tight gas reservoirs usually takes place
deep underground, where multiple mechanisms, including gas slippage and stress sensitivity of
permeability and porosity, have proven to appear as the gas flows through porous media under
gas-reservoir conditions [28–30]. To our knowledge, no work has been done to simultaneously
incorporate these mechanisms in the LB model for simulating gas flow through porous media.
Therefore, the aim of this paper is to propose an REV-scale LB model for gas flow through porous
media with the consideration of these multiple mechanisms. The effects of these mechanisms on gas
flow in tight porous media with (or without) fractures will be studied in detail.

2. Generalized Model for Gas Flow in Tight Porous Media

2.1. Generalized Navier–Stokes Equations

Owing to the nano/micron-sized porous media considered in the present work, the pressure
difference in these porous media under gas-reservoir conditions is so small that the flow can be
considered incompressible flow in simulations. Recently, the generalized Navier–Stokes equations
proposed by Nithiarasu et al. [15] have been widely used to study the isotheral incompressible flow in
porous media, which can be expressed as follows:

∇ · u = 0, (1a)

∂tu + (u · ∇)
(

u
φ

)
= −1

ρ
∇p + νe∇2u + F, (1b)

where u is the volume-averaged velocity, t is time, φ is the porosity, ρ is the fluid density, p is the
pressure, νe is the effective viscosity, F is the total body force, including the porous-medium resistance
and other external forces expressed as follows:

F = −φv
K

u−
φFφ√

K
|u|u + φG, (2)

where v is the shear viscosity that is not necessarily the same as νe, K is the permeability, G is the
external force, Fφ is the geometric function that can be expressed as [31]:



Entropy 2019, 21, 133 3 of 19

Fφ =
1.75√
150φ3

. (3)

Note that the pressure, p, in Equation (1b) is the fluid pressure in pores instead of the
volume-averaged pressure [15]. The first and second terms on the right side of Equation (2) are
the linear and nonlinear drag forces due to the presence of the porous media, respectively. Strictly
speaking, the nonlinear term in Equation (2) should be considered for tight matrix and fractures.
For the low-speed flow in tight matrix, the value of u2 is usually negligibly small, and thus the effect
of the nonlinear drag force can be neglected for the sake of simplification, while for the high-speed
flow in fractures, the nonlinear drag force should be considered owing to the large value of u2 [32,33].
In this work, the nonlinear drag force is considered for tight matrix and fractures.

2.2. Gas Slippage Effect

Owing to the small pore size in tight porous media, the Knudsen number, Kn = λ/r, where λ

represents the mean free path of the gas and r is the characteristic pore size, is usually so large that the
gas-slippage effect takes place and the apparent permeability increases. It should be noted that the
apparent permeability reflects the real gas-transport capacity in porous media, which is dependent
on the characteristics of the porous media and fluid. The initial intrinsic permeability, which only
depends on the initial porous structures, is the measured liquid permeability when the pressure is
the initial reservoir pressure. The relationship between the apparent permeability and initial intrinsic
permeability can be given as follows:

Ka = Ki fc, (4)

where Ka is the apparent permeability, Ki is the initial intrinsic permeability, fc = fp · fs is the total
correction factor, fp is the correction factor due to the stress-sensitivity porous structures, fs is the
correction factor due to the gas-slippage effect.

Note that the porous media are located deep underground, and thus the pore structures are
sensitive to the pore pressure (or effective stress), and the permeability and porosity are functions of
the pore pressure (or effective stress).

A detailed description of the stress sensitivity of permeability and porosity will be presented
in the next section. Here, the stress-dependent measured liquid permeability, Kd, can be expressed
as follows:

Kd = Ki fp. (5)

Note that Kd only depends on the stress-dependent porous structures, and is not affected by the
fluid properties.

Similarly, the measured gas permeability without the stress sensitivity of permeability and
porosity is given as follows:

Ks = Ki fs, (6)

where Ks is the Klinkenberg’s corrected permeability without the effect of the stress-dependent
porous structures.

To consider the influence of the gas-slippage effect, the correction factor, fs, is introduced to
correct the permeability. Currently, various expressions for fs are proposed to describe the gas-slippage
effect. Klinkenberg [29] proposed a widely used expression as follows:

fs = 1 +
bk
p

, (7)

where bk is the Klinkenberg’s slippage factor that usually depends on the porous structures.
Nevertheless, the Klinkenberg’s correlation is only a first-order correlation, which may not be suitable
for the tight porous media with a large Knudsen number.
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Tang et al. [34] proposed a second-order correlation, which can be considered a direct extension
of the Klinkenberg’s correlation. The correction factor, fs, presented by Tang et al. [34] is written as:

fs = 1 +
A
p
+

B
p2 , (8)

where A and B are the slippage factors that depend on the mean free path, characteristic pore size,
pressure, and so on.

