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Abstract: Integrated Information Theory proposes a measure of conscious activity (Φ), characterised
as the irreducibility of a dynamical system to the sum of its components. Due to its computational
cost, current versions of the theory (IIT 3.0) are difficult to apply to systems larger than a dozen units,
and, in general, it is not well known how integrated information scales as systems grow larger in
size. In this article, we propose to study the scaling behaviour of integrated information in a simple
model of a critical phase transition: an infinite-range kinetic Ising model. In this model, we assume
a homogeneous distribution of couplings to simplify the computation of integrated information.
This simplified model allows us to critically review some of the design assumptions behind the
measure and connect its properties with well-known phenomena in phase transitions in statistical
mechanics. As a result, we point to some aspects of the mathematical definitions of IIT that 3.0 fail to
capture critical phase transitions and propose a reformulation of the assumptions made by integrated
information measures.
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1. Introduction

Integrated Information Theory (IIT [1]) was developed to address the problem of consciousness by
characterizing its underlying processes in a quantitative manner. It provides a measure of integration,
Φ, that quantifies to what extent a dynamical system generates information that is irreducible to the
sum of its parts, considered independently. Beyond IIT as a theory of consciousness, Φ has received
attention as a general measure of complexity, and different versions of the measure have been applied
to capture to what extent the behaviour of a system is both differentiated (displaying diverse local
patterns) and integrated (maintaining a global coherence). Furthermore, Φ attempts to capture the level
of irreducibility of the causal structures of a system, revealing the boundaries in the organisation of
complex dynamical systems (i.e., delimiting the parts of the system that are integrated into a functional
unit [2]).

Despite its promising features, IIT is still controversial and it has received different critiques,
both to its theoretical and philosophical foundations (e.g., see [3,4]) and the mathematical definitions
therein. Some of the latter suggest that Φ might not be well defined and presents a number of
problems [5]. Furthermore, there is a myriad of different definitions of Φ, and experimental testing of
these competing definitions in small systems shows that their properties radically diverge in some
cases [6]. Despite the abundance of critiques and alternative definitions of Φ, it is not clear which is the
appropriate direction to settle theoretical differences or test different approaches experimentally. In our
view, there is two main obstacles that hinder this endeavour: (1) the difficulty of testing integration
measures in well-known dynamical systems where integrated information measures can be evaluated
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against known properties of the system, and (2) the computational cost of calculating IIT measures,
preventing its application beyond small networks.

The first problem is, in general, difficult, as even in simple nonlinear models the relation between
the network topology and dynamics is complex, and it is not always clear which topology should yield
larger integrated information. Nevertheless, there is a family of models in which the relation between
segregation and integration is well characterised: homogeneous systems exhibiting order-disorder
critical phase transitions [7]. In these systems, there is a transition in their phase space from a disordered
state, in which activity is random and segregated, to an ordered one, where units of the system are
strongly coordinated. Just at the boundary separating ordered and disordered dynamics we find
criticality, a state where a compromise between coordination and segregation is found [7,8]. Even in
simple systems, critical dynamics are dominated by small bursts of local (i.e., segregated) activity,
yet display large avalanches of globally coordinated (i.e., integrated) activity. In neural systems, these
are generally referred to as “neuronal avalanches”, and experimental evidence suggests that neural
dynamics exhibit a degree of concordance with those expected for a system near criticality [9].

Critical phenomena are theoretically characterised for some systems of infinite size, and they
can be experimentally identified as divergent tendencies in large, finite systems as they grow in
size. This refers us to the second problem, which is the very large computational cost of measuring
integrated information. Due to combinatorial explosion, computing Φ is only possible in general for
small, discrete systems. In practice, this prevents to measure integrated information in the very large or
even infinite systems where critical dynamics can be appreciated. In IIT 3.0 [1], the latest version of the
framework of Integrated Information Theory, Φ can only be computed for binary networks composed
of up to a dozen units. There is a variety of other measures to compute integrated information [6], and
some of them are computationally lighter, but all share these limits to some extent. As most versions of
Φ require computing distance measures between probability distributions of a system and finding the
minimum information partition (MIP), they present important restrictions in terms of computational
cost as a system scales in size. Note that some simplified measures of Φ can be computed analytically
for the case of Gaussian distributions (e.g., see [10,11]), but, in this paper, we will focus in the general
case of binary variables, without considering the specific case of Gaussian assumptions.

In general, IIT measures have been limited to very small systems, and it is not well understood
how integrated information scales with the size or temporal scale of the system. Previous work [12]
has analysed how integrated information changes with spatial and temporal coarse graining in small
networks, but it is still difficult to connect these results with well-known scaling effects like the ones
that take place in critical phase transitions. Luckily, a family of simplified models, generally referred
to as Ising models, can capture critical transitions with very simple topologies. Some of the simplest
ones present homogeneous architectures that can greatly simplify the calculation of information
theoretical quantities of the system, see, e.g., [13]. Using this idea, recent novel work using mean-field
approximations [14] has shown that under some assumptions it is possible to compute integrated
information in infinite-size networks with some homogeneous properties, showing that integrated
information measures diverge at certain critical points. In this work, we extend those results by
finding methods for computing integrated information of similar models of finite size. Specifically, we
explore how integrated information measures scale with size in large networks, proposing methods
for simplifying the computation of distance metrics between probability distributions and the search
of the MIP. In doing so, we critically assess some of the assumptions behind IIT measures and propose
some modifications to better capture the properties of second-order phase transitions. Specifically, we
will explore different aspects of the definition of integrated information: (1) the dynamics and temporal
span of integrated information, (2) assumptions for the computation of the cause repertoire, (3) the
choice of distance metrics between the Wasserstein distance and the Kullback–Leibler divergence,
(4) the effect of considering the environment from a situated perspective, (5) the relation between
mechanism-level integration ϕ and system-level integration Φ and (6) the importance of identifying
diverging tendencies in the system.
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2. Model

To show how integrated information behaves around critical points in Ising models, we describe a
(slightly modified) version of IIT 3.0. Then, we introduce a family of homogeneous kinetic Ising models
and a series of methods that simplify the computation of integrated information in large networks.

2.1. IIT 3.0

We critically revise and adapt the framework of IIT 3.0 [1], which originally computes the
integrated information of a subset of elements of a system as follows. For a system of N elements
with state s at time t (We use boldface letters and symbols for vectors and matrices, e.g., s(t) =

(s1(t), s2(t), . . . , sN(t))
T , T indicating transposition.), we characterise the input–output relationship

of the system elements through its corresponding transition probability function P(s(t + τ)|s(t)),
describing the probabilities of the transitions from one state to another for all possible system states.
IIT 3.0 requires systems to satisfy the Markov property (i.e., that the distribution of states of a process
at time t depends only upon the state at time t − τ), and that the current states of elements are
conditionally independent, given the past state of the system, i.e., P(s(t)|s(t − τ)) = ∏i P(si(t +
τ)|s(t)).

IIT 3.0 computes integrated information in the causal mechanisms of a system by defining two
subsets of s(t) and s(t ± τ), called the mechanism Mt = {si(t)}i∈IMt

and the purview Pt±τ =

{si(t± τ)}i∈IPt±τ
, to represent the current state of part of the system and how it constrains future or

past states. The cause-and-effect repertoires of the system are described, respectively, by the probability
distributions P(Pt−τ |Mt) and P(Pt+τ |Mt).

The integrated cause–effect information of Mt is then defined as the distance between the
cause–effect repertoires of a mechanism and the cause–effect repertoires of its minimum information
partition (MIP) over the maximally irreducible purview,

ϕcause(τ) = max
P

(
min
cut

(DW(P(Pt−τ |Mt), Pcut(Pt−τ |Mt)))

)
, (1)

ϕeffect(τ) = max
P

(
min
cut

(DW(P(Pt+τ |Mt), Pcut(Pt+τ |Mt)))

)
, (2)

where DW(P, Q) refers to the Wasserstein distance (also known as Earth Mover’s Distance), used by
IIT 3.0 to quantify the statistical distance between probability distributions P and Q. The subindex
cut specifies a bipartition of the mechanism into two halves and Pcut represents the cause or effect
probability distribution under such partition,

cut =
{
M1

t ,P1
t±τ ,M2

t ,P2
t±τ

}
,

Pcut(Pt±τ |Mt) = P(P1
t±τ |M1

t )⊗ P(P2
t±τ |M2

t ).
(3)

Here, cut specifies the partition applied over the elements of mechanismM, whereM1
t ,M2

t design
the blocks of a bipartition of the mechanism at the current state at time t,Mt; P1

t±τ,P2
t±τ refer to the

blocks of a bipartition (not necessarily the same) of the present or past units Pt±τ. Figure 1B represents
the partition M1 = {s1(t), s2(t)},M2 = {s3(t)},P1 = {s1(t + 1), s2(t + 1), s3(t + 1)},P2 = {}.
The interaction between the partitioned systems (⊗ operator) is defined by injecting uniform random
noise in the partitioned connections when defining the transition probability matrix P(s(t± τ)|s(t)).

