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Abstract: Causal analysis based on non-uniform embedding schemes is an important way to detect
the underlying interactions between dynamic systems. However, there are still some obstacles to
estimating high-dimensional conditional mutual information and forming optimal mixed embedding
vector in traditional non-uniform embedding schemes. In this study, we present a new non-uniform
embedding method framed in information theory to detect causality for multivariate time series,
named LM-PMIME, which integrates the low-dimensional approximation of conditional mutual
information and the mixed search strategy for the construction of the mixed embedding vector.
We apply the proposed method to simulations of linear stochastic, nonlinear stochastic, and chaotic
systems, demonstrating its superiority over partial conditional mutual information from mixed
embedding (PMIME) method. Moreover, the proposed method works well for multivariate time
series with weak coupling strengths, especially for chaotic systems. In the actual application, we show
its applicability to epilepsy multichannel electrocorticographic recordings.

Keywords: causal analysis; non-uniform embedding; multivariate time series; conditional
mutual information

1. Introduction

In recent years, various time series analysis methods have been proposed to detect interactions
between complex systems [1–3]. The study of causality, in particular, has attracted wide attention of
researchers. There are two classic methods in the time series causal analysis: Granger causality [4]
and transfer entropy [5,6]. Both methods are based on time series prediction for causal analysis.
In addition, the relationship between Granger causality and transfer entropy is demonstrated [7]:
the two methods are equivalent under Gaussian assumptions. Furthermore, Hlavackova–Schindler [8]
extends the equivalence of the two causality methods for generalized Gassian processes which satisfy
some additional conditions on probability density distributions.

With the development of multivariate state space reconstruction, different embedding
schemes [9–13] are used in Granger causality and transfer entropy. The common idea of those
embedding schemes is to reconstruct the past of the whole system represented by all variables
with reference to the target variable, in order to form a mixed embedding vector containing the
most significant past variables to explain the target variable. Non-uniform embedding schemes are
proposed to solve the problems of redundancy and arbitrariness in uniform embedding schemes [11,14].
Vlachos et al. propose a causality measure for bivariate variables based on the mixed embedding
scheme: the conditional mutual information from mixed embedding (MIME) [15]. Kugiumtzis et al.
extend the MIME method to multivariable time series and form the partial MIME (PMIME) method [16].
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The PMIME method successfully solves the problem of detecting direct causality in multivariable
time series. In addition, it is gradually applied to complex systems such as physiology [17,18] and
finance [19,20].

Although the causal analysis using non-uniform embedding has practical advantages, there are
still some key shortcomings that need to be overcome. One shortcoming is the curse of dimensionality,
which makes the estimation of mutual information inaccurate as the dimension of the embedded
space increases [21–24]. Another shortcoming is related to the mixed embedding vector. The greedy
strategy uses a sequential forward approach to select the lagged variables and finally form the mixed
embedding vector [11,15,16]. That is to say, the lagged variables that have been embedded will not be
changed in the mixed embedding vector. As the iteration increases, more lagged variables are selected
until the final mixed embedding vector is formed. Therefore, the inaccuracy of the initial embedding
will have a large impact on the results. The above shortcomings will be highlighted when there are
multivariate time series of weak causal coupling strengths in practical applications.

In order to overcome the above shortcomings, we propose a new non-uniform embedding
method named LM-PMIME for multivariate time series based on the low-dimensional approximation
of conditional mutual information(CMI) and the mixed search strategy. The main contribution of the
proposed method is to reduce the dimension of the embedded space by replacing the original estimate
with a low-dimensional approximation of CMI. In addition, a mixed strategy, which has taken the
place of the greedy strategy, was adopted as an embedded strategy to optimize the initial embedding.
The proposed method works well for multivariate time series with weak coupling strengths.

The rest of the paper is organized as follows. In Section 2, we propose the multivariate
non-uniform embedding in accordance with the low dimensional approximation of CMI and a mixed
search strategy. In Section 3, we perform the simulation experiments in order to verify the effectiveness
of the LM-PMIME method. In Section 4, by analyzing the electrocorticographic (ECoG) recordings
from an epileptic patient, the applicability of the proposed method to actual data is shown. Finally,
a summary is presented in Section 5.

2. Method

In this section, we first introduce the traditional PMIME method. Then we expound a low
dimensional approximation of CMI and a mixed search strategy. Finally, we present the LM-PMIME
method for multivariable non-uniform embedding.

2.1. PMIME Method

The PMIME method, a generalization of the MIME method for bivariate variables [15],
is developed by Kugiumtzis et al. [16] to detect the directional coupling in multivariable time series.
Let K variables X, Y, Z1, . . . , ZK−2 constitute an overall dynamical system {xt, yt, z1,t, . . . , zK−2,t}n

t=1.
Suppose that the driving subsystem is X and the target subsystem is Y. In other words, the current
value of variable Y is affected by the past of variable X. Z = {Z1, . . . , ZK−2} represent the
remaining subsystems.

We estimate the causal effect of X on Y conditioned by Z = {Z1, . . . , ZK−2}. It is necessary to form
a set of variables representing the past of the subsystems. The lags of X, Y and Z are sought within a
range given by a maximum lag for each variable, e.g., Lx for X and Ly for Y. Wt is defined as the set of
all lagged variables at time t, containing the parts xt, xt−1, . . . , xt−Lx of X and the same for Y and Z.
It is usually assumed that the maximum lag L for all variables is the same (Lx = Ly = Lz). The larger
the value of L, the more lagged variables are included in Wt. The key step of the PMIME method is to
form the mixed embedding vector vt ∈Wt using non-uniform embedding. The stopping criterion and
greedy selection are applied to the process of embedding. The detailed method is described below
as follows:

1. An empty embedding vector v0
t = ∅ is initialized.
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2. At the first iteration k = 1, the embedding vector w1
t ∈Wt is selected most related to yt:

w1
t = arg max

w∈Wt

I(yt; w), (1)

where I(.) represents mutual information. Mutual information is estimated by the k-nearest
neighbors (k-NNs) method. Then we have v1

t = [w1
t ]. At the same time, w1

t is removed from Wt.
3. At the iteration k > 1, the mixed embedding vector is augmented by the component wk

t of
Wt, giving most information about yt additionally to the information already contained in
vk−1

t = [w1
t , . . . , wk−1

t ]. wk
t will be selected by a standard through calculating the maximum value

of the conditional mutual information, wk
t = arg maxw∈Wt

I(yt; w|vk−1
t ), i.e., at the iteration k = 2,

w2
t = arg maxw∈Wt

I(yt; w|v1
t ), where the CMI is calculated by the k-NNs estimator, and the

mixed embedding vector is v2
t = [w1

t , w2
t ]. By using greedy forward method, each wk

t will be
embedded in the already embedded vector vk−1

t until the process stops. The termination criterion
is quantified as:

I(yt; vk−1
t )/I(yt; vk

t ) > A, (2)

where the threshold A < 1 and the general value of A is 0.95 or 0.97 in [15,16]. That is,
the additional information of wk

t selected at the iteration k is not large enough. The embedding
process will stop and we have the mixed embedding vector vt = vk−1

t . Any combination of the
lagged variables X, Y, Z1, . . . , ZK−2 may be included in vt.

4. To calculate the causality strength of X on Y conditioned by the other variables in Z, the index is
defined as

RX→Y|Z =
I(yt; vx

t |v
y
t , vz

t )

I(yt; vt)
, (3)

where vx
t represents the component of X in vt. It is the same with vy

t and vz
t . The causal effect of

X to Y depends on the components of X in vx
t .

2.2. The Proposed Method

2.2.1. Low Dimensional Approximation of CMI

As the dimension of the mixed embedding vector increases, the estimation of CMI becomes
less reliable. Because of an increasing volume of state space, the estimation of entropy rates
progressively decreases towards zero [15]. Therefore, in order to overcome the problems caused by
computing high-dimensional CMI, the low-dimensional approximation of CMI is a better alternative.
The low-dimensional approximation can improve the accuracy of conditional mutual information
estimation and reduce the computational cost.

The low-dimensional approximation of CMI is studied by researchers in the feature
selection [25–31]. Brown et al. [23] emphasize that lots of feature selection heuristics are all approximate
iterative maximizers of the conditional likelihood. Consequently, the methods are summarized as a
parameterized general standard:

I(w; yt)− β ∑
wi∈vt

I(w; wi) + γ ∑
wi∈vt

I(w; wi|yt), (4)

where the difference between different standards depends on the parameters (β and γ) . For example,
the JMI standard [26] is obtained with γ = β = 1/|vt|. β and γ are different in standards such as
MRMR standard [28], and CIFE standard [29]. Recent studies illustrate that the higher-order feature
interactions are considered to optimize feature selection standard. Therefore, we need to consider the
second-order interactions between the features compared to Equation (4), such as I(w; wj|wi) [24].

I(w; yt)− β ∑
wi∈vt

I(w; wi) + γ ∑
wi∈vt

I(w; wi|yt)− δ ∑
wi∈vt

∑
wj∈vt ;i 6=j

I(w; wj|wi), (5)
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where β = γ = 1/|vt| and δ = 1/|vt|(|vt| − 1). Using Equation (5), the original high-dimensional
MI based standard is decomposed into a group of low-dimensional MI quantities. We apply this
low-dimensional approximation to the selection of lagged variables.

2.2.2. Mixed Search Strategy

An applicable search strategy is important for building a mixed embedding vector. Because the
greedy search strategy has high computational efficiency and good practicability, it has become the
preferred strategy for embedding. However, the greedy strategy uses a sequential forward approach
to select lagged variables, which rely heavily on the initial embedded vector. That is to say, the initial
embedded vector is not accurate and the subsequent selection will get worse.

To solve the above problem, we present a mixed strategy to avoid inaccuracies in the initial
embedding. The mixed strategy consists of two strategies: the traversal strategy and the greedy
strategy. The application of the strategy is determined by defining a strategy adjustment factor
m. Assuming that a number of iterations is k, the traversal strategy is applied when 1 < k ≤ m.
For example, when using the traversal strategy, it is necessary to calculate the possible combinations of
all lagged variables before determining the mixed embedding vector of the current step. That is to
say, we need to calculate Ck

K∗L combinations in total, and then select the combination of the largest
conditional mutual information as the mixed embedding vector of the current step. The greedy strategy
is applied when k > m. This strategy is the same as the one used by the PMIME method.

2.2.3. LM-PMIME Method

We propose the LM-PMIME method to detect the directional coupling in multivariable time
series according to the low-dimensional approximation of CMI and the mixed search strategy. In the
LM-PMIME method, the mixed strategy determines the way to select lagged variables. Meanwhile,
whether the variable will be embedded depends on the low dimensional approximation of CMI.
Figure 1 illustrates the flow of the LM-PMIME method.

Start

Parameter setting and initialization

Calculate mutual information for the first vector 
embedding

the iteration k≤m
Y

The traversal strategy is applied to select lagged 
variables and the selection standard for lagged variables 

use the low-dimensional approximation of CMI

The  greedy strategy is applied to  select lagged 
variables and the selection standard for lagged variables 

use the low-dimensional approximation of CMI

Stop embedding according to 
termination criteria

Quantify the causal effect

End

N

Figure 1. The flowchart of the low-dimensional approximation of CMI and the mixed search
strategy(LM)-partial conditional mutual information from mixed embedding (PMIME) method.

The detailed LM-PMIME method is as follows:
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1. Initialize an empty embedding vector v0
t = ∅.

2. At the first iteration k = 1, the embedding vector w1
t ∈Wt is selected most related to yt:

w1
t = arg max

w∈Wt

I(yt; w) (6)

Then we have v1
t = [w1

t ].
3. At the iteration 1 < k ≤ m, wk

t will be selected by a standard through calculating the maximum
value of the low dimensional approximation of CMI.

wk
t =arg max

w∈Wt

I(w; yt)−β ∑
wi∈vk−1

t

I(w; wi)+γ ∑
wi∈vk−1

t

I(w; wi|yt)−δ ∑
wi∈vk−1

t

∑
wj∈vk−1

t ;i 6=j

I(w; wj|wi),

(7)

where β = γ = 1/|vt| and δ = 1/|vt|(|vt| − 1). The traversal strategy is applied to select vk
t , i.e.,

at the iteration k = 4 and m = 5, v4
t needs to be selected. First, clear the already embedded vector

v3
t and calculate C4

K∗L combinations in total. Then select the combination of largest conditional
mutual information as v4

t of the current step. Finally, k = k + 1.
4. At the iteration k > m, greedy strategy is used. Each wk

t will be embedded in the already
embedded vector vk−1

t until the process stops. The standard of low dimensional approximation
is still used before stopping.