In order to study the gas transport in all flow regimes, i.e., continuum flow (Kn ≤ 0.001), slip flow
(0.001 < Kn ≤ 0.1), transition flow (0.1 < Kn ≤ 10), and free molecular flow (Kn > 10), some scholars
recommended the correction factor, fs, as follows [35]:

fs = [1 + β(Kn)Kn]
[

1 +
4Kn

1− bsKn

]
, (9)

where bs is the slip coefficient and is equal to −1 for slip flow, β(Kn) is the rarefaction coefficient,
which is given as [36]:

β(Kn) =
1.358

1 + 0.170Kn−0.4348 . (10)

Equations (9) and (10) are derived from flows in a single pipe at micro and nano scales and have
been widely applied to tight porous media. According to the definition of Kn, the mean free path, λ,
and the characteristic pore size, r, should be determined to obtain the value of Kn. Based on the gas
kinetic theory, the mean free path, λ, can be given by [37]:

λ =
µ

ρ

√
π

2RT
, (11)

where µ = ρν is the dynamic viscosity, R is the gas constant, T is the temperature. Following the
suggestion of Ziarani and Aguilera [38], the characteristic pore size, r, can be evaluated by [39]:

r = 8.886× 10−2
(

Kd
φd

)0.5
, (12)

where φd is the stress-dependent porosity, and the units of r and Kd are micron (µm) and millidarcy
(mD), respectively.

2.3. Stress Sensitivity of Permeability and Porosity

The porous media located deep underground usually suffer from overburden pressure due to the
presence of overlying rocks. In the development of oil and gas reservoirs, the pore pressure decreases as
the fluid in the porous media is exploited. Therefore, the effective stress, which is approximately equal
to the overburden pressure minus the pore pressure, will increase. The increase of the effective stress
will result in the deformation of the reservoir rocks and then reduce the permeability and porosity.
This phenomenon is called stress sensitivity of permeability and porosity. Many studies [28,30] have
pointed out that these stress-sensitivity characteristics in low permeable reservoirs are especially
obvious, and thus the effect of the stress sensitivity on the permeability and porosity should be
considered in the simulation of gas flow in tight porous media.

The relationship between the permeability and the pore pressure is usually described by [40]:

Kd = Ki exp[−γ(pi − p)], (13)

where pi is the initial reservoir pressure, γ is the permeability modulus.
The permeability varies with the porosity, which follows the following expression [40]:
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Kd
Ki

=

(
φd
φi

)α

, (14)

where α is the porosity sensitivity exponent, φi is the porosity under the initial reservoir pressure.
The pore structures in real porous media are so complex that it is difficult to obtain a generalized

porosity-permeability relationship. Ergun [31] proposed an expression to describe the relationship
between the permeability, Kd, and porosity, φd:

Kd =
φ3

dd2
p

150(1− φd)
2 , (15)

where dp is the solid-particle diameter. Equation (15) can be used to simulate gas flows in porous
media with an approximately uniform solid-particle diameter. Note that owing to the stress sensitivity
of the reservoir rocks, the solid-particle diameter, dp, is not a constant, but a function of the pore
pressure, p. However, it is difficult to determine the relationship between dp and p, and there is
little work to study this. In this work, we only use Equation (15) to approximatively describe the
relationship between the permeability, Ki, and porosity, φi, under the initial reservoir pressure, pi,
and the relationship between the permeability, Kd, and porosity, φd, at arbitrary reservoir pressure, p,
is defined by Equation (14). The solid-particle diameter under the initial reservoir pressure is set to be
dpi. Therefore, in simulations, stress sensitivity could only affect the permeability and porosity, but not
affect the solid-particle diameter and the structures of the porous media.

2.4. Generalized Navier–Stokes Equations for Tight Porous Media

To study gas flow through tight porous media in gas reservoirs, Equations (2) and (3) should be
modified to consider the effects of the gas slippage and stress-sensitivity pore structures:

F = −φdv
Ka

u−
φdFφ√

Ka
|u|u + φdG, (16)

Fφ =
1.75√
150φ3

d

. (17)

In summary, Equations (1), (16) and (17), together with the apparent permeability and porosity
calculated by Equations (4), (9), (10), (13)–(15), compose the generalized Navier–Stokes equations for
gas flow in tight porous media with multiple mechanisms.