The integrated information of the mechanismMt with a time span τ, ϕ(τ), is the minimum of its
corresponding integrated cause and effect information,

ϕ = min(ϕcause, ϕeffect). (4)
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Figure 1. (A) Description of the infinite size kinetic Ising model. (B) Description of the partition schema
used to define perturbations. Partitioned connections (black arrows) are injected with random noise.
Nonpartitioned connections operate normally or are independent sources of noise (see Section 3.4).

The integrated information of the entire system, Φ(τ), is then defined as the distance between
the cause–effect structure of the system and the cause–effect structure of its minimum information
partition, eliminating constraints from one part of the system to the rest:

Φ(τ) = min
cut

D∗W(C(τ), Ccut(τ)), (5)

where C(τ) stands for a “constellation of concepts”, which is constructed from the set of points with
position {P(s(t− τ)|s(t)), P(s(t+ τ)|s(t))} and value ϕ(τ) corresponding to all the mechanisms in the
system. Similarly, Ccut(τ) stands for a constellation of a system in which a new unidirectional partition
has been applied, injecting noise in the partitioned connections as in previous case (note that now ϕ

is computed applying two different partitions). In this case, a especial distance measure is used (we
label it as D∗W), which is a modified he extended version of the Wasserstein distance that measures the
minimal transport cost of transforming one constellation into another [1] (Text S2), in which ϕ(τ) are
the values to be transported and the Wasserstein distance between {P(s(t− τ)|s(t)), P(s(t + τ)|s(t))}
in the original system and under the partition is the distance these values have to be transported.
Finally, if the system is a subset of elements of a larger system, all elements outside the system are
considered as part of the environment and are conditioned on their current state throughout the
causal analysis. Similarly, when evaluating a mechanism, all elements inside a mechanism (where ϕ is
analysed) but outside the system (where Φ is determined) are considered as uniform, independent
noise sources. Further details of the steps described here can be found in [1].

Working Assumptions

In order to compute integrated information in large systems, we modify some aspects of the
theory. In IIT 3.0, an integrated information of a mechanism ϕ is evaluated for a particular mechanism
Mt and a purview Pt±τ . Here, for simplicity, we assume that the purview always includes the same
units as the mechanism (although we allow them to be partitioned differently, see, e.g., Figure 1B).
Allowing more options for the purview could make a big difference in some systems; although, in
the homogeneous systems tested here, the differences are small. Also, the distance for computing
integrated information is measured for the distance of all elements of the system, not only the elements
contained in the purview. In IIT 3.0 only elements in the purview are affected by a partition. In our
modified version of the measure, in some cases (τ > 1, see Section 3.1) the outside of the purview can
change as well, thus capturing these changes offers a better characterisation of the effects of partitions.

Moreover, as we assume a homogeneous architecture, in some cases mechanism integration ϕ and
system-level integration Φ have a similarly diverging behaviour (as we explore in Section 3.5). Thus,
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for simplicity, in most cases we compute only the integrated information ϕ of a mechanism comprising
the system of interest.

This homogeneous architecture also allows us to assume that under some conditions (systems
with possible couplings and near the thermodynamic limit) the MIP is always either a partition that
cuts a single node from the mechanism of the system or a cut that separates entire regions in different
partitions (see Appendix B.3). This assumption will reduce drastically the computational cost of
calculating integrated information.

Other assumptions will be studied in different sections of the article. In Table A1, these different
assumptions are described and in Table A2 it is indicated if they are used by IIT 3.0 and if they are
applied for obtaining the results of the different figures of Section 3.

2.2. Kinetic Ising Model with Homogeneous Regions

We define a general model capturing causal interactions between variables. Aiming for generality,
we use the least structured statistical model defining causal correlations between pairs of units from
one time step to the next [15]. We study a kinetic Ising model where N binary spins si ∈ {−1,+1}
evolve in discrete time, with synchronous parallel dynamics (Figure 1A). Given the configuration of
spins at time t, s(t) = {s1(t), . . . , sN(t)}, the spins si(t) are independent random variables drawn from
the distribution:

P(si(t)|s(t− 1)) =
eβsi(t)hi(t)

2 cosh(βhi(t))
, (6)

hi(t) = Hi + ∑
j

Jijsj(t− 1). (7)

The parameters H and J represent the local fields at each spin and the couplings between pairs of
spins, and β is the inverse temperature of the model. Without loss of generality, we assume that β = 1.

In general, computing the probability distributions P(s(t)) of a kinetic Ising model is a difficult
task, as it requires computing over all previous trajectories. In general, P(s(t + τ)|s(t)) is computed
recursively applying the equation

P(s(t + τ)|s(t)) = ∑
s(t+τ−1)

P(s(t + τ)|s(t + τ − 1))P(s(t + τ − 1)|s(t)). (8)

The cost of calculating this equation grows exponentially with size of the system, with a
computational cost of O(22N).

This computation can be simplified for certain architectures of the model. We divide the system
into different regions, and assume that the coupling values Jij are positive and homogeneous for each
intra- or inter-region connections Jij =

1
NV

JUV , where U and V are regions of the system with sizes
NU , NV and i ∈ U , j ∈ V . Also, for simplicity we assume that H = 0.

When the system is divided in homogeneous regions, the calculation of the probability distribution
of the system is simplified to computing the number of active units for each region SU (t) = ∑

i∈U
(1 +

si(t))/2. With this, we simplify the transition probability matrix to

P(si(t)|S(t− 1)) =
eβsi(t)hi(t)

2 cosh(βhi(t))
, hi(t) = Hi + ∑

V
JUVSV (t− 1), (9)

P(SU (t)|S(t− 1)) = P(si(t) = 1|S(t− 1))SU (t)P(si(t) = 0|S(t− 1))(NU−SU (t))
(

NU
SU (t)

)
. (10)

Having then that

P(S(t + τ)|S(t)) = ∑
S(t+τ−1)

∏
U

P(SU (t + τ)|S(t + τ − 1))P(S(t + τ − 1)|S(t)). (11)
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Now the cost is reduced to O(∏
U
(NU + 1)2), which, for a limited number of regions, makes the

computation much lighter.
Interestingly, as shown in [14], if the size of the regions tends to infinity, then the behaviour of

a region U is described simply by the mean field activity of its units, mU (t) = 1
NU ∑j∈U sj(t), and its

evolution becomes deterministic, having that the behaviour of any unit i belonging to a region V by
the value of the input field of the region hV :

P(SU (t)|S(t− 1)) = δ(SU (t)− NU
1 + mU (t)

2
), (12)

mU (t) = tanh ∑
V

JUVmV (t− 1), (13)

where δ(x) is the Kronecker delta function and mU (t− 1) is the mean field of region U (t− 1).

2.3. Integrated Information in the Kinetic Ising Model with Homogeneous Regions

Describing an Ising model with homogeneous regions simplifies the computation of integrated
information in two important ways: by reducing the costs of finding the minimum information
partition and computing statistical distances between distributions.

As the connectivity of the system is homogeneous for all nodes in the same region, in Appendix B.3
we show that, near the thermodynamic limit and for the case of only positive couplings, the MIP is
always a partition that either (a) isolates only one unit from one of the regions of the system, or (b)
separates entire regions such that all elements of a region in the current or the future (or past) states
always belong to the same partition. Also, in case (a), the partition that isolates a single unit in time
t always has a smallest value of ϕ than the partition isolating a node at time t± τ, as partitioning
the posterior distribution corresponds to a larger distance between probability distributions (see
Appendix B.3). We tested both cases (a) and (b) and found that in all the examples exemplified in this
article, as all couplings are in a similar order of magnitude, the MIP always is as in case (a), so the MIP
always cuts only a node at time t from one region of the system (see, e.g., Figure 1B). In this work, we
also compute the value of Φ for a homogeneous system with just one region. In this case, as there is
only one region, the MIP at the system level is also a partition that isolates only one node, as this is the
intervention yielding a minimal distance (see Appendix B.4).