5. The termination criterion is quantified as:

I(yt; vk−1
t )/I(yt; vk

t ) > A, (8)

where the threshold A < 1 and threshold A near 1, e.g., A = 0.95, allows the inclusion of a new
component in the mixed embedding vector even if the augmented vector explains very little of the
information on yt that was not explained at the previous step. Although the statistical significance
threshold α is widely used [32,33], the accuracy of causal analysis is lower than the threshold
A and the amount of calculation is large [15,16]. Therefore, we employ the threshold A for
non-uniform embedding. The general value of A is 0.95 or 0.97 in [15,16]. That is, the additional
information of wk

t selected at the iteration k is not large enough. The embedding process will stop
and we have the mixed embedding vector vt = vk−1

t . In addition, any combination of the lagged
variables X, Y, Z1, . . . , ZK−2 may be included in vt.

6. To calculate the causality strength of X on Y conditioned by the other variables in Z, the index is
defined as:

RX→Y|Z =
I(yt; vx

t |v
y
t , vz

t )

I(yt; vt)
, (9)

where vx
t represents the component of X in vt. It is the same with vy

t and vz
t . The causality

strength of X to Y depends on the components of X in vx
t . The presence of components of X in

the mixed embedding vector shows that X has effect on Y and then the derived causality strength
RX→Y|Z is positive, whereas the absence shows no effect and causality strength RX→Y|Z is exactly
zero. In addition, the RX→Y|Z is considered significant if it is positive in the PMIME method and
proposed method.

3. Simulation Study

To evaluate the effectiveness of the LM-PMIME, a series of synthetic time series from linear
stochastic, nonlinear stochastic and chaotic systems are applied to compare the effectiveness of the
traditional PMIME method. The effects of data length and coupling strength are considered in the
numerical experiment. To show the performance of the low-dimensional approximation of CMI,
the M-PMIME method only with the improvement of mixed strategy is added for comparison.
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In the above models, the accuracy of the estimated mutual information is vital for embedding
vector selection [28]. The two most common methods for estimating mutual information are the
histogram and kernel methods. The former one is time efficient but not highly accurate [34]. The latter
one has higher accuracy but comes with huge computational pressure [35]. We applied the k-nearest
neighbors (k-NNs) method to estimate mutual information because the k-NNs estimator is suitable for
high-dimensional data [36].

We calculate all methods on 100 realizations from each system to assess statistically the evaluation
indicators (sensitivity, specificity, and F1 score). The connections between variables are classified as
coupled directions and uncoupled directions to compute the confusion matrix.

3.1. Linear Multivariate Stochastic Process

The linear vector autoregressive (VAR) process is composed of order 4 in 5 time series (model 1
in [37]). 

x1,t = 0.4x1,t−1 − 0.5x1,t−2 + 0.4x5,t−1 + e1,t

x2,t = 0.4x2,t−1 − 0.3x1,t−4 + 0.4x5,t−2 + e2,t

x3,t = 0.5x3,t−1 − 0.7x3,t−2 − 0.3x5,t−3 + e3,t

x4,t = 0.8x4,t−3 + 0.4x1,t−2 + 0.3x2,t−2 + e4,t

x5,t = 0.7x5,t−1 − 0.5x5,t−2 − 0.4x4,t−1 + e5,t

(10)

where ei,t , i = 1, · · · , 5, are Gaussian noise. X1 → X2, X1 → X4, X2 → X4, X4 → X5, X5 → X1,
X5 → X2, and X5 → X3 are the true causal connections in this process.

We use A = 0.97 and L = 6, which matches the larger lag for the three methods in the process.
In addition, the LM-PMIME method and the M-PMIME method use the parameter m = 2. The results
from the linear VAR process with the time series length of 512 are shown in Figure 2. The direction
of the causal effect is from row to column in the matrix representation, e.g., the causal connection
X1 → X2 is represented as (1, 2) in the matrix representation. Hence, true causal relationships in the
process are (1, 2), (1, 4), (2, 4), (4, 5), (5, 1), (5, 2) and (5, 3) at the matrix elements. The mean values
of coupling measured by the three methods are positive and high on these matrix elements. It is
proved that the three methods have good sensitivity to true couplings. However, Figure 2 shows that
there are lots of false positives in the traditional method using high-dimensional CMI. In contrast,
the LM-PMIME method has better results than the other two methods, because the method reduces
false positives. The sensitivity, specificity, and F1 scores are obtained from 100 realizations of linear
VAR process with varying length of time series. The values of the specific indicators are listed in
Table 1. The F1 score of the LM-PMIME method has better results on the linear VAR process with
different time series lengths. Furthermore, the F1 score calculated by the LM-PMIME method increases
as the time series length increases. These better results are likely due to the great improvement of
specificity by the proposed method. At the same time, the F1 score reflects that the PMIME method
and M-PMIME method have achieved similar results in the linear VAR process. It shows that the
mixed strategy does not work in this process. However, the following experiments show that the
mixed strategy works well on the chaotic system.

3.2. Nonlinear Multivariate Stochastic Process

The nonlinear VAR process is of order 1 in three variables NLVAR3(1) (model 7 in [38]).
x1,t = 3.4x1,t−1(1− x2

1,t−1)e
−x2

1,t−1 + 0.4e1,t

x2,t = 3.4x2,t−1(1− x2
2,t−1)e

−x2
2,t−1 + 0.5x1,t−1x2,t−1 + 0.4e2,t

x3,t = 3.4x3,t−1(1− x2
3,t−1)e

−x2
3,t−1 + 0.3x2,t−1 + 0.5x2

1,t−1 + 0.4e3,t

(11)
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Figure 2. Matrix representation of causality for the linear vector autoregressive (VAR) process.
Retrieved by (a) traditional PMIME method, (b) mixed search strategy (M)-PMIME method, (c) and
LM-PMIME method with k-nearest neighbors (k-NNs) estimator. The length of the time series is 512.
m = 2 is used for the M-PMIME method and the LM-PMIME method. The remaining parameters
of the three methods are the same (L = 6, A = 0.97). Color maps for the mean values of coupling
measurements are obtained from 100 realizations of the linear VAR process. The direction of causal
influence is from row to column in the matrix. The true causal connections in this linear VAR process
are at the matrix elements (1, 2), (1, 4), (2, 4), (4, 5), (5, 1), (5, 2) and (5, 3).

