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Abstract: By proving a strong converse theorem, we strengthen the weak converse result by
Salehkalaibar, Wigger and Wang (2017) concerning hypothesis testing against independence over
a two-hop network with communication constraints. Our proof follows by combining two
recently-proposed techniques for proving strong converse theorems, namely the strong converse
technique via reverse hypercontractivity by Liu, van Handel, and Verdú (2017) and the strong
converse technique by Tyagi and Watanabe (2018), in which the authors used a change-of-measure
technique and replaced hard Markov constraints with soft information costs. The techniques used in
our paper can also be applied to prove strong converse theorems for other multiterminal hypothesis
testing against independence problems.

Keywords: strong converse; hypothesis testing with communication constraints; testing against
independence; two-hop network; relay

1. Introduction

Motivated by situations where the source sequence is not available directly and can only be
obtained through limited communication with the data collector, Ahlswede and Csiszár [1] proposed
the problem of hypothesis testing with a communication constraint. In the setting of [1], there is
one encoder and one decoder. The encoder has access to one source sequence Xn and transmits a
compressed version of it to the decoder at a limited rate. Given the compressed version and the
available source sequence Yn (side information), the decoder knows that the pair of sequences (Xn, Yn)

is generated i.i.d. from one of the two distributions and needs to determine which distribution the
pair of sequences is generated from. The goal in this problem is to study the tradeoff between
the compression rate and the exponent of the type-II error probability under the constraint that
the type-I error probability is either vanishing or non-vanishing. For the special case of testing
against independence, Ahlswede and Csiszár provided an exact characterization of the rate-exponent
tradeoff. They also derived the so-called strong converse theorem for the problem. This states that the
rate-exponent tradeoff cannot be improved even when one is allowed a non-vanishing type-I error
probability. However, the characterization the rate-exponent tradeoff for the general case (even in the
absence of a strong converse) remains open till date.

Subsequently, the work of Ahlswede and Csiszár was generalized to the distributed setting by
Han in [2] who considered hypothesis testing over a Slepian-Wolf network. In this setting, there are
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two encoders, each of which observes one source sequence and transmits a compressed version of
the source to the decoder. The decoder then performs a hypothesis test given these two compression
indices. The goal in this problem is to study the tradeoff between the coding rates and the exponent
of type-II error probability, under the constraint that the type-I error probability is either vanishing
or non-vanishing. Han derived an inner bound to the rate-exponent region. For the special case of
zero-rate communication, Shalaby and Papamarcou [3] applied the blowing-up lemma [4] judiciously
to derive the exact rate-exponent region and a strong converse theorem. Further generalizations of
the work of Ahlswede and Csiszár can be categorized into two classes: non-interactive models where
encoders do not communicate with one another [5–8] and the interactive models where encoders do
communicate [9,10].

We revisit one such interactive model as shown in Figure 1. This problem was considered by
Salehkalaibar, Wigger and Wang in [11] and we term the problem as hypothesis testing over a two-hop
network. The two-hop model considered here has potential applications in the Internet of Things (IoT)
and sensor networks. In these scenarios, direct communication from the transmitter to the receiver
might not be possible due to power constraints that result from limited resources such as finite battery
power. However, it is conceivable in such a scenario to assume that there are relays—in our setting,
there is a single relay—that aid in the communication or other statistical inference tasks (such as
hypothesis testing) between the transmitter and receiver.

Xn Yn Zn

f2f1 g

6 6 6

--

6

M2M1

6

ĤY ĤZ

Figure 1. System model for hypothesis testing over a two-hop network

The main task in this problem is to construct two hypothesis tests between two joint distributions
PXYZ and QXYZ. One of these two distributions governs the law of (Xn, Yn, Zn) where each copy
(Xi, Yi, Zi) is generated independently either from PXYZ and QXYZ. As shown in Figure 1, the first
terminal has knowledge of a source sequence Xn and sends an index M1 to the second terminal, which
we call the relay; the relay, given side information Yn and compressed index M1, makes a guess of the
hypothesis ĤY and sends another index M2 to the third terminal; the third terminal makes another
guess of the hypothesis ĤZ based on M2 and its own side information Zn. The authors in [11] derived
an inner bound for the rate-exponent region and showed that the bound is tight for several special
cases, including the case of testing against independence in which QXYZ = PXPYPZ. However, even in
this simpler case of testing against independence, which is our main concern in this paper, the authors
in [11] only established a weak converse.