In systems with finite size, the evolution of the probability distribution of the activity at the regions
of the system is calculated using Equation (11). From there, Equations (1) and (2) can be computed.
For large systems, it becomes unfeasible to compute the Wasserstein distance between distributions
due to the combinatorial explosion of states. Nevertheless, when regions are homogeneous this
computation is greatly simplified if the number of regions is not too large. As all the units within
a region are statistically identical, in terms of Wasserstein distances it is equivalent to work with
aggregate variables representing the sum of the units of a region (see Appendix B.1):

ϕcut
M (τ) = DW(P(s(τ0 + τ)|s(τ0))||Pcut(s(τ0 + τ)|s(τ0)))

= DW((P(S(τ0 + τ)|s(τ0))||Pcut(S(τ0 + τ)|s(τ0))). (14)

This equivalence is possible because the transport cost between two states s(t) and s∗(t) is defined
as 1

2 ∑i |si(t)− s∗i (t)|. As the Wasserstein distance always chooses minimal transport costs, then the
cost between states S(t), S∗(t) is defined as |S(t)− S∗(t)|. If instead of the Wasserstein distance we
use the Kullback–Leibler divergence, then DKL(s(t)||s∗(t)) = DKL(S(t)||S∗(t)) (see Appendix C).
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Finally, when the partition only affects one node of the mechanism of the system at region V (see,
e.g., Figure 1B), the computation of Pcut is performed by transforming the transfer probability matrix as

Pcut(SU (t)|S(t− 1)) =
1
2

(
P(SU (t)|S(t− 1))

+ (1− SV (t)
NV

)P(SU (t)|SV (t− 1) + 1, SV (t− 1))

+
SV (t)

NV
P(SU (t)|SV (t− 1)− 1, SV (t− 1))

)
, (15)

where V is the complement set to {V}. The origin of this expression is that injecting uniform noise to a
single unit of region V can have three possible outputs: leaving the system as it was ( 1

2 chance), adding

one to the value of SV ( 1
2 (1−

SV (t)
NV

) chance) or subtracting one to the value of SV ( 1
2

SV (t)
NV

chance).
The linear combination of these three cases yields the final transfer probability matrix.

When computing integrated information of the system, Φ, Equation (5) computes the distance
between concepts (i.e., values of integration of the mechanisms of a system) of the original system
and the system under a unidirectional partition. Mechanisms affected by the partition will always
have a value of ϕ = 0 (and are transported to a residual, “null” concept located at the unconstrained
distribution, see [1] (Text S2)). In our example, we find that these concepts contribute the most to the
value of Φ (see Section 3.5).

3. Results

Criticisms concerning the definition of integrated information measures have addressed a variety
of topics, e.g., the existence of “trivially non-conscious” systems, composed of units distributed in
relatively simple arrangements yielding arbitrarily large values of Φ, or the absence of a canonical
metric of the probability distribution space [5]. There are also some aspects that are not very well
understood as the dependence of Φ with the scale or graining of a system, or the differences and
dependencies between cause and effect repertoires. Here, we explore some of these aspects and
explore possible reformulations of the measures concerning how current measures behave around
critical phase transitions. We introduce as a reference the behaviour of the kinetic Ising model with
homogeneous regions of infinite size. As described in Equation (13), behaviour in the thermodynamic
limit can be described by the evolution of the mean firing rates. Also, computing the derivative of the
mean firing rates with infinite size (which will be used to compute the distances between distributions)
is straightforward:

∂mU (t)
∂JUV

= (1−m2
U (t))(mU (t− 1) + ∑

V
JUV

∂mV (t− 1)
∂JUV

). (16)

In Figure 2 we observe an example for a infinite-size kinetic Ising model with just one
homogeneous region U with self couplings of value JUU = J/N. In this case, the model displays a
critical point at J = 1.

We argue that this critical phase transitions offers an interesting case for studying integrated
information. First, systems at criticality display long-range correlations and maximal energy
fluctuations and at the critical point [7,8], which should produce maximal dynamical integration, as
noted in [16]. However, IIT 3.0 is concerned not with dynamics, but with causal interactions (i.e., how
the states of mechanisms generate information by constrain future/past states), thus assuming critical
dynamics is not enough for expecting maximum integration in the terms of IIT 3.0. Still, we can
argue that (a) phase transitions in an Ising model mark a discontinuity between different modes
of operation and (b) the critical point is characterised by maximum susceptibility (i.e., sensitivity
to changes in intensive physical properties of mechanisms, e.g., Figure 2B) in front of external
perturbation [7]. Because of this, when measuring integrated information in Ising models, we expect
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critical phase transitions to be observable in terms of integrated information, and critical points to
have distinguishable properties respect other points of the phase space.

A B

1.0 1.5 2.0

J

−1

0

1

m

1.0 1.5 2.0

J

0

2

4

6

∂m
∂J

Figure 2. Description of the behaviour of the homogeneous Ising model with one region and coupling
J, showing a critical point at J = 1. (A) Values of mean firing rate m for the stationary solution of the
kinetic Ising model with one homogeneous region. (B) Value of ∂m

∂J for the positive stationary solution
of the kinetic Ising model with one homogeneous region, diverging at the critical point.

Using this toy model, we explore different aspects of the mathematical definitions of integrated
information and the assumptions behind these definitions, using critical phase transitions as a reference.
We will compute ϕ(τ) as follows. First, we select the initial state s(t). For finding a representative initial
state, we start from a uniform distribution of P(s) (and the corresponding PI(S) = 1

2N (
N
S ) ) and update

until it stabilizes (using Equation (11) or Equation (13) for the finite and infinite cases, respectively).
Then, we choose S(t) = arg maxP(S). From there, we update the probability distributions forward
or backwards τ times with and without applying a partition and compute the distance between
distributions for computing ϕeffect and ϕcause. Total integrated information ϕ will be computed as
the minimum between the two. In all sections, we will assume that mechanism and purview contain
the same units {i}i∈IMt

= {i}i∈IPt±τ
. We also will assume that the mechanism and the purview are

composed by the whole system under analysis, except for Sections 3.4 and 3.5, were smaller subsystems
are analysed. Only in Section 3.5 do we compute the value of Φ, and we will argue that in our examples
the first level of integration ϕ is enough for describing the behaviour of the system.

3.1. Dynamics and Temporal Span of Integrated Information

First, we explore integrated information of the effect repertoire of a system for a time span τ,
ϕeffect(τ). In IIT 3.0, integrated information is defined as the level of irreducibility of the causal
structure of a dynamical system over one time step [1]. The level of irreducibility is computed by
applying partitions over the system, in which noise is injected in the connections affected by the
partition. This is done by manipulating the transition probability matrix of the system. In previous
work, integrated information has been applied to different temporal spans by changing the temporal
graining of the system and joining consecutive states in a new Markov chain [12] or by concealing
the micro levels in black box mappings [17]. Another possibility could be describing the transition
probability matrix of the system from t and t + τ. However, is this the adequate way to capture
integration at larger timescales? As IIT 3.0 operates with the transition probability matrix of a system,
one could compute this matrix from time t to time t + τ and compute a new transition probability
matrix for a bipartition by injecting noise in the connections affected by it at time t. This implies that
noise is injected at the first step (at time t) and then the system behaves normally for the following
steps. We will refer to this way of applying a partition as an ‘initial noise injection’ (in contrast with a
“continuous noise injection”, see below).

We explore this by computing integrated information with only one region of size N = 256, with
coupling values Jij = J/N. If we compute ϕ for different values of τ (Figure 3A), we observe that for
different couplings J integrated information always peaks at the ordered side of the phase transition.
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As τ is increased, this peak moves towards the critical point and its size decreases decreases, tending
to zero. The assumption of an initial noise injection yields ϕ(τ) = 0 at the critical point and maximum
integration at the ordered side of the phase transition. Thus, integrated information in this case is not
able to characterise the phase transition of the system

A different metric can be defined if, instead of applying the partition just at the initial step,
we apply it to all τ updates (Figure 3B). We will refer to this way of applying a partition as a
“continuous noise injection”, in contrast with the case in which noise is only injected at the first
step. We propose that this is a more natural way to apply a partition, capturing larger integrated
information around the critical point as we consider larger timescales. Moreover, as opposed to the
previous case, which captured zero integration in the disordered side, this measure is able to capture
increasing integration as the system approaches the critical transition from any side. One may note that
in the mean-field approximation for infinite size (as shown in [14] and also Figure 5A), integration is
zero when approaching a critical point from the disorder side. This is not a problem of the measure but
a characteristic of the system, in which units have independent dynamics until J reaches the threshold
of the critical point. For finite size, units are not completely independent and our measure correctly
captures non-zero integration.