Table 1. Evaluation indicators are obtained from 100 realizations of linear VAR process with varying
time series length for the three different methods. A = 0.97 and L = 6 are the parameters common to
the three methods. In addition, the LM-PMIME method and the M-PMIME method use the parameter
m = 2.

Sensitivity Specificity F1 Score

n = 256

PMIME 0.988 0.492 0.600
M-PMIME 0.989 0.481 0.596

LM-PMIME 0.797 0.741 0.647

n = 512

PMIME 1.000 0.567 0.643
M-PMIME 0.994 0.727 0.645

LM-PMIME 0.855 0.763 0.693

n = 1024

PMIME 1.000 0.697 0.719
M-PMIME 0.940 0.729 0.713

LM-PMIME 0.877 0.807 0.739

The true causal connections in NLVAR3 (1) are X1 → X2, X1 → X3, X2 → X3. The results obtained
from 100 realizations of the nonlinear VAR process are shown in Figure 3 for n = 512, A = 0.97, L = 6.
The strategy adjustment factor m = 3 determines the application of the strategies for the LM-PMIME
method and M-PMIME method. The true causal connections in NLVAR3(1) are represented at the
matrix elements (1,2), (1,3), and (2,3). For all methods, the mean values of coupling measurements on
these matrix elements are positive and high. It turns out that all methods have good sensitivity to true
couplings. But there are many false positives in the traditional methods using high-dimensional CMI.
Hence, the LM-PMIME method significantly outperforms the others. The evaluation indicators are
obtained from NLVAR3(1) by increasing the time series length. The values of the specific indicators
are listed in Table 2. The F1 score of LM-PMIME method has better results on NLVAR3(1) with
different time series lengths. In addition, the F1 score will increase as the time series length increases.
The low-dimensional approximation of CMI can greatly improve specificity, although mixed strategy
does not work in NLVAR3(1).
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Figure 3. Matrix representation of causality for NLVAR3(1). Retrieved by (a) traditional PMIME
method, (b) M-PMIME method, (c) and LM-PMIME method with k-NNs estimator. The time series
length is 512. m = 3 is used for the M-PMIME method and the LM-PMIME method. The remaining
parameters of the three methods are the same (L = 6, A = 0.97). Color maps for the mean values of
coupling measurements are obtained from 100 realizations of NLVAR3(1). The true causal connections
in NLVAR3(1) are at the matrix elements (1,2), (1,3), (2,3).

Table 2. Evaluation indicators are obtained from 100 realizations of NLVAR3(1) with varying time
series length for the three different methods. A = 0.97 and L = 6 are the parameters common to the
three methods. In addition, the LM-PMIME method and the M-PMIME method use the parameter
m = 3.

Sensitivity Specificity F1 Score

n = 256
PMIME 0.973 0.650 0.737

M-PMIME 0.976 0.615 0.712
LM-PMIME 0.860 0.844 0.792

n = 512
PMIME 1.000 0.681 0.758

M-PMIME 1.000 0.662 0.748
LM-PMIME 0.950 0.887 0.873

n = 1024
PMIME 1.000 0.860 0.877

M-PMIME 1.000 0.790 0.827
LM-PMIME 0.989 0.892 0.896

3.3. Coupled Henon Maps

The system of K coupled chaotic Henon maps (model 6 in [16]) defined as{
x1,t = 1.4− x2

1,t−1 + 0.3x1,t−2

xi,t = 1.4− (Cxi−1,t−1 + (1− C)xi,t−1)
2 + 0.3xi,t−2 f or i = 2, · · · , K

(12)

Xi−1 → Xi, where i = 2, · · · , K, are the true causal connections in the K coupled chaotic Henon
maps. The results from 100 realizations of the coupled Henon maps with the coupling strength
C = 0.1 are shown in Figure 4 for n = 1024, K = 6, A = 0.95, L = 5, m = 2. In addition to this,
the results of only changing the coupling strength C = 0.3 are shown in Figure 5. The true causal
connections in the coupled Henon maps are at the matrix elements (i − 1, i), where i = 2, · · · , 6.
There is almost no false positive for all methods. However, Figures 4 and 5 illustrate that the proposed
methods have better performance than the traditional method when there are true causal connections.
All methods will detect stronger causal connections as the coupling strength C of the system increases.
The evaluation indicators are obtained from coupled Henon maps with the variables K from 3 to 9.
The values of the specific indicators are listed in Tables 3 and 4. The results show that the F1 score of
the LM-PMIME method is higher than the others when the coupling strength is low. Although the F1
score may be affected by the number of variables K in the simulation experiments, the F1 score for the
LM-PMIME method is above 0.9. The LM-PMIME method and the M-PMIME method greatly improve



Entropy 2019, 21, 1233 9 of 16

the specificity, especially the former method. It is proved that both low-dimensional approximation
of CMI and the mixed strategies play an important role in coupled Henon maps when the coupling
strength is low.

(a) PMIME (b) M-PMIME (c) LM-PMIME 
0.30 ·0.30 0.30 

1 1 1 

0.25 ·0.25 0.25 

2 2 2 

0 20 ·O 20 0 20 

3 3 3 

0.15 ·0.15 0.15 

4 4 4 

5 

I -0.10 

5 

I -0.10 

5 

l - 0.10 

-o.os -o.os 一0.05

6 6 6 

-0.00 -0.00 -0.00 

2 3 4 5 6 2 3 4 5 6 1 2 3 4 5 6 

Figure 4. Matrix representation of causality for K = 6 variables of the coupled Henon maps (C = 0.1).
Retrieved by (a) traditional PMIME method, (b) M-PMIME method, (c) and LM-PMIME method with
k-NNs estimator. The time series length is 1024. m = 2 is used for the M-PMIME method and the
LM-PMIME method. The remaining parameters of the three methods are the same (L = 5, A = 0.95).
Color maps for the mean values of coupling measurements are obtained from 100 realizations of the
coupled Henon maps. The true causal connections in the coupled Henon maps are at the matrix
elements (i− 1, i), where i = 2, · · · , 6.