3. Lattice Boltzmann Model

There has been considerable debate in the literature about the appropriateness of the LB model
with single relaxation time for simulating Darcy flows in granular porous domains and permeability
estimates [41], and the LB model with multiple relaxation times is superior to the LB model with
a single relaxation time in stability and accuracy. However, the LB model with a single relaxation time
has a higher computational efficiency than the LB model with multiple relaxation times and can be
used to accurately simulate the porous flow at the REV scale [14,25–27]. Therefore, to simulate the
gas flow in tight porous media with multiple mechanisms, we develop an LB model with a single
relaxation time based on the work of Guo and Zhao [14] for gas flow through tight porous media with
multiple mechanisms, which is given as follows:

fi(r + ciδt, t + δt)− fi(r, t) = − 1
τ

[
fi(r, t)− f (eq)

i (r, t)
]
+ δt Ji, (18)

where:
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f (eq)
i = ωiρ

[
1 +

ci · u
c2

s
+

(ci · u)2

2φdc4
s
− u · u

2φdc2
s

]
, (19)

Ji =

(
1− 1

2τ

)
ρωi

[
ci
c2

s
+

(ci · u)ci − c2
s u

φdc4
s

]
· F, (20)

fi is the density distribution function associated with the discrete velocity, ci, at the site, r, and time

t, f (eq)
i is the equilibrium distribution function, δt is the time step, τ is the dimensionless relaxation

time. For the two-dimensional nine-velocity (D2Q9) model, the weight coefficients, ωi, are ω0 = 4/9,
ω1–4 = 1/9, ω5–8 = 1/36; cs = c/

√
3 is the lattice sound speed; ci is the discrete velocity, which is

given by:

ci =


(0, 0), i = 0,
(cos[(i− 1)π/2], sin[(i− 1)π/2])c, i = 1–4,
(cos[(2i− 9)π/4], sin[(2i− 9)π/4])

√
2c, i = 5–8,

(21)

where c =
√

3RT.
The density and velocity are defined, respectively:

ρ = ∑
i

fi, (22a)

ρu = ∑
i

ci fi +
δt

2
ρF. (22b)

Through the Chapman–Enskog expansion, we can derive the generalized Navier–Stokes equations
presented above in the limit of a small Mach number. The pressure, p, and effective viscosity, νe,
are defined, respectively:

p = ρc2
s , (23)

νe = c2
s

(
τ − 1

2

)
δt. (24)

It should be noted that F includes the velocity, u, and thus Equation (22b) is a nonlinear equation
for the velocity, u. According to the suggestion proposed by Guo and Zhao [14], the velocity, u, can be
obtained by:

u =
υ

c0 +
√

c2
0 + c1|υ|

, (25)

where υ is a temporal velocity given as:

ρυ = ∑
i

ci fi +
δt

2
ρφdG, (26)

and the parameters, c0 and c1, are obtained by:

c0 =
1
2

(
1 + φd

δt

2
v

Ka

)
, (27a)

c1 = φd
δt

2
Fφ√
Ka

. (27b)

The present LB model, including Equations (18)–(27), can be used to study the gas flow in the
low permeable reservoirs at the REV scale with the effects of the gas slippage and stress-sensitivity
pore structures.
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4. Simulation Results and Discussions

4.1. Flow in a Channel Filled with a Porous Medium

First, gas flow in a channel filled with a homogeneous porous medium is simulated to validate
the present LB model. The flow is driven by pressure difference, ∆p, at the inlet and outlet, which can
be used to calculate the external force by G = ∆p/(ρL) with L representing the length of the channel.
The streamwise velocity, ux (i.e., x-direction velocity), can be described by the following equation [14]:

ve

φd

∂2ux

∂y2 + G− v
Ka

ux −
Fφ√
Ka

u2
x = 0. (28)

with ux(x, 0) = ux(x, H) = 0, where H is the height of the channel. Owing to the extremely low
velocity in tight porous media without fractures, the nonlinear inertial effect (i.e., the fourth term on
the left-hand side of Equation (28)) can be neglected. Therefore, Equation (28) is simplified as:

ve

φd

∂2ux

∂y2 + G− v
Ka

ux = 0. (29)

The analytical solution of Equation (29) is as follows:

ux =
GKa

v

(
1− cosh[A(y− H/2)]

cosh(AH/2)

)
, (30)

where A =
√

vφd/Kave. Note that if some fractures exist in the tight porous media, the nonlinear
inertial effect needs to be considered in simulations because of the large flow rate in the fractures. In the
following simulations, the effective viscosity, νe, is assumed to equal the shear viscosity, v. The initial
pressure, pi, porosity sensitivity exponent, α, initial solid-particle diameter, dpi, temperature, T, and gas
constant, R, are set as 30 MPa, 3, 50 nm, 333.15 K, and 519.6545 J/(K·kg), respectively. The dynamic
viscosity, µ, is calculated by the method proposed by Dempsey [42].