Still, some important considerations need to be taken into account when applying a continuous
noise injection. In a initial noise injection, ϕ decreases with time as the effect of causal structures
is diluted with time. In contrast, a continuous noise injection accumulates the effects of each time
step, making integration grow for larger temporal span. These are very different assumptions, but we
propose that the latter is more appropriate in our case in order to capture the long-range correlations
and critical slowing down properties displayed by systems at criticality. Therefore, for the remainder
of the article, we will assume a continuous noise injection.
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Figure 3. Integration of the effect repertoire ϕeffect(τ) of the largest mechanism of a homogeneous Ising
model with one region of size N = 256 and couplings J with different temporal spans τ, assuming (A)
initial injection of noise and (B) continuous injection of noise. Note that τ = 1, in both cases ϕeffect, has
the same value.

3.2. Integrated Information of the Cause Repertoire

In the previous section we have explored the behaviour of ϕeffect around a critical phase transition,
i.e., the value of integrated information for the repertoire of states generated by the mechanisms of a
system at time t + τ. IIT 3.0 proposes that integrated information should be computed as the minimum
between ϕeffect and ϕcause (Equation (4)). This is motivated by the “intrinsic information bottleneck
principle”, proposing that information about causes of a state only exist to the extent it also can specify
information about its effects, and vice versa [1].
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Describing the cause repertoire is more complicated than the effect repertoire. IIT 3.0 [1] (Text S2)
proposes to tackle the problem of defining P(s(t− 1)|s(t)) by assuming a uniform prior distribution
of past states PU(s(t− 1)). This takes the form

P(s(t− 1)|s(t)) = P(s(t)|s(t− 1))PU(s(t− 1))
∑s(t−1) P(s(t)|s(t− 1))PU(s(t− 1))

, (17)

where PU stands for a uniform probability distribution. This is equivalent to

P(S(t− 1)|S(t)) = P(S(t)|S(t− 1))PI(S(t− 1))
∑S(t−1) P(S(t)|S(t− 1))PI(S(t− 1))

, (18)

where PI(S) = 1
2N (

N
S ) is the binomial distribution resulting from combining N independent

distributions (obtained directly from PU(s)). Similarly, Pcut(s(t − 1)|s(t)) and Pcut(S(t − 1)|S(t))
can be computed like in Equations (17) and (18), assuming a modified conditional probability
Pcut(S(t)|S(t− 1))

What is the effect of considering an independent prior? As we observe in Figure 4A, for τ = 1,
integration remains high even for large values of J. As we increase τ, integration decreases.
This behaviour is completely different to the effect repertoire (Figure 3B). Intuitively, such a difference
of behaviour from cause and effect mechanisms is strange for an homogeneous system in a stationary
state as the one under study here. More importantly, the measure of ϕcause fails to capture integration
around the critical point, and displays the largest values of integration of the system far into the ordered
side of the phase space. Note that as ϕ = min(ϕcause, ϕeffect), in this case, the value of integration
would be dominated by the cause repertoire, and ϕ would not diverge around the critical point.

It is possible to drop the assumption of an independent prior, but some assumption about the
prior distribution is needed. A simple alternative is to assume that the system is in a stationary state
with distribution Pst(s(t)) = Pst(s(t− 1)), having then

P(s(t− 1)|s(t)) = P(s(t)|s(t− 1))Pst(s(t− 1))
∑s(t−1) P(s(t)|s(t− 1))Pst(s(t− 1))

=
P(s(t)|s(t− 1))Pst(s(t− 1))

Pst(s(t))
, (19)

P(S(t− 1)|S(t)) = P(S(t)|S(t− 1))Pst(S(t− 1))
∑S(t−1) P(S(t)|S(t− 1))Pst(S(t− 1))

=
P(S(t)|S(t− 1))Pst(S(t− 1))

Pst(S(t))
, (20)

In this case, computing ϕcause(τ) (Figure 4B), we observe that the integration of the cause and
effect repertoires has a similar behaviour as J changes, yielding similar curves to ϕeffect(τ). Still, note
that integration values are slightly lower for the cause repertoire.
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Figure 4. Integration of the cause repertoire ϕcause(τ) of the largest mechanism of a homogeneous Ising
model with one region of size N = 256 and couplings J with different temporal spans τ, assuming
(A) an independent prior and (B) the stationary distribution as a prior. Continuous noise injection
is assumed.
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Thus, the assumption of an independent prior has dramatic consequences, which can be avoided
by assuming an stationary distribution. Another alternative for systems undergoing a transient is to
compute the trajectory of probability distributions P(s(t)) and use it as priors, though this makes the
computation much more costly. For the rest of the manuscript, we will assume an stationary prior.
Note that the noise injected when partitioning the system is still uniform in all case.

3.3. Divergence of Integrated Information: Wasserstein and Kullback–Leibler Distance Measures

We have seen that, using our assumptions, ϕ grows with τ around the critical point in a finite
system, suggesting that the value of integration may diverge in the thermodynamic limit. We test this
divergence by computing integrated information ϕ for for networks of different size N and a given τ.
In general, the relationship of ϕ and τ is complex, as for each value of J, it depends on the transient
dynamics of the system. It is not the goal of this article to explore this issue in detail, but we want to
ensure that finite systems have enough time to get close to a stationary regime. Thus, from now on,
for simplicity, we will use a value of τ = 10 log2 N, where N is the size of the system. We choose this
relation because we have tested that it ensures the divergence of integrated information around critical
points, although other relations we tested (e.g., τ ∝ N) maintain the qualitative results shown in the
following sections.

To test the divergence of ϕ, we compute the value of integrated information for the largest
mechanism of a kinetic Ising model with an homogeneous region with different size N, and assuming
continuous noise injection and a stationary prior. We observe in Figure 5A that for finite sizes ϕcause

(black line) shows a diverging tendency around the critical point. Effect integration ϕeffect (grey line)
shows a similar divergence, with values slightly larger. In this case, we also computed the value
of ϕeffect for infinite size. When N → ∞, units si(t + τ) become independent, and the Wasserstein
distance of a system with one region is computed analytically as DW(P(s(t + τ)|s(t + τ))||Pcut(s(t +
τ)|s(t + τ))) = 1

2
∂m(t+τ)

∂J J (see Appendix B.2). The divergence of ϕeffect for infinite size shown in
Figure 5A was also analytically characterised in [14]. As ϕeffect is always larger than ϕcause, in this case
the total integration is always ϕ = ϕcause. Summarising, we can conclude that ϕ computed using the
Wassertein distance shows a divergence around the critical point of the kinetic Ising model.

Many versions of ϕ use the Kullback–Leibler divergence as an alternative to the Wasserstein
distance. As seen in Figure 5B, this change can lead to an important difference in the results of ϕcause

(black line) and ϕeffect (grey line). The figure shows that ϕ tends to peak around the critical point but
decreases with the size of the system. Also for this case, ϕ = ϕcause for the cases we computed. By doing
a similar approximation than in the previous case can be used to compute ϕeffect in the infinite case (see
Appendix C), using the well-known relation between the Kullback–Leibler and Fisher information,

it can be shown that DKL(P(s(t + τ)|s(t + τ))||Pcut(s(t + τ)|s(t + τ))) = 1
2

1
1−m2(t+τ)

J2 1
N

(
∂m(t+τ)

∂J

)2
,

tending to zero for diverging size N (see Appendix C). Using this expression, we find that for infinite
size the value of ϕeffectN diverges. However, computing the values for the finite networks, we find
that ϕeffectN and ϕcauseN do not diverge for finite values of N (Figure 5C). This can be interpreted as a
similar phenomenon found in homogeneous Ising models (e.g., Curie–Weiss model [13]), where the
Heat Capacity, equivalent to the Fisher approximation to the Kullback–Leibler divergence computed
here, does not diverge for finite sizes as the size of the system grows.

These results illustrate that different distance measures can have important effects in the behaviour
of ϕ. As well, our results show that different metrics can hold different relations between finite models
and the mean-field behaviour of the model with infinite size. For the Wasserstein distance, ϕ in
finite systems tends to a diverging behaviour around the critical point, characterised for the infinite
mean-field model. Conversely, for the Kullback–Leibler divergence, ϕ does not diverge in finite
models and it does diverge for the mean-field infinite model (for the effect repertoire). In this case,
the symmetry breaking of the system for infinite size provokes that the behaviour of the system is
different in the mean-field model (a similar phenomena takes place with simple measures as the
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average magnetisation). This effect can be relevant for studying ϕ in real finite systems by computing
their mean-field approximations.