Figure 5. Matrix representation of causality for K = 6 variables of the coupled Henon maps (C = 0.3).
Retrieved by (a) traditional PMIME method, (b) M-PMIME method, (c) and LM-PMIME method with
k-NNs estimator. The time series length is 1024. m = 2 is used for the M-PMIME method and the
LM-PMIME method. The remaining parameters of the three methods are the same (L = 5, A = 0.95).
Color maps for the mean values of coupling measurements are obtained from 100 realizations of the
coupled Henon maps. The true causal connections in the coupled Henon maps are at the matrix
elements (i− 1, i), where i = 2, · · · , 6.

Table 3. Evaluation indicators are obtained from 100 realizations of K variables of the Henon maps
(C = 0.1) for the three different methods. A = 0.95 and L = 5 are the parameters common to the three
methods. In addition, the LM-PMIME method and the M-PMIME method use the parameter m = 2.

Sensitivity Specificity F1 Score

K = 3
PMIME 0.175 1.000 0.297

M-PMIME 0.715 1.000 0.834
LM-PMIME 0.945 1.000 0.972

K = 6
PMIME 0.217 1.000 0.357

M-PMIME 0.674 1.000 0.806
LM-PMIME 0.926 0.998 0.950

K = 9
PMIME 0.204 1.000 0.338

M-PMIME 0.700 1.000 0.824
LM-PMIME 0.895 0.998 0.904
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Table 4. Evaluation indicators are obtained from 100 realizations of K variables of the Henon maps
(C = 0.3) for the three different methods. A = 0.95 and L = 5 are the parameters common to the three
methods. In addition, the LM-PMIME method and the M-PMIME method use the parameter m = 2.

Sensitivity Specificity F1 Score

K = 3
PMIME 1.000 1.000 1.000

M-PMIME 1.000 1.000 1.000
LM-PMIME 1.000 1.000 1.000

K = 6
PMIME 1.000 1.000 1.000

M-PMIME 1.000 1.000 1.000
LM-PMIME 1.000 1.000 1.000

K = 9
PMIME 1.000 1.000 1.000

M-PMIME 1.000 1.000 1.000
LM-PMIME 1.000 1.000 1.000

3.4. Coupled Lorenz System

The chaotic system of three coupled identical Lorenz oscillators (model 5 in [16]) is defined as
ẋ1 = −10x1 + 10y1, ẋi = −10xi + 10yi + C(xi−1 − xi),
ẏ1 = −x1z1 + 28x1 − y1, ẏi = −xizi + 28xi − yi,
ż1 = x1y1 − 8

3 z1, żi = xiyi − 8
3 zi,

(13)

where i = 2, 3. The differential equations by the explicit Runge-Kutta (4,5) method are solved
in MATLAB. The true causal connections in the three coupled Lorenz oscillators are Xi−1 → Xi,
where i = 2, 3.

The results from 100 realizations of the three coupled Lorenz oscillators with the coupling strength
C = 3 are shown in Figure 6, for n = 512, A = 0.95, L = 5, m = 3. In addition, The evaluation indicators
are listed in Table 5. The values of the specific indicators are obtained from the Lorenz oscillators with
varying time series length and the remaining parameters are the same. The F1 scores of the proposed
methods are much higher than the traditional PMIME method. The M-PMIME method performs best
when the time series is short. That is to say, the mixed strategy plays a role in improving the F1 score.
However, the F1 score of the LM-PMIME method is the highest as the time series length increases.

Figure 6. Matrix representation of causality for the three coupled Lorenz oscillators. Retrieved by
(a) traditional PMIME method, (b) M-PMIME method, (c) and LM-PMIME method with k-NNs
estimator. The length of the time series is 512 with coupling strength C = 3. m = 3 is used for the
M-PMIME method and the LM-PMIME method. The remaining parameters of the three methods are
the same (L = 5, A = 0.95). Color maps for the mean values of coupling measurements are obtained
from 100 realizations of the three coupled Lorenz oscillators. The true causal connections in the three
coupled Lorenz oscillators are at the matrix elements (i− 1, i), where i = 2, 3.
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Table 5. Evaluation indicators are obtained from 100 realizations of the three coupled Lorenz oscillators
(C = 3) with varying time series length for the three different methods. A = 0.95 and L = 5 are the
parameters common to the three methods. In addition, the LM-PMIME method and the M-PMIME
method use the parameter m = 3.

Sensitivity Specificity F1 Score

n = 256
PMIME 0.225 0.997 0.364

M-PMIME 0.660 0.863 0.617
LM-PMIME 0.805 0.665 0.541

n = 512
PMIME 0.185 1.000 0.312

M-PMIME 0.640 0.913 0.658
LM-PMIME 0.875 0.743 0.631

n = 1024
PMIME 0.175 1.000 0.297

M-PMIME 0.670 0.909 0.674
LM-PMIME 0.970 0.756 0.687

The evaluation indicators are obtained from 100 realizations of the Lorenz oscillators with coupling
strength C from 1 to 5 for the three different methods. The time series length is 512 and A = 0.95,
L = 5, m = 3. The values of the indicators are listed in Table 6. The results show that the LM-PMIME
method performs best when the C is low, such as C = 1. Although the F1 score of the traditional
PMIME method increases as the coupling strength C increases, it is still much worse than the proposed
methods. Figure 7 is the matrix representation of causality for the three coupled Lorenz oscillators with
coupling strength C = 5. The true causal connections are (i− 1, i) in the matrix elements, where i = 2, 3.
Only for the LM-PMIME method, the mean values of coupling measurements on these matrix elements
are positive and high.

Table 6. Evaluation indicators are obtained from 100 realizations of the three coupled Lorenz oscillators
(n = 512) with coupling strength C from 1 to 5 for the three different methods. A = 0.95 and L = 5 are
the parameters common to the three methods. In addition, the LM-PMIME method and the M-PMIME
method use the parameter m = 3.