Figure 1 shows the effect of the permeability modulus on Ka/Ki under different pressures.
It can be seen that Ka/Ki first decreases as the pressure decreases from 30 MPa, and then Ka/Ki

increases as the pressure continues to decrease, which results from the combined influences of the gas
slippage and stress-sensitivity pore structures. With the decrease of the pressure, the gas-slippage effect
makes the permeability increase, while the stress-sensitivity effect makes the permeability decrease.
The stress-sensitivity effect plays a more important role in gas transport with the increase of the
permeability modulus. For a fixed value of the permeability modulus, the gas-slippage effect becomes
gradually significant as the pressure decreases.Entropy 2019, 21, 133 8 of 21 
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Figure 1. The effect of the permeability modulus on Ka/Ki under different pressures. The pressure
varies from 1 to 30 MPa, and the initial porosity is set as φi = 0.1.
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Figure 2 shows the effect of the initial porosity on Ka/Ki under different pressures. It is clear that
the gas-slippage effect becomes more obvious with the decrease of the initial porosity. For a fixed value
of the initial porosity, the gas-slippage effect increases with the decrease of the pressure.
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Figure 2. The effect of the initial porosity on Ka/Ki under different pressures. The pressure varies from
1 to 30 MPa, and the permeability modulus is set as γ = 0.09 MPa−1.

Figure 3 shows the effect of the permeability modulus on φd/φi under different pressures.
For a given pressure, the value of φd/φi decreases with the increase of the permeability modulus.
When γ = 0, the stress-sensitivity effect is neglected, and thus the porosity remains constant under
different pressures. When the value of γ is small (e.g., γ ≤ 0.06 MPa−1), the porosity decreases linearly
as the pressure decreases. However, with the increase of the value of γ, a nonlinear relationship
between the porosity and pressure will appear.
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In the simulations, the present LB model in lattice units is implemented, and then the simulation
results are converted from lattice units to physical units [43]. Both the length and height of the channel
are set as 1 µm (i.e., L× H = 1 µm× 1 µm), the initial porosity, φi, is fixed at 0.3, and the pressure
gradient between the inlet and outlet is set to be 1.0MPa/m. The lattice size is chosen as 200× 200.
The dimensionless relaxation time, τ, is set as 1.0. Periodic boundary conditions are applied to the
inlet and outlet, and the nonequilibrium extrapolation conditions [44] are applied to the top and
bottom walls. The initial velocities (ux and uy) are set to be 0, and the initial density, ρ, is set as 1.0.
The convergence criterion is given as follows:
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√√√√√∑i,j

{
[ux(i, j, t + 100δt)− ux(i, j, t)]2 +

[
uy(i, j, t + 100δt)− uy(i, j, t)

]2}
∑i,j

[
ux(i, j, t + 100δt)

2 + uy(i, j, t + 100δt)
2
] < 10−6. (31)

The simulation results are shown in Figures 4 and 5, from which it is seen that the simulation
results by the present LB model are in excellent agreement with the analytic solutions in all cases with
different permeability moduli and pore pressures. Therefore, the present LB model has the capability
to simulate gas flow through tight porous media with multiple mechanisms, including gas slippage
and stress sensitivity of permeability and porosity.
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the present model. The pressure is set as p = 25 MPa.