Although most versions of integrated information measures used the Kullback–Leibler divergence,
recently IIT 3.0 suggested that the Wasserstein distance is a more appropriate measure [1] (Text S2).
The result presented here show that the change of distance measure can have important implications
when measuring large systems. Further work should inspect how different distance measures are able
or not to capture the scaling behaviour of different systems and how is this coherent with the properties
of the systems under study. A way to do so could be to explore the connection between the relation of
the Wasserstein and Kullback–Leibler versions of integrated information with well-known variables
in Ising models like the magnetic susceptibility or the heat capacity of the system (see Appendices B
and C).

As we have shown that under the appropriate assumptions both ϕcause and ϕeffect have similar
diverging tendencies, in the rest of the example, we will not show these variables separately and will
just show ϕ = min(ϕcause, ϕeffect).
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Figure 5. Integrated information ϕ(τ) for the cause (black lines) and effect (grey lines) repertoires of
the largest mechanism of a homogeneous kinetic Ising models with one region of size N (and infinite
size when N → ∞) and coupling J using (A) the Wasserstein distance. (B) The Kullback–Leibler
divergence, and (C) values of ϕN using the Kullback–Leibler divergence. Note that in all cases
ϕ(τ) = ϕcause(τ). All cases are computed with τ = 10 log2 N for finite systems and τ → ∞ for infinite
systems. Continuous noise injection and a stationary prior are assumed.

3.4. Situatedness: Effect of the Environment of a System

In IIT 3.0, there is a difference between a mechanism, where a first level of integration ϕ is computed,
and a candidate set, composed of different mechanisms, where a second-order level of integration Φ
applies. When computing integration at these two levels, there are some assumptions about how the
elements outside of the systems are considered. In IIT 3.0, the elements inside the candidate set but
outside of the mechanism are treated as independent sources of noise. Respectively, elements outside
the candidate set are treated as background conditions, and are considered as fixed external constraints.

What are the effects of these assumptions when computing integrated information in a critical
phase transition? We measure again integration of a kinetic Ising model with one region of size N and
coupling J. However, instead of considering the whole system, we measure the level of integration
of a subsystem or mechanism M covering a fraction of the system M/N, where M is the size of
the mechanism. We choose a value of M = 3N

4 , although other fractions yield similar results. To
compute Equation (11) with and without the partition, we divide the system in two regions: one
consisting on the units belonging to the mechanisms, and the other containing the units outside
the mechanism. We measure the integrated information of the mechanism ϕM under three different
assumptions: (a) that units outside of the mechanism operate normally, (b) units outside the mechanism
are independent noise sources and (c) units outside the mechanism are fixed as external constraints.

In the first case, when external units operate normally (Figure 6A), we observe that the divergence
of ϕM is maintained (although testing different values of M shows that ϕM increases with the
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size of the mechanism, see [14]). In contrast, if we accept the assumptions of IIT 3.0 and take the
elements outside the mechanism as independent sources of noise or as static variables, the behaviour
of ϕM changes radically. In the former case, when outside elements are independent noise sources
the divergence is maintained but takes place at a different value of the parameter J (Figure 6B).
This happens because inputs from uniform independent sources of noise will be distributed around a
zero mean field value, and thus the phase transition of the system takes place at larger values of J that
compensate for the units that are now uncorrelated. Thus, considering the elements outside of the
mechanism as independent sources of noise can be misleading, showing that maximum integration
takes places at different points of the system. In this case, the position of the divergence is located at
larger values of J, corresponding with significantly lower values of covariance and fluctuations in the
units of the system, therefore not reflecting the actual operation of the mechanisms.

The latter assumption implies maintaining the state of the units outside of the mechanism with
the static values that they had at time t. In this case (Figure 6C), we find that ϕM does not diverge, and
instead it has a peak in the ordered side of the phase transition. We can understand this by thinking
that the effect of constant fields is equal to adding a value of Hi equal to the input from static units,
therefore breaking the symmetry of the system and precluding a critical phase transition. In both cases,
we observe that ignoring or simplifying the coupling between a system and its environment can affect
drastically the values of integration as a system scales.
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Figure 6. Effects of the environment in integrated information. Integrated information ϕM(τ) (black
lines) of a mechanismM of size 3N

4 of a homogeneous kinetic Ising model with one region of size
N and coupling J, assuming that elements outside of the mechanism operate (A) normally, (B) as
independent sources of noise and (C) as static input fields. Values of ϕM(τ) are compared with
ϕM,effect(τ → ∞) (grey line) to show diverging tendencies of the effect repertoire. Note that tendencies
of ϕM,effect(τ → ∞) are larger than values of ϕM(τ), as the effect repertoire tends to show larger
values. Values of ϕ are computed with τ = 10 log2 N for finite systems and τ → ∞ for infinite systems.
Continuous noise injection and a stationary prior are assumed.

3.5. System-Level or Mechanism-Level Integration: Big Phi versus Small Phi

So far, we analysed the behaviour of integration measures ϕ describing the integration of
mechanisms of a system. IIT 3.0 postulates that the integration of a system is defined by a second-order
measure of integration, Φ, applied over the set of all its mechanisms. To explore how Φ behaves for
systems of different sizes, we compute it for a homogeneous system with one region, including the
different modifications assumed in the previous subsections. Note that this modifies the measure,
but it still allows us to inspect some of its scaling aspects.

For measuring Φ, first ϕ is computed for the different mechanisms of the system, and then
the integration of the set of mechanisms is compared with the set of values of ϕ of the system
under unidirectional partitions, using a modified Wasserstein distance [1] (Text S2). In the case of a
homogeneous system with just one region, the MIP is any of the partitions that isolates one single node
from the rest of the system. The value of Φ is the modified Wasserstein distance (with and without
applying the MIP) between the values of ϕ of the set of mechanisms of the system.
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In Figure 7, we compare the values of ϕ of the larger mechanism (Figure 7A) with the normalised
values of Φ of the whole system (Figure 7B), for a homogeneous system with only one region with
self-couplings J. The value of ϕ of the larger mechanisms diverges around the critical point as expected.
In the case of Φ, we find that for all values of J integration grows with size very rapidly. This is due to
the fact that the number of concepts (i.e the number of mechanisms) of the system grows exponentially
with size. The number of mechanisms or concepts is NC = ∑N

k=1 (
N
k ) = 2N − 1. Thus, we normalise the

value of Φ dividing by NC (Figure 7B). Using normalised values of Φ, we observe that the system still
diverges at the critical point. Furthermore, in this case the divergence is faster than in the case of ϕ, as
it accumulates the effects of the divergence of many mechanisms under a second partition.
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Figure 7. Mechanims and system-level integration in a homogeneous system with one region of size N
and coupling J. Values of (A) ϕ of the largest mechanism and (B) values of Φ for the whole system.
Measures with τ = 10 log2 N, assuming continuous noise injection, stationary priors and environment
coupling.

If we observe the contribution of different mechanisms to Φ, we observe that most of the
contributions to Φ are determined by the mechanisms affected by the MIP. In this case, all the value of ϕ

is transported by the Wasserstein distance into a new point defined by an independent distribution [1]
(See Text S2) (e.g., for N = 128 around 98% of the value of Φ is defined by the value of ϕ of the
mechanisms under the MIP).

In our example, it seems that the relation between ϕ and Φ is not quite relevant (the divergence of
the later seems to be an amplified version of the former). Heterogeneous or sparsely connected systems
may present more complicated relations and present important differences in the behaviour of the
highest order ϕ and the total Φ. Still, we believe that our simple example calls for a better justification
of the need of measuring a second-order level of integration in IIT 3.0 and the difference of the two
levels respect well-studied properties of systems.

3.6. Values versus Tendencies of Integration

Finally, we explore mechanism integration ϕ in the case of two homogeneous regions: one region
A with self-interaction and another region E , which is just coupled to the first without recurrent
connections (i.e., JEE = 0, Figure 8A). This case was used in [14] to represent an agent interacting with
an environment, exploring the power of integrated information to delimit what is the most integrated
part of the system. This delimitation has been proposed to identify the autonomy of small biological
circuits [2], but it is still unclear if the conclusions of analysis in such small systems and simplified
models could be extended to larger models of neural and biological systems.

For different values of recurrent connections JAA = JR, two values of bidirectional couplings
JAE = JC, JEA = 2JC are tested: JC = 0.8 and JC = 1.2. The results in [14] showed that, for infinite sizes,
in the weaker coupling condition JC = 0.8, A was the most integrated unit of the system at the critical
point. In contrast, for a stronger coupling JC = 1.2, the joint AE system was the one that presented
higher integration for infinite size. In Figure 8, we show the values of integration of A and AE for
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different sizes (integration of E is always zero as there are no recurrent connections for this region),
with JC = 0.8 (Figure 8B,C) and JC = 1.2 (Figure 8D,E).