Sensitivity Specificity F1 Score

C = 1
PMIME 0.000 1.000 0.000

M-PMIME 0.155 0.926 0.221
LM-PMIME 0.375 0.830 0.381

C = 2
PMIME 0.075 1.000 0.141

M-PMIME 0.565 0.893 0.583
LM-PMIME 0.825 0.765 0.623

C = 3
PMIME 0.185 1.000 0.312

M-PMIME 0.640 0.913 0.658
LM-PMIME 0.875 0.743 0.631

C = 4
PMIME 0.260 1.000 0.413

M-PMIME 0.740 0.892 0.698
LM-PMIME 0.920 0.710 0.627

C = 5
PMIME 0.320 0.997 0.481

M-PMIME 0.725 0.873 0.660
LM-PMIME 0.960 0.731 0.661
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Figure 7. Matrix representation of causality for the three coupled Lorenz oscillators. Retrieved by
(a) traditional PMIME method, (b) M-PMIME method, (c) and LM-PMIME method with k-NNs
estimator. The length of the time series is 512 with coupling strength C = 5. m = 3 is used for the
M-PMIME method and the LM-PMIME method. The remaining parameters of the three methods are
the same (L = 5, A = 0.95). Color maps for the mean values of coupling measurements are obtained
from 100 realizations of the three coupled Lorenz oscillators. The direction of causal influence is from
row to column in the matrix. The true causal connections in the three coupled Lorenz oscillators are at
the matrix elements (i− 1, i), where i = 2, 3.

4. Application to Epilespy ECoG Signals

In the study, we show the applicability of the LM-PMIME method to actual electrocorticographic
(ECoG) to explore key contacts of the human subject with intractable epilepsy. A public dataset from a
39-year-old woman with medically refractory complex partial seizures is used. The dataset contains
8 seizure epochs and eight pre-seizure epochs. Each epoch contains 76-time series obtained from the
eight-by-eight electrode grid and two depth electrodes with six contacts each. In addition, the duration
of each epoch is 10 s and the length of each time series is 4000 (see [39] for more details). The data is
recorded at 400 Hz, which is downsampled to 100 Hz.

We use PMIME method and LM-PMIME method to analyze the seizure data and the pre-seizure
data, respectively. To assess the causal matrices of different physiological states estimated by each
method, we compute the average causal strengths (the mean values of the coupling measurements
over all epochs in the same physiological state) as shown in Figure 8. The brighter the colors are,
the more signifincant causal connections are. As a result, it is obvious from the causal matrics of
LM-PMIME method that contact 73 has more impact on the other contacts, highlighting that it is the
key contact in the pre-seizure data (see Figure 8b). Figure 8 illustrates the difference of total numbers
of significant connections between the seizure state and the pre-seizure state. The proposed method
highlights the key contact 50 (see Figure 9b) and these discovered key contacts are consistent with
many researchers [39–41].

The LM-PMIME method gives an obvious causal driver located at the contact 73 from the second
depth electrode strip in the pre-seizure data shown in Figure 8. Therefore, the contact 73 may be
associated with seizures. Although not yet clinically observable, it has been suggested that the
second depth electrode primarily affects cortical activity in [40,41]. In addition, the proposed method
successfully identifies a key contact from the data: contact 50, which exhibits the most significant
change in the betweenness centrality. The contact is considered the primary target of therapeutic
intervention in [38], because contacts with statistically significant increases in betweenness centrality
may lead to seizures.
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Figure 8. Results for multivariate electrocorticographic (ECoG) data. Matrices of causalities reflect
the pre-seizure state (top) and the seizure state (bottom)) estimated by the PMIME method and the
LM-PMIME method. The causal strengths are averaged (the mean values of the coupling measurements
over all epochs in the same physiological state). Contacts 1 to 64 belong to an eight-by-eight electrode
grid, and contacts 65 to 76 belong to two depth electrodes. The direction of causal influence is from
row to column in the matrices. The brighter colors indicate more significant values. The key contact is
marked by a rectangular box. The parameter A = 0.95 and m = 2 are set for the different methods.

Figure 9. Results for multivariate ECoG data. Matrices reflect the difference of total numbers of
significant connections between the seizure state and the pre-seizure state (seizure minus pre-seizure).
The numbers are respectively summed from 8 seizure epochs and eight pre-seizure epochs. Contacts 1
to 64 belong to an eight-by-eight electrode grid, and contacts 65 to 76 belong to two depth electrodes.
The brighter colors indicate more significant values. The key contact is marked by a rectangular box.
The parameter A = 0.95 and m = 2 are set for the different methods.

5. Discussion and Conclusions

In this study, we show effective modifications for the well-known non-uniform embedding
method: PMIME, which quantifies causality by means of information theoretic measures.
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The advantage of the non-uniform embedding compared with uniform embedding is that it can
reduce the dimension of the state space by selecting the relevant variables which contribute the most
to explain the target variable. Therefore, it has been proved that the non-uniform embedding process
is more flexible for state-space reconstruction [11,15,42]. However, there are still some obstacles
to estimating high-dimensional CMI and constructing an optimal mixed embedding vector in the
traditional non-uniform embedding methods. The proposed LM-PMIME method overcomes the
above shortcomings of traditional methods. The major contribution of the proposed LM-PMIME
method, which is based on the low-dimensional approximation of conditional mutual information
and the mixed search strategy, is that improves the traditional non-uniform embedding methods.
The curse of dimensionality is avoided by replacing the original estimate with a low-dimensional
approximation of CMI. In addition, a mixed strategy instead of the greedy strategy is used as an
embedded strategy to solve the problem of initial embedding inaccuracy. Hence, the mixed embedding
vector becomes more parsimonious by maximizing the correlation with the target variable and
minimizing the redundancy between the selected variables. In order to form the optimal mixed
embedded vector, there are also other propositions. For example, in [22] a preselection scheme for
subsets of causal predictors is used to search an optimal subset and detect the synergetic variables.
In addition, many researchers adopt the OCE algorithm [43] or the PCMCI [30] algorithm to estimate
the causal graphs. Different from these preselection methods, the LM-PMIME method relies on both
the low-dimensional approximation and the mixed search strategy to improve the conditions. In all
simulation systems, the LM-PMIME method performs better than the traditional methods according
to the F1 score. Because of the complexity of chaotic systems, true causality is often difficult to
detect. However, the LM-PMIME method significantly improves the sensitivity in chaotic systems.
In the remaining simulation systems, the LM-PMIME method reduces false positives and increases
the specificity. The experiments also adopt the comparison method M-PMIME, which improves the
search strategy without using low-dimensional approximation. By the M-PMIME method, it can be
found that the mixed search strategy works well in chaotic systems, especially the systems with low
coupling strengths. In addition, the low-dimensional approximation of CMI plays an important role
in linear and nonlinear systems. Therefore, we combine both the low-dimensional approximation of
CMI and the mixed search strategy to form a new non-uniform embedding method LM-PMIME for
multivariate time series. Although the LM-PMIME method works better than the traditional method,
there are limitations to the proposed method. It still does not exceed the efficiency of the standard
uniform embedding methods under the non-uniform embedding framework. In addition, the strategy
adjustment factor m is larger, the traversal strategy is used more times in iterations. The main role of
the traversal strategy is to correct the initial embedding inaccuracy, which is often time-consuming.
Therefore, the recommended value is m < 5 and the simulation results generally take m = 2 or m = 3
to achieve better results. This is because a smaller value of m can reduce the computation time and it is
enough to optimize the initial embedding.