4.2. Flow in Tight Porous Media without Fractures

In practice, the real porous media are not homogeneous systems with uniform permeability and
porosity, but heterogeneous systems that consist of different mineral components. Taking shale matrix
as an example, shale matrix mainly consists of organic material and inorganic material. In general,
the pores in shale matrix are nanoscale pores, and thus gas transport in both organic and inorganic
materials is extremely slow. Compared with the inorganic material, organic material has a relatively
lower permeability and porosity. Therefore, it is essential to study gas flow in porous media with
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different mineral components. In this section, the structure of a heterogeneous porous medium with
two mineral components is considered, which is shown in Figure 6. The randomly distributed organic
material is generated by the quartet structure generation set (QSGS) method [45]. The volume fractions
of the inorganic material and organic material are 0.58 and 0.42, respectively. The domain size of the
porous medium is L× H = 2 µm× 2 µm. The initial porosities of inorganic material and organic
material are 0.3 and 0.1, respectively. The permeability moduli of inorganic material and organic
material are 0.06 MPa−1 and 0.12 MPa−1, respectively. Periodic boundary conditions are applied
to all the boundaries. The pressure gradient between the inlet and outlet is set to be 1.0 MPa/m.
The dimensionless relaxation time, τ, is set as 1.0. The initial conditions and convergence criterion
are the same as that in Section 4.1. The values of parameters in physical units and lattice units for
simulations of gas flow in tight porous media without fractures are listed in Tables 1 and 2, respectively.
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Figure 6. Structure of a heterogeneous porous medium with two mineral components: organic material
with relatively lower permeability and porosity (white), and inorganic material with relatively higher
permeability and porosity (black). The randomly distributed organic material is generated by the QSGS
method. Volume fractions of the inorganic material and organic material are 0.58 and 0.42, respectively.

Table 1. Basic parameters in physical units used for simulations of gas flow in tight porous media
without fractures.

Parameter 0.5 MPa 10 MPa 25 MPa

L (m) 2× 10−6 2× 10−6 2× 10−6

H (m) 2× 10−6 2× 10−6 2× 10−6

G
(
Pa ·m2/kg

)
3.4625× 105 1.7312× 104 6.9249× 103

v
(
Pa · s ·m3/kg

)
3.8651× 10−6 2.4740× 10−7 1.3805× 10−7

Inorganic material Ka
(
m2) 4.1931× 10−18 5.9209× 10−19 9.9148× 10−19

Inorganic material Kd
(
m2) 1.5643× 10−19 2.7661× 10−19 6.8034× 10−19

Inorganic material Ki
(
m2) 9.1837× 10−19 9.1837× 10−19 9.1837× 10−19

Inorganic material φd 0.1663 0.2011 0.2715
Inorganic material φi 0.3 0.3 0.3

Organic material Ka
(
m2) 1.1587× 10−19 1.5430× 10−20 3.4592× 10−20

Organic material Kd
(
m2) 5.9698× 10−22 1.8666× 10−21 1.1292× 10−20

Organic material Ki
(
m2) 2.0576× 10−20 2.0576× 10−20 2.0576× 10−20

Organic material φd 0.0307 0.0449 0.0819
Organic material φi 0.1 0.1 0.1

Table 2. Basic parameters in lattice units used for simulations of gas flow in tight porous media
without fractures.

Parameter 0.5 MPa 10 MPa 25 MPa

L (lattice unit) 2 2 2
H (lattice unit) 2 2 2
G (lattice unit) 2.3178× 10−14 2.8284× 10−13 3.6310× 10−13

v (lattice unit) 1.0× 10−6 1.0× 10−6 1.0× 10−6

Inorganic material Ka (lattice unit) 4.1931× 10−6 5.9209× 10−7 9.9148× 10−7

Inorganic material Kd (lattice unit) 1.5643× 10−7 2.7661× 10−7 6.8034× 10−7
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Table 2. Cont.

Parameter 0.5 MPa 10 MPa 25 MPa

Inorganic material Ki (lattice unit) 9.1837× 10−7 9.1837× 10−7 9.1837× 10−7

Inorganic material φd 0.1663 0.2011 0.2715
Inorganic material φi 0.3 0.3 0.3

Organic material Ka (lattice unit) 1.1587× 10−7 1.5430× 10−8 3.4592× 10−8

Organic material Kd (lattice unit) 5.9698× 10−10 1.8666× 10−9 1.1292× 10−8

Organic material Ki (lattice unit) 2.0576× 10−8 2.0576× 10−8 2.0576× 10−8

Organic material φd 0.0307 0.0449 0.0819
Organic material φi 0.1 0.1 0.1

The grid dependency for the simulation results is tested based on the structure of the porous
medium shown in Figure 6. The two different grid sizes, namely 200× 200 and, 400× 400 are employed
to simulate the gas flow. The effect of the grid number on the velocity magnitude distributions in

the porous medium is shown in Figure 7. The velocity magnitude, |u|, is defined as |u| =
√

u2
x + u2

y.
There is no obvious difference between the velocity magnitude distributions based on the two grid
system. The global permeability is introduced to quantify the seepage capability of the porous medium.
Note that the global permeability defined by Chen et al. [27] is dependent on the flow field in the
entire domain rather than the local characteristic of a porous medium. The definition of the global
permeability is given as follows:

Kg =
v
∫ H

0 |u(L, y)|dy
H · G , (32)

where Kg is the global permeability. It is seen from Figure 8 that no obvious change of the global
permeability is observed when the grid is refined, and thus the 200× 200 lattice is sufficient to obtain
grid-independent results.
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Figure 9 shows the effects of the gas slippage and stress-sensitivity pore structures on velocity
magnitude distributions in the porous medium. The gas-slippage effect enhances the global velocity
magnitude, while the stress-sensitivity effect reduces the global velocity magnitude as shown in
Figure 9. It is seen that under a fixed pressure, the velocity magnitude distributions are different
for the cases with and without the gas-slippage and stress-sensitivity effects, which is because these
influencing factors have different effects on gas transport in different materials. Figure 10 shows the
effects of the gas slippage and stress-sensitivity pore structures on the velocity magnitude profiles
at the outlet of the porous medium. It is clear that the velocity magnitude profiles at the outlet are
also different for the cases with and without the gas-slippage and stress-sensitivity effects. Therefore,
multiple mechanisms, including gas slippage and stress sensitivity of permeability and porosity, affect
not only the global velocity magnitude, but also the flow field. To obtain a correct prediction of gas
flow in porous media, these mechanisms should be considered in simulations.
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Figure 9. The effects of the gas slippage and stress-sensitivity pore structures on velocity magnitude 

distributions in the porous medium. (a) 0.5 MPap  , (b) 10 MPap  , (c) 25 MPap  . The first 

row: without the effects of gas slippage and stress-sensitivity pore structures; the second row: with 

only the effect of gas slippage; the third row: with only the effect of stress-sensitivity pore structures; 

the fourth row: with gas slippage and stress-sensitivity pore structures. 

Figure 9. The effects of the gas slippage and stress-sensitivity pore structures on velocity magnitude
distributions in the porous medium. (a) p = 0.5 MPa, (b) p = 10 MPa, (c) p = 25 MPa. The first row:
without the effects of gas slippage and stress-sensitivity pore structures; the second row: with only the
effect of gas slippage; the third row: with only the effect of stress-sensitivity pore structures; the fourth
row: with gas slippage and stress-sensitivity pore structures.
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Figure 10. The effects of the gas slippage and stress-sensitivity pore structures on velocity magnitude 

profiles at the outlet of the porous medium. (a) 0.5 MPap  , (b) 10 MPap  , (c) 25 MPap  . The 

first row: without the effects of gas slippage and stress-sensitivity pore structures; the second row: 

with only the effect of gas slippage; the third row: with only the effect of stress-sensitivity pore 

structures; the fourth row: with gas slippage and stress-sensitivity pore structures. 
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Figure 10. The effects of the gas slippage and stress-sensitivity pore structures on velocity magnitude
profiles at the outlet of the porous medium. (a) p = 0.5 MPa, (b) p = 10 MPa, (c) p = 25 MPa. The first
row: without the effects of gas slippage and stress-sensitivity pore structures; the second row: with only
the effect of gas slippage; the third row: with only the effect of stress-sensitivity pore structures;
the fourth row: with gas slippage and stress-sensitivity pore structures.

We will focus on the effects of the multiple mechanisms on the global permeability. Figure 11
shows the effects of the gas slippage and stress-sensitivity pore structures on global permeability
under different pressures. It is observed that the gas slippage and stress-sensitivity pore structures
significantly affect the global permeability. The gas-slippage effect increases the global permeability
and becomes stronger with a decrease of the pressure. The stress-sensitivity effect decreases the global
permeability as the pressure is reduced. In general, the global permeability of a porous medium
deep underground is affected by the combined influences of the gas slippage and stress sensitivity.
The quantitative comparison between the global permeability with and without the effects of the
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gas slippage and stress-sensitivity pore structures is listed in Table 3, from which it can be seen that
compared with the stress-sensitivity effect, the gas-slippage effect becomes more significant in matrix,
especially under low pressure.
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Table 3. Comparison between the global permeability with and without the effects of the gas slippage
and stress-sensitivity pore structures in a porous medium without fractures. The variable with the
subscript, g, represents the corresponding global permeability.