For JC = 0.8, we observe that ϕA is always larger, independently of the size of the system,
showing that A is always more integrated than AE . However, for JC = 1.2, we find an interesting
behaviour. We can observe that for small sizes (N = 8, 16) A is more integrated. Conversely, for larger
sizes (N = 64, 128) we observe that AE is more integrated, as its value of ϕA diverges faster with size
than ϕAE .

This is relevant because in many cases integrated information can only be measured for rather
small systems. When analysing models of real neural or biological systems, these should be coarse
grained or discretised in order for ϕ measures to be applicable. In such cases, we can expect that the
delimitation of the most integrated units of the system have different values than at larger scales. Thus,
rather than the exact value of ϕ, the diverging tendencies in the model might be most informative
about the behaviour of the real observed system when small networks are considered.
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Figure 8. Integrated information in a system coupled to an environment. (A) Structure of couplings
between the two regions A,B of size NA = NE = N

2 of a homogeneous kinetic Ising models with
couplings JAA = JR, JEE = 0, JAE = JC, JEA = 2JC. (B–E) Integrated information of the mechanism A,
ϕA and mechanism AE , ϕAE , for values of JR = 1 and JC = 0.8 and JC = 1.2, respectively. Values of ϕ

are computed for τ = 10 log2 N for finite systems and τ → ∞ for infinite systems. Continuous noise
injection, stationary priors and environment coupling are assumed.

4. Discussion

In this article, we critically reviewed different aspects of the definition of integrated information
proposed by IIT 3.0, exemplifying them in toy models displaying critical phase transitions. Using a
homogeneous Ising model, we simplify the calculations to measure integrated information in large
systems. It is well known from theory in spin glasses that the infinite range homogeneous Ising model
(also known as Curie Weiss model) presents a critical point for J = 1 and H = 0 [13]. Although we
argue that critical phase transitions should be observed in integrated information measures (as critical
points display long-range correlations, maximal susceptibility to parametric changes and preserve
integrative and segregative tendencies of the system, see [7,16]), we have shown how different aspects
of the definition of ϕ prevent to capture the critical phase transition of the system as it grows larger in
size. This investigation has led us to propose reformulations of some aspects of the theory in order to
address some of the problems encountered during the study.

As IIT 3.0 has been mostly tested in small logic gate circuits, exploring the behaviour of integrated
information in large Ising models has allowed us to investigate questions that were so far unexplored
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and inspect some of the assumptions of the theory from a new perspective. We consider that the
value of the study is twofold. On one hand, we propose a family of models with known statistical
properties, where calculations of integrated information are simplified. These and similar models
could work as a benchmark for testing properties of integrated information in large systems. On the
other hand, the reformulations of different aspects of the theory proposed during the paper could be
considered by future versions of IIT, to capture some of the phenomena that we could expect in large,
complex systems.

First, we explored how the application of integrated information over an adequate timescale is
important to observe increasing values of integration as the system scales. The dynamics of the Ising
model are characterised by a “critical slowing down” as the critical point is approached. Consequently,
we observed that to capture critical diverging tendencies, timescales larger than one time step should
be used. As the dynamics of critical system display correlations at very different timescales, and
the span of these timescales increase with the size of the system, integrated information should be
evaluated in a way that the diversity of timescales is captured. In our analysis, we found that the
way to capture integration near critical points is to apply partitions in a different way than IIT 3.0.
In IIT 3.0 partitions are applied by injecting noise in the input state of the system and then computing
the forward and backwards distributions, but this approach did not capture the phase transition in
the model. In contrast, we successfully characterised the phase transition as diverging integrated
information around the critical point by applying several updates of the state of the system and
injecting noise at each update.

Second, to capture the cause repertoire of a state (integration in the causal dependencies of a
mechanism with previous states), IIT 3.0 proposes to assume a uniform prior distribution of past
states. We show that this assumption can distort the observed values of integration, losing an adequate
characterisation of the critical phase transition. We suggest that the real prior distribution (either
stationary or transient) should be used if cause repertoires are considered.

The third aspect we studied is the use of different distance measures between probability
distributions. Specifically, we compared the Wasserstein distance used by IIT 3.0 with the
Kullback–Leibler divergence, which is the choice for many competing definitions of integrated
information. First, we show that values of the Kullback–Leibler divergence should be weighted
by the size of the system in order to be comparable to the Wasserstein distance under the MIP;
otherwise, they tend to zero as the system grows. We also show that, in a homogeneous kinetic Ising
model at criticality, the Wasserstein distance shows diverging tendencies for finite sizes, whereas the
Kullback–Leibler divergence only shows a finite peak. This shows that, in some cases, the Wasserstein
distance may detect some divergences that would be ignored by the Kullback–Leibler divergence. Still,
it should be debated whether it is adequate that a system like the toy model presented here shows a
diverging value of integration. A closer examination of the behaviour of known quantities in an Ising
model could constitute an adequate starting point for this discussion. In this sense, the results of the
Wasserstein distance and Kullback–Leibler divergence can be connected with the behaviour of known
quantities in the homogeneous Ising model. For example, the susceptibility of the system diverges
at the critical point while the heat capacity of the system only shows a peak [13]. Both measures can
be related to approximations of ϕ using the Wasserstein and Kullback–Leibler measures, respectively
(from Equations (A22) and (A9)).

Furthermore, we analysed a crucial aspect of integration measures that is often overlooked: the
situatedness of the system. The central claim of situated approaches to cognitive behaviour is that the
agent-environment coupling shapes brain dynamics in a manner that is essential to behavioural or
cognitive functionality [18,19]. Thus, ignoring or dismissing this brain-body-environment coupling
can result in a substantial quantitative and qualitative distortion of the activity of a neural system [20].
Besides, there are deep theoretical reasons that come from the enactive perspective on cognition that
establish that the very notion of cognitive performance is world-involving, i.e., that it is co-constituted
by agent and environment [21]. In contrast, IIT 3.0 dismisses the bidirectional interaction between
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the system under evaluation and its environment for computing integration, with the aim to assess
the integrated information from the “intrinsic perspective” of the system itself. Specifically, IIT 3.0
considers the units outside the system (i.e., outside the candidate set) as static variables and the
units within the system but outside the evaluated mechanism as independent sources of noise.
We show in the model that both assumption can have dramatic effects in the behaviour of the system.
The assumption of static variables makes the divergence at the critical point disappear, and the
assumption of independent sources of noise creates spurious divergences of integrated information at
different positions than the original model. Only a situated version of integrated information, which
does not dismiss the activity of the environment and its couplings to the system, can correctly measure
integrated information even for a model as simple as ours. This suggest that the intrinsic notion
of information or the intrinsic perspective of a system cannot dismiss the system’s regulation of its
coupling with the environment [22]. Thus, ignoring the coupling with the outside of a sytem can
have important consequences for the application of integrated information measures in simulated
and experimental setups. For example, in [23], different agents are characterised by the integrated
information of its neural mechanisms, but ignoring the environment might miss important channels of
sensorimotor coordination contributing to the integration of the system. Similarly, attempts to identify
the physical substrate of consciousness in brains [24] should take into account situated and embodied
aspects of brain activity, or even consider the possibility that (at least at some moments) this substrate
can cut across the brain–body–world divisions, rather than being confined inside the brain [25].

In other experiments, we compared the differences between the values of mechanism-level and
system-level integration (ϕ and Φ) in a homogeneous system with one region, finding that some
normalisation constants are required to compare Φ of systems with different size. We also found that
Φ also diverges at the critical point, and it does faster than ϕ, due to the second partition applied and
the accumulation of the different mechanisms of the system. Although here we compute Φ for a very
simple system, we suggest that the introduction of this second level of analysis should be better justified.
In that sense, recent work explores very small networks showing how the compositional definition of
measures like Φ can yield very different results than the non-compositional mechanism-level measures
ϕ [26]. Further work could try to better characterise the difference between the two levels in systems
with analytically tractable properties like the Ising systems with multiple regions presented here.

Finally, we compared the diverging tendencies of two coupled subregions, showing that the
delimitation of integrated information might change with size as the integration of some regions
diverges faster than others. This is specially relevant as IIT 3.0 gives a prominent relevance to the
areas of the brain with maximal integration (the “neural substrate of consciousness”). If integration
takes the form of diverging values of ϕ around certain classes of critical points, or regions (see [14]),
then the neural substrate supporting maximal integration should be characterised by how fast
integration diverges with size, and not by the value of integration yielded by simplified models
(e.g., by coarse-graining observed time series), which can be potentially misleading.