Generally speaking, the proposed low dimensional approximation of CMI and mixed search
strategy improve the non-uniform embedding process, which is also applicable to other causal analysis
methods based on non-uniform embedding [32]. In this study, we present the LM-PMIME method
to detect directional coupling for multivariate time series. The effectiveness and applicability of the
LM-PMIME method are demonstrated by a large number of experiments. The LM-PMIME method
works well for multivariate time series with weak coupling strengths. In addition, the proposed
LM-PMIME method, a causal analysis method, has great potential to be adopted in other applications,
e.g., prediction of dynamic systems. We will further study the non-uniform embedding method and
extend its applications.
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3. Paluš, M.; Komárek, V.; Hrnčíř, Z.; Štěrbová, K. Synchronization as adjustment of information rates: Detection
from bivariate time series. Phys. Rev. E 2001, 63, 046211. [CrossRef] [PubMed]

4. Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica 1969, 424–438. [CrossRef]

5. Marko, H. The bidirectional communication theory–a generalization of information theory. IEEE Trans. Commun.
1973, 21, 1345–1351. [CrossRef]

6. Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461. [CrossRef]
7. Barnett, L.; Barrett, A.B.; Seth, A.K. Granger causality and transfer entropy are equivalent for Gaussian

variables. Phys. Rev. Lett. 2009, 103, 238701. [CrossRef]
8. Schindlerova, K. Equivalence of Granger Causality and Transfer Entropy: A Generalization. Appl. Mathem. Sci.

2011, 5, 3637–3648.
9. Mao, X.; Shang, P. Transfer entropy between multivariate time series. Commun. Nonlinear Sci. Numer. Simul.

2017, 47, 338–347. [CrossRef]
10. Montalto, A.; Stramaglia, S.; Faes, L.; Tessitore, G.; Prevete, R.; Marinazzo, D. Neural networks with

non-uniform embedding and explicit validation phase to assess Granger causality. Neural Netw. 2015,
71, 159–171. [CrossRef]

11. Faes, L.; Nollo, G.; Porta, A. Information-based detection of nonlinear Granger causality in multivariate
processes via a nonuniform embedding technique. Phys. Rev. E 2011, 83, 051112. [CrossRef] [PubMed]

12. Runge, J. Causal network reconstruction from time series: From theoretical assumptions to practical
estimation. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 075310. [CrossRef] [PubMed]

13. Zhao, X.; Sun, Y.; Li, X.; Shang, P. Multiscale transfer entropy: Measuring information transfer on multiple
time scales. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 202–212. [CrossRef]

14. Sysoev, I.V.; Ponomarenko, V.I.; Pikovsky, A. Reconstruction of coupling architecture of neural field networks
from vector time series. Commun. Nonlinear Sci. Numer. Simul. 2018, 57, 342–351. [CrossRef]

15. Vlachos, I.; Kugiumtzis, D. Nonuniform state-space reconstruction and coupling detection. Phys. Rev. E
2010, 82, 016207. [CrossRef]

16. Kugiumtzis, D. Direct-coupling information measure from nonuniform embedding. Phys. Rev. E 2013,
87, 062918. [CrossRef]

17. Kugiumtzis, D.; Koutlis, C.; Tsimpiris, A.; Kimiskidis, V.K. Dynamics of epileptiform discharges induced
by transcranial magnetic stimulation in genetic generalized epilepsy. Int. J. Neural Syst. 2017, 27, 1750037.
[CrossRef]

18. Kugiumtzis, D.; Kimiskidis, V.K. Direct causal networks for the study of transcranial magnetic stimulation
effects on focal epileptiform discharges. Int. J. Neural Syst. 2015, 25, 1550006. [CrossRef]

19. Papana, A.; Kyrtsou, C.; Kugiumtzis, D.; Diks, C. Financial networks based on Granger causality: A case
study. Physica A 2017, 482, 65–73. [CrossRef]

20. Papana, A.; Kyrtsou, C.; Kugiumtzis, D.; Diks, C. Assessment of resampling methods for causality testing:
A note on the US inflation behavior. PLoS ONE 2017, 12, e0180852. [CrossRef]

21. Runge, J.; Heitzig, J.; Petoukhov, V.; Kurths, J. Escaping the curse of dimensionality in estimating multivariate
transfer entropy. Phys. Rev. Lett. 2012, 108, 258701. [CrossRef] [PubMed]