Pressure Kgs/Kgi Kgd/Kgi Kga/Kgi

0.5 MPa 16.0734 0.1621 4.4781
10 MPa 1.8065 0.2897 0.6788
25 MPa 1.4522 0.7319 1.1345

4.3. Flow in Tight Porous Media with Fractures

In general, natural fractures may exist in a porous medium. Compared with the matrix with
organic and inorganic materials, natural fractures can significantly enhance the gas-transport capability
of a porous medium. In this section, gas flow in tight porous media with fractures will be studied.
The effects of the fracture distributions, gas slippage, and stress sensitivity on gas transport are
analyzed in detail. The distributions of the organic and inorganic materials in a porous medium are the
same as that in Figure 6. The fractures with different lengths and directions are embedded in the porous
medium as shown in Figure 12. The domain size of the porous medium is 20 µm× 20 µm, and the
width of the fracture is set as 1 µm. Generally, gas flow in fractures can be approximately considered
as the seepage in a porous medium with extremely high porosity and permeability. The initial porosity
and permeability modulus of the fractures are 0.99 and 0.03 MPa−1, respectively. Periodic boundary
conditions are applied to all the boundaries. The pressure gradient between the inlet and outlet is
set to be 1.0 MPa/m. The dimensionless relaxation time, τ, is set as 1.0. The initial conditions and
convergence criterion are the same as that in Section 4.1. The values of parameters in physical units
and lattice units for simulations of gas flow in tight porous media with fractures are listed in Table 4.



Entropy 2019, 21, 133 15 of 19
Entropy 2019, 21, 133 16 of 21 

 

 

 

(a)

 

 

(b)

 

 

(c)

 

 

(d)
 

 

(e)
 

 

(f)

 

 

(g)
 

 

(h)
 

 

(i)  

Figure 12. Structures of a heterogeneous porous medium with no fracture (a), a completely 
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penetration ratio being 1/4 (d), 1/2 (e), 3/4 (f), 7/8 (g), 15/16 (h), and 31/32 (i). White represents the 

fractures, black represents the inorganic matrix, and gray represents the organic matrix. 

Table 4. Basic parameters in physical units and lattice units used for simulations of gas flow in tight 

porous media with fractures under the pressure of 0.5 MPa . 

Parameter  Physical unit Lattice unit 

L   620 10 m  20  

H   620 10 m  20  

G   5 23.4625 10 Pa m kg   142.3178 10  

v   6 33.8651 10 Pa s m kg    61.0 10  

Inorganic material aK   18 24.1931 10 m  64.1931 10  

Inorganic material dK   19 21.5643 10 m  71.5643 10  

Inorganic material iK   19 29.1837 10 m  79.1837 10  

Inorganic material d  0.1663 0.1663 

Inorganic material i  0.3 0.3 

Organic material aK   19 21.1587 10 m  71.1587 10  

Organic material dK   22 25.9698 10 m  105.9698 10  

Figure 12. Structures of a heterogeneous porous medium with no fracture (a), a completely penetrated
fracture along the vertical centerline (b), a completely penetrated fracture along the horizontal centerline
(c), and partly penetrated fractures along the horizontal centerline with the penetration ratio being 1/4
(d), 1/2 (e), 3/4 (f), 7/8 (g), 15/16 (h), and 31/32 (i). White represents the fractures, black represents
the inorganic matrix, and gray represents the organic matrix.

Table 4. Basic parameters in physical units and lattice units used for simulations of gas flow in tight
porous media with fractures under the pressure of 0.5 MPa.

Parameter Physical Unit Lattice Unit

L 20× 10−6 (m) 20
H 20× 10−6(m) 20
G 3.4625× 105 (Pa ·m2/kg

)
2.3178× 10−14

v 3.8651× 10−6 (Pa · s ·m3/kg
)

1.0× 10−6

Inorganic material Ka 4.1931× 10−18 (m2) 4.1931× 10−6

Inorganic material Kd 1.5643× 10−19 (m2) 1.5643× 10−7

Inorganic material Ki 9.1837× 10−19 (m2) 9.1837× 10−7

Inorganic material φd 0.1663 0.1663
Inorganic material φi 0.3 0.3
Organic material Ka 1.1587× 10−19 (m2) 1.1587× 10−7

Organic material Kd 5.9698× 10−22 (m2) 5.9698× 10−10

Organic material Ki 2.0576× 10−20 (m2) 2.0576× 10−8

Organic material φd 0.0307 0.0307
Organic material φi 0.1 0.1
Natural fracture Ka 7.0996× 10−14 (m2) 7.0996× 10−2