These results exploring homogeneous kinetic Ising models show that the calculation of integrated
information presents important challenges even in simple models. This work serves to demonstrate
that the measure is very susceptible to design assumptions and that the behaviour of the measure
changes drastically because of this. In this scenario, we show how the connection between the theory
(IIT 3.0), a theoretical understanding of complex dynamical systems (critical phase transitions), and
the study of simplified models exemplifying known phenomena (homogeneous Ising models) offers a
path to systematically study the implications of these assumptions. Our results compel researchers
interested in IIT and related indices of complexity to apply such measures under careful examination
of their design assumptions. Rather than applying the measure off-the-shelf, ideally researchers
should be aware of the assumptions behind the measure and how it applies to each situation. In this
way, theory can go in hand with cautious experimental applications, avoiding potentially misleading
interpretations and ensuring that they are used to improve our understanding of biological and
neural phenomena.
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Appendix A. List of Assumptions and Experiments

We show here a summary of the different assumptions made by IIT 3.0 and different sections of the
manuscript. The different assumptions are described in Table A1. Moreover, in Table A2, we indicate
which assumptions are considered by IIT 3.0 and the figures corresponding to different experiments in
the article.

Note that due to computational cost of some of the measures, different experiments use different
system sizes, and consequently they explore different values of couplings, as in larger systems peaks
of values related with critical divergences take place closer to the critical point.

Table A1. Description of the different assumptions considered in the article.

Assumptions Description

Homogeneous connectivity

In order to simplify the computation of probability distributions and the
MIP in the thermodynamic limit, we assume that the system is divided
into a number of homogeneous regions. All units within a region share

the same inter/intra-region coupling values.

Equal mechanism and
purview

To simplify calculations, we assume that the purview of the system is
equal to the mechanism. In contrast, IIT 3.0 selects the purview that

yields maximum integration ϕ.

MIP cuts either a single node
or entire regions

In the thermodynamic limit, when all couplings are positive, the MIP of
a homogeneous Ising model is either a partition that cuts a single node

from the mechanism or one that separates an entire region (see
Appendix B.3). We assume that the same applies to finite systems.

Initial noise injection When transition probability matrices describe several updates, IIT 3.0
assumes that partitions only inject noise in the initial state.

Continuous noise injection In contrast with IIT 3.0, in some cases we assume that partitions inject
noise at every update of the system.

Independent prior In order to compute the cause repertoire of a mechanism, IIT 3.0 assumes
a uniform prior distribution to apply Bayes rule (Equation (17))

Stationary prior Alternative, in some cases we assume a stationary prior to compute
cause repertoires of a mechanism (Section 3.2).

Wasserstein distance In IIT 3.0, distances between distributions are computed using the
Wasserstein distance.

Kullback–Leibler divergence Many other alternative measures of integration (including previous
versions of IIT) are based on the Kullback–Leibler divergence.
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Table A2. List of assumptions considered by IIT 3.0 and by the results of the different experiments in
the article.

Assumptions &
Experiments IIT 3.0 Figure

3A
Figure

3B
Figure

4A
Figure

4B
Figure

5A
Figure
5B,C

Figures
6A and 8

Figure
6B,C

Figure
7A,B

Homogeneous
connectivity X X X X X X X X X

Equal mechanism
and purview X X X X X X X X X

MIP is a single node
or entire regions X X X X X X X X X

Initial noise injection X X

Continuous
noise injection X X X X X X X X

Independent prior X X

Stationary prior X X X X X X

Wasserstein distance X X X X X X X X X

KL divergence X

Environment
decoupling X X

Environment
coupling X X

Appendix B. Wasserstein Distance

The Wasserstein distance (or Earth Mover’s distance), DW(P(s), P(s)), is defined as the minimum
“cost of transportation” that arises when transforming one probability distribution P(s) into another
Q(s). This cost is defined as the amount of “mass” that has to be moved from each state in P(s) to
another in Q(s), defined by the matrix W, and the distance this mass has to be moved, which is defined
by the distance d(sI , sJ) this mass has to be transported, defined as the Hamming distance between sI
and sJ , which counts the number of places by which two strings differ. Thus, the Wasserstein distance
is defined as

DW(P(s), Q(s)) = min
W∈W(P,Q)

∑
sI ,sJ

d(sI , sJ)WI J , (A1)

where the indices I, J cover the set of possible states of the array s, andW(P, Q) represents the set of
transfer matrices that meet the conditions ∑J WI J = P(s), ∑I WI J = Q(s), ∑I J WI J = 1

Appendix B.1. Finite Size

For networks with homogeneous regions of finite size, the Wasserstein distance can be computed
directly from the aggregate variables S. This is justified as follows.

For each value of SK, there will be a set of corresponding values {sI}Σ(sI)=SK
, where Σ(sI) is the

transformation that obtains the aggregate values of each region such that for each region U we have
that SU (t) = ∑

i∈U
(1 + si(t))/2.

We note that if Σ(sI) = Σ(sJ) = SK, this implies in homogeneous systems that probabilities of
those states are identical: P(sI) = P(sJ). For a pair of values SK, SL such that Σ(sI) = SK, Σ(sJ) = SL,
we consider the case in which we transport a set of identical probability distributions {P(sI)}Σ(sI)=SK

into {P(sJ)}Σ(sJ)=SL
. As there is the same amount of mass in all sources and destinations in the

transportation cost, there is always a transport scheme such that

WI J =


0, if d(sI , sJ) > min

sI′ ,Σ(sI′ )=SK
sJ′ ,Σ(sJ′ )=SL

d(sI′ , sJ′)

W∗I J , otherwise

. (A2)
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Moreover,
min

sI′ ,Σ(sI′ )=SK
sJ′ ,Σ(sJ′ )=SL

d(sI′ , sJ′) = d(SK, SL) = ∑
U
|SK,U − SL,U | (A3)

In this case, we can rewrite Equation (A1) as

DW(P(s), Q(s)) = DW(P(S), Q(S)) = min
W∈W(P(S),Q(S))

∑
SK ,SL

d(SK, SL)WKL. (A4)

Appendix B.2. Infinite Size

In the infinite-size kinetic Ising model with homogeneous connectivity, probability distributions
are the product of an array of independent distributions P(si(t± τ)|s(t)) = 1+si(t±τ)mi(t±τ)

2 . Thus, the
cost of transport can be defined as the sum of individual costs of the independent distributions:

DW(P(s(t± τ)|s(t))||Pcut(s(t± τ)|s(t))) = 1
2 ∑

i

∣∣∣mi(t± τ)−mcut
i (t± τ)

∣∣∣. (A5)

The mean activation rate of a region can be interpreted as a function of couplings J, mi(t± τ | J).
We describe mean rate of a region under partition cut as mcut(t±τ)

i = mi(t± τ|J + dJ)). Where dJij = Jij
if Jij ∈ Jcut; otherwise, dJij = 0.

We assume a homogeneous system with a number of regions, with Jij =
1
N JU ,V and the partition

affects a small number of connections (see Appendix B.3), in the thermodynamic limit the mean rate
can be described as the first order term of a Taylor expansion at dJ = 0:

mi(t± τ|J + dJ)) = mi(t± τ|J)) + ∑
Jij∈Jcut

∂mi(t± τ))

∂Jij
Jij, (A6)

then the Wasserstein distance is

DW(P(s(t± τ)|s(t))||Pcut(s(t± τ)|s(t))) = 1
2 ∑

i

∣∣∣∣∣ ∑
Jkl∈Jcut

∂mi(t± τ))

∂Jkl
Jkl

∣∣∣∣∣. (A7)

We assume that the system is divided into homogeneous regions, for k ∈ U , l ∈ V , and Jkl =
1
N JUV .

DW(P(s(t± τ)|s(t))||Pcut(s(t± τ)|s(t))) = 1
2 ∑

i

∣∣∣∣∣∑UV ∑
k∈U ,l∈V
Jkl∈Jcut

∂mi(t± τ))

∂Jkl
Jkl

∣∣∣∣∣ (A8)

=
1
2 ∑
W

NW

∣∣∣∣∣∑UV Ncut[U ,V ]∂mW (t± τ)

∂JUV

JUV
N

∣∣∣∣∣, (A9)

where Ncut[U ,V ] is the number of connections from region U to region V that is affected by the partition
cut. as it is shown in [14]. Note that the terms ∂mi(t±τ))

∂Jkl
Jkl are always equal when i 6= k, and the case of

i = k can is neglected in the thermodynamic limit. Also note that integrated information for infinite
size in the homogeneous kinetic Ising model with one region would be equivalent to the magnetic
susceptibility of the system [13].