22. Runge, J.; Donner, R.V.; Kurths, J. Optimal model-free prediction from multivariate time series. Phys. Rev. E
2015, 91, 052909. [CrossRef] [PubMed]

http://dx.doi.org/10.1063/1.5019944
http://www.ncbi.nlm.nih.gov/pubmed/30070495
http://dx.doi.org/10.1103/PhysRevE.97.042207
http://www.ncbi.nlm.nih.gov/pubmed/29758597
http://dx.doi.org/10.1103/PhysRevE.63.046211
http://www.ncbi.nlm.nih.gov/pubmed/11308934
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.1109/TCOM.1973.1091610
http://dx.doi.org/10.1103/PhysRevLett.85.461
http://dx.doi.org/10.1103/PhysRevLett.103.238701
http://dx.doi.org/10.1016/j.cnsns.2016.12.008
http://dx.doi.org/10.1016/j.neunet.2015.08.003
http://dx.doi.org/10.1103/PhysRevE.83.051112
http://www.ncbi.nlm.nih.gov/pubmed/21728495
http://dx.doi.org/10.1063/1.5025050
http://www.ncbi.nlm.nih.gov/pubmed/30070533
http://dx.doi.org/10.1016/j.cnsns.2018.02.027
http://dx.doi.org/10.1016/j.cnsns.2017.10.006
http://dx.doi.org/10.1103/PhysRevE.82.016207
http://dx.doi.org/10.1103/PhysRevE.87.062918
http://dx.doi.org/10.1142/S012906571750037X
http://dx.doi.org/10.1142/S0129065715500069
http://dx.doi.org/10.1016/j.physa.2017.04.046
http://dx.doi.org/10.1371/journal.pone.0180852
http://dx.doi.org/10.1103/PhysRevLett.108.258701
http://www.ncbi.nlm.nih.gov/pubmed/23004667
http://dx.doi.org/10.1103/PhysRevE.91.052909
http://www.ncbi.nlm.nih.gov/pubmed/26066231


Entropy 2019, 21, 1233 16 of 16

23. Brown, G.; Pocock, A.; Zhao, M.J.; Luján, M. Conditional likelihood maximisation: A unifying framework
for information theoretic feature selection. J. Mach. Learn. Res. 2012, 13, 27–66.

24. Vinh, N.X.; Zhou, S.; Chan, J.; Bailey, J. Can high-order dependencies improve mutual information based
feature selection? Pattern Recognit. 2016, 53, 46–58. [CrossRef]

25. Battiti, R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans.
Neural Netw. Learn. Syst. 1994, 5, 537–550. [CrossRef]

26. Yang, H.H.; Moody, J. Data visualization and feature selection: New algorithms for nongaussian data.
NIPS 2000, 687–693.

27. Fleuret, F. Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 2004,
5, 1531–1555.

28. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]

29. Lin, D.; Tang, X. Conditional infomax learning: An integrated framework for feature extraction and fusion.
ECCV 2006, 68–82.

30. Runge, J.; Nowack, P.; Kretschmer, M.; Flaxman, S.; Sejdinovic, D. Detecting causal associations in large
nonlinear time series datasets. arXiv 2017, arXiv:1702.07007.

31. Meyer, P.E.; Bontempi, G. On the use of variable complementarity for feature selection in cancer classification.
ECCV 2006, 91–102.

32. Montalto, A.; Faes, L.; Marinazzo, D. MuTE: A MATLAB toolbox to compare established and novel estimators
of the multivariate transfer entropy. PLoS ONE 2014, 9, e109462. [CrossRef] [PubMed]

33. Faes, L.; Kugiumtzis, D.; Nollo, G.; Jurysta, F.; Marinazzo, D. Estimating the decomposition of predictive
information in multivariate systems. Phys. Rev. E 2015, 91, 032904. [CrossRef]

34. Hacine-Gharbi, A.; Ravier, P.; Harba, R.; Mohamadi, T. Low bias histogram-based estimation of mutual
information for feature selection. Pattern Recognit. Lett. 2012, 33, 1302–1308. [CrossRef]

35. Kwak, N.; Choi, C.H. Input feature selection by mutual information based on Parzen window. IEEE Trans.
Pattern Anal. Mach. Intell. 2002, 12, 1667–1671. [CrossRef]

36. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138.
[CrossRef]

37. Schelter, B.; Winterhalder, M.; Hellwig, B.; Guschlbauer, B.; Lücking, C.H.; Timmer, J. Direct or indirect?
Graphical models for neural oscillators. J. Physiol. Paris 2006, 99, 37–46. [CrossRef]

38. Gourévitch, B.; Le Bouquin-Jeannès, R.; Faucon, G. Linear and nonlinear causality between signals: Methods,
examples and neurophysiological applications. Biol. Cybern. 2006, 95, 349–369. [CrossRef]

39. Kramer, M.A.; Kolaczyk, E.D.; Kirsch, H.E. Emergent network topology at seizure onset in humans.
Epilepsy Res. 2008, 79, 173–186. [CrossRef]

40. Marinazzo, D.; Pellicoro, M.; Stramaglia, S. Kernel method for nonlinear Granger causality. Phys. Rev. Lett.
2008, 100, 144103. [CrossRef]

41. Faes, L.; Marinazzo, D.; Stramaglia, S. Multiscale information decomposition: Exact computation for
multivariate Gaussian processes. Entropy 2017, 19, 408. [CrossRef]

42. Porta, A.; Faes, L. Wiener–Granger causality in network physiology with applications to cardiovascular
control and neuroscience. Proc. IEEE 2016, 104, 282–309. [CrossRef]

43. Sun, J.; Taylor, D.; Bollt, E.M. Causal network inference by optimal causation entropy. SIAM J. Appl. Dyn. Syst.
2015, 14, 73–106. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patcog.2015.11.007
http://dx.doi.org/10.1109/72.298224
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1371/journal.pone.0109462
http://www.ncbi.nlm.nih.gov/pubmed/25314003
http://dx.doi.org/10.1103/PhysRevE.91.032904
http://dx.doi.org/10.1016/j.patrec.2012.02.022
http://dx.doi.org/10.1109/TPAMI.2002.1114861
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1016/j.jphysparis.2005.06.006
http://dx.doi.org/10.1007/s00422-006-0098-0
http://dx.doi.org/10.1016/j.eplepsyres.2008.02.002
http://dx.doi.org/10.1103/PhysRevLett.100.144103
http://dx.doi.org/10.3390/e19080408
http://dx.doi.org/10.1109/JPROC.2015.2476824
http://dx.doi.org/10.1137/140956166
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Method
	PMIME Method
	The Proposed Method
	Low Dimensional Approximation of CMI
	Mixed Search Strategy
	LM-PMIME Method


	Simulation Study
	Linear Multivariate Stochastic Process
	Nonlinear Multivariate Stochastic Process
	Coupled Henon Maps
	Coupled Lorenz System

	Application to Epilespy ECoG Signals
	Discussion and Conclusions
	References