Natural fracture Kd 6.6743× 10−14 (m2) 6.6743× 10−2

Natural fracture Ki 1.6172× 10−13 (m2) 1.6172× 10−1

Natural fracture φd 0.7371 0.7371
Natural fracture φi 0.99 0.99
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Figure 13 shows the effects of the fracture distributions on velocity magnitude distributions in
a porous medium. It is seen that the fracture distributions have an important effect on the flow field.
When the fracture is perpendicular to the pressure-gradient direction, there is a small change of the
flow field compared with a porous medium without fractures. However, when the fracture is along
the pressure-gradient direction, a large change of the flow field will appear. Furthermore, the average
velocity in the fracture along the pressure-gradient direction increases observably compared with that
in the fracture perpendicular to the pressure-gradient direction. The average velocity in the fracture
along the pressure-gradient direction increases as the length of the fracture increases. The comparison
between the global permeability of a porous medium with and without fractures under the pressure
of 0.5 MPa is shown in Table 5. It is observed that the fracture along the pressure-gradient direction
enhances the global permeability more significantly compared with the fracture perpendicular to the
pressure-gradient direction. For the fracture along the pressure-gradient direction, the penetration ratio
of the fracture in the porous medium is also an important factor on the global permeability. It is found
that the global permeability with completely penetrated fracture is obviously higher than that with
partly penetrated fracture, and the global permeability increases when the penetration ratio increases.Entropy 2019, 21, 133 18 of 21 
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Figure 13. The effects of the fracture distributions on velocity magnitude distributions in a porous 

medium under the pressure of 0.5MPa . (a)–(i) are the simulation results based on the structures of 

the porous medium shown in Figure 12a–12i, respectively. 
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The effects of the gas slippage and stress-sensitivity pore structures on global permeability of a 

porous medium with fractures are studied. The quantitative results are presented in Table 6, from 

Figure 13. The effects of the fracture distributions on velocity magnitude distributions in a porous
medium under the pressure of 0.5 MPa. (a–i) are the simulation results based on the structures of the
porous medium shown in Figure 12a–i, respectively.
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Table 5. Comparison between the global permeability of a porous medium with and without the
fractures under the pressure of 0.5 MPa.

Structures of a Porous Medium with Fracture The Ratio of Global Permeability with Fracture and
Global Permeability without Fracture

Figure 12b 1.4037
Figure 12c 938.2724
Figure 12d 2.6933
Figure 12e 5.0843
Figure 12f 7.6190
Figure 12g 11.1979
Figure 12h 13.4764
Figure 12i 18.1392

The effects of the gas slippage and stress-sensitivity pore structures on global permeability
of a porous medium with fractures are studied. The quantitative results are presented in Table 6,
from which it is seen that the gas-slippage effect has little effect on the global permeability, while the
stress-sensitivity effect significantly affects it. According to the comparison between Tables 3 and 6,
it is found that for the porous medium without fractures, the gas-slippage effect is a major influence
factor on the global permeability, especially under low pressure; for the porous medium with fractures,
the stress-sensitivity effect plays a more important role in gas flow.

Table 6. Comparison between the global permeability with and without the effects of the gas slippage
and stress-sensitivity pore structures in a porous medium with fractures. The structure of the porous
medium is shown in Figure 12c. The variable with the subscript, g, represents the corresponding
global permeability.

Pressure Kgs/Kgi Kgd/Kgi Kga/Kgi

0.5 MPa 1.0226 0.5594 0.5797
10 MPa 1.0014 0.6807 0.6820
25 MPa 1.0008 0.9116 0.9123

5. Conclusions

In this paper, the generalized Navier–Stokes equations were proposed for simulating gas flow
through porous media with the effects of gas slippage and stress-sensitivity porous structures.
The apparent permeability and porosity were obtained based on the intrinsic permeability, intrinsic
porosity, permeability modulus, porosity sensitivity exponent, and pressure. An LB model was
developed to solve the generalized Navier–Stokes equations. Gas flow in a two-dimensional channel
filled with a homogeneous porous medium was simulated to validate the present LB model.
The simulation of gas flow in a porous medium with different mineral components was carried
out. The simulation results showed that the gas-slippage effect increases the global permeability of the
porous medium and becomes stronger with the decrease of the pressure, while the stress-sensitivity
effect decreases the global permeability as the pressure decreases. Furthermore, it was found
that these effect factors affect not only the global permeability, but also the flow field. Gas flow
in a porous medium with fractures was also investigated. It was found that the fractures along
the pressure-gradient direction significantly enhance the total flow rate of the porous medium,
while the fractures perpendicular to the pressure-gradient direction have little effect on the global
permeability. For the porous medium without fractures, the gas-slippage effect is a major influence
factor on the global permeability, especially under low pressure; for the porous medium with fractures,
the stress-sensitivity plays a more important role in gas flow.
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