Appendix B.3. Minimum Information Partition in the Thermodynamic Limit

In the homogeneous kinetic Ising model, any conditional distribution can be computed as a
product of independent distributions, by recursively computing Equation (13). When computing
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integrated information with infinite sizes using Equation (A9), if all couplings are positive, the sign of
all ∂mW (t±τ)

∂JUV
is always the same. Then the MIP is the partition that minimises

DW(P(s(t± τ)|s(t))||Pcut(s(t± τ)|s(t))) = 1
2 ∑
UV

Ncut[U ,V ]F[U ,V ], (A10)

F[U ,V ] = ∑
W

NW

∣∣∣∣∣∂mW (t± τ)

∂JUV

∣∣∣∣∣ JUV
N

, (A11)

as F[U ,V ] > 0.
We can describe the number of cut partitions as Ncut[U ,V ] = NUNV ( f c

U + f f
V − 2 f c

U f f
V ), where f c

U
are the fraction of units of region V cut by the partition in the present state, and f f

V are the fraction
of units of region U cut by the partition in the future (or past) state. The only constraints are that
fU = nU

NU
, nU ∈ Z, with 0 < nU < NU , max(∑U nc

U , ∑U n f
U > 0 and min(∑U nc

U , ∑U n f
U ) < N.

Take, for example, a specific region U ′, we can decompose the distance function in

DW = NU ′NV
(
∑
V

f f
V F[U ′,V ] + f c

U ′ ∑
V
(1− 2 f f

V )F[U ′,V ]
)
+ ∑
U 6=U ′ ,V

NUNV ( f c
U + f f

V − 2 f c
U f f
V )F[U ,V ]. (A12)

If we only consider changes in the value of f c
U ′ , the first term is minimised by

f c
U ′ =

{
0, if ∑V (1− 2 f f

V )F[U ′,V ] > 0.

1, otherwise.
. (A13)

As well, the function grows monotonically with f c
U ′ .

Repeating this observation for every possible f c
U ′ , f f

V ′ , if 0 < f < 1, the MIP should be a partition
in which all values of f are either 0 or 1. A trivial solution is one where all f = 0 or all f = 1, but this
case violates one of the last two constraints above. The closest possible solution that complies with the
minimum is one in which one f c

U ′ =
1

Nc
U′

or one fV ′ = 1
NV′

, where for the rest of values f c
U = 0, fV = 0.

That is, the space of possible partitions that could constitute the MIP is constrained to (a) partitions
that isolate one single unit in the repertoire of current or future (or past) states or (b) one partition in
which all elements of a region in the current or the future (or past) states belong to the same partition.

In case (a), if the unit isolated by the partition belongs to region U in the current state, the
distance is

DW(P(s(t± τ)|s(t))||Pcut(s(t± τ)|s(t))) = 1
2 ∑
V

NVF[U ,V ], (A14)

whereas when the isolated unit belongs to the future (or past) state, the mean rate of the isolated unit i
will be mcut

i (t± τ) = 0. Thus, according to Equation (A7), the distance is

DW(P(s(t± τ)|s(t))||Pcut(s(t± τ)|s(t))) = 1
2

∣∣∣mU (t± τ)
∣∣∣+ 1

2
(1− 1

NU
)∑
V

NVF[U ,V ]. (A15)

Thus, in the thermodynamic limit, in case (a) the isolated unit will always belong to the present
state, and never the purview. An equivalent argument applies to the cause repertoire in a stationary
prior is assumed.
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Appendix B.4. Minimum Information Partition in the Thermodynamic Limit for Computing Φ

The approximation of the MIP of Φ in the thermodynamic limit of a kinetic Ising model with an
homogeneous region with coupling Jij =

J
N can be computed by calculating the first term of the Taylor

expansion of D∗W(C(J), Ccut(J + dJ)) (from Equation (5)) around J = 0:

D∗W(C(J), Ccut(J + dJ)) = Ncut
∂D∗W(C(J), Ccut(J + dJ))

∂J

∣∣∣
dJ=0

J
N

, (A16)

as in previous cases, if the approximation accurate (the partition is small) then ∂D∗W (C(J),Ccut(J+dJ))
∂J

should be positive and the MIP will be a partition that cuts one single node, i.e., Ncut = 1.

Appendix C. Kullback–Leibler Divergence

Many versions of ϕ use the Kullback–Leibler divergence as an alternative distance measure to the
Wasserstein distance.

The Kullback–Leibler divergence is defined as

DKL(P(s)||Q(s)) = ∑
s

P(s) log
P(s)
Q(s)

. (A17)

Appendix C.1. Finite Size

In the finite size, the Kullback–Leibler divergence DKL(P(s)||Q(s)) is equivalent to the divergence
of the aggregate variables DKL(P(S)||Q(S)). This can be shown as follows. The probability P(S) is
equal to the sum of all probabilities P(Σ(s)) such that Σ(s) = S, having that

P(S) = ∑
Σ(s)=S

P(Σ(s)) = P(Σ(s))∑
U

(
NU
SU

)
(A18)

then we have that

DKL(P(s)||Q(s)) = ∑
s

P(s) log
P(s)
Q(s)

= ∑
s

P(s) log
P(S)
Q(S)

= DKL(P(S)||Q(S)) (A19)

Appendix C.2. Infinite Size

In the infinite-size kinetic Ising model with homogeneous connectivity, as the state of the units of
the system is independent, the Kullback–Leibler divergence can be defined as the sum of individual
divergences. As P(si(t± τ)|s(t)) = 1+si(t±τ)mi(t±τ)

2 , we have that

DKL(P(s(t± τ)|s(t))||Pcut(s(t± τ)|s(t)))

= −∑
i

∑
si

P(si(t± τ)|s(t)) log

(
1 +

(mcut
i (t± τ)−mi(t± τ))si

1 + mi(t± τ)si

)
. (A20)

In the thermodynamic limit, if a partition cuts a small number of connections mcut
i (t± τ)−mi(t± τ)

is small and we can approximate the value of the distance as a Taylor expansion of order n:

DKL(P(s(t± τ)|s(t))||Pcut(s(t± τ)|s(t)))

=
1
2 ∑

i
∑
si

1
2

(
1

1 + mi(t± τ)si
∑

Jkl ,Jmn∈Jcut

∂2mi(t± τ)

∂Jkl∂Jmn
Jkl Jmn

)

=
1
2 ∑

i

(
1

1−m2
i (t± τ)

∑
Jkl Jmn∈Jcut

∂2mi(t± τ)

∂Jkl∂Jmn

Jkl Jmn

N2

)
. (A21)
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We assume that the system is divided into homogeneous regions, for k ∈ U , l ∈ V and Jkl =
1
N JUV .

DKL(P(s(t± τ)|s(t))||Pcut(s(t± τ)|s(t)))

=
1
2 ∑

i

1
1−m2

i (t± τ)
∑
UV

∑
k∈U ,l∈V
Jkl∈Jcut

∑
ST

∑
m∈S ,n∈T
Jmn∈Jcut

∂2mW (t± τ)

∂JUV∂JST
JUV JST

=
1
2 ∑
W

NW
1−m2

W (t± τ)
∑
UVST

Ncut[U ,V ]Ncut[S , T ]∂
2mW (t± τ)

∂JUV∂JST
JUV JST . (A22)

where Ncut[U ,V ] is the number of connections from region U to region V that is affected by the partition
cut. as it is shown in [14]. Note that the terms ∂mi(t±τ))

∂Jkl
Jkl are always equal when i 6= k, and the case of

i = k can is neglected in the thermodynamic limit.

Appendix C.3. Minimum Information Partition in the Thermodynamic Limit for the Kullback–Leibler Divergence

The approximation of the MIP in the thermodynamic limit is harder in the case of the
Kullback–Leibler divergence due to the quadratic terms. However, in this article we only compute
ϕ using the Kullback–Leibler divergence in the case of one region with couplings J. In this case,
Equation (A22) becomes

DKL(P(s(t± τ)|s(t))||Pcut(s(t± τ)|s(t)))

=
1
2

N
1−m2(t± τ)

N2
cut

∂2m(t± τ)

∂J2
J
N

2
, (A23)

where Ncut is the number of connections cut by the partition. In this case, as ∂2m(t±τ)
∂J2 J2 is always

positive for positive couplings, we have that the MIP is just a partition that cuts one single node.
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