In this paper, we strengthen the result by Salehkalaibar, Wigger and Wang in [11] by deriving
a strong converse for the case of testing against independence. Our proof follows by combining
two recently proposed strong converse techniques by Liu et al. in [12] and by Tyagi and Watanabe
in [13]. In [12], the authors proposed a framework to prove strong converse theorems based on
functional inequalities and reverse hypercontractivity of Markov semigroups. In particular, they
applied their framework to derive strong converse theorems for a collection of problems including
the hypothesis testing with communication constraints problem in [1]. In [13], the authors proposed
another framework for strong converse proofs, where they used a change-of-measure technique and
replaced hard Markov constraints with soft information costs. They also leveraged variational formulas
for various information-theoretic quantities; these formulas were introduced by Oohama in [14–16].
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Notation

Random variables and their realizations are in upper (e.g., X) and lower case (e.g., x) respectively.
All sets are denoted in calligraphic font (e.g., X ). We use X c to denote the complement of X . Let
Xn := (X1, . . . , Xn) be a random vector of length n and xn its realization. Given any xn, we use P̂xn

to denote its type (empirical distribution). All logarithms are base e. We use R+ and N to denote
the set of non-negative real numbers and natural numbers respectively. Given any positive integer
a ∈ N, we use [a] to denote {1, · · · , a}. We use 1{·} to denote the indicator function and use standard
asymptotic notation such as O(·). The set of all probability distributions on a finite set X is denoted
as P(X ). Given any two random variables (X, Y) and any realization of x, we use PY|x(·) to denote
the conditional distribution PY|X(·|x). Given a distribution P ∈ P(X ) and a function f : X → R, we
use P( f ) to denote EP[ f (X)]. For information-theoretic quantities, we follow [17]. In particular, when
the joint distribution of (X, Y) is PXY ∈ P(X × Y), we use IPXY (X; Y) and IP(X; Y) interchangeably.
Throughout the paper, for ease of notation, we drop the subscript for distributions when there is
no confusion. For example, when the joint distribution of (X, Y, Z) is PXYZ, we use IP(X; Y|Z) and
IPXYZ (X; Y|Z) interchangeably. For any (p, q) ∈ [0, 1]2, let Db(p‖q) denote the binary divergence
function, i.e., Db(p‖q) = p log(p/q) + (1− p) log((1− p)/(1− q)).

2. Problem Formulation and Existing Results

2.1. Problem Formulation

Fix a joint distribution PXYZ ∈ P(X ×Y ×Z) satisfying the Markov chain X−Y− Z, i.e.,

PXYZ(x, y, z) = PX(x)PY|X(y|x)PZ|Y(z|y). (1)

Let PX, PY and PZ be induced marginal distributions of PXYZ. As shown in Figure 1, we consider
a two-hop hypothesis testing problem with three terminals. The first terminal, which we term the
transmitter, observes a source sequence Xn and sends a compression index M1 to the second terminal,
which we term the relay. Given M1 and side information Yn, the relay sends another compression index
M2 to the third terminal, which we term the receiver. The main task in this problem is to construct
hypothesis tests at both the relay and the receiver to distinguish between

H0 : (Xn, Yn, Zn) ∼ Pn
XYZ = PXPn

Y|XPn
Z|Y, (2)

H1 : (Xn, Yn, Zn) ∼ Pn
XPn

Y Pn
Z. (3)

For subsequent analyses, we formally define a code for hypothesis testing over a two-hop network
as follows.

Definition 1. An (n, N1, N2)-code for hypothesis testing over a two-hop network consists of

• Two encoders:

f1 : X n →M1 := {1, . . . , N1}, (4)

f2 :M1 ×Yn →M2 := {1, . . . , N2}, and (5)

• Two decoders

g1 :M1 ×Yn → {H0, H1}, (6)

g2 :M2 ×Zn → {H0, H1}. (7)
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Given an (n, N1, N2)-code with encoding and decoding functions ( f1, f2, g1, g2), we define
acceptance regions for the null hypothesis H0 at the relay and the receiver as

AY,n := {(m1, yn) : g1(m1, yn) = H0}, (8)

AZ,n := {(m2, zn) : g2(m2, zn) = H0} (9)

respectively. We also define conditional distributions

PM1|Xn(m1|xn) := 1{ f1(xn
1 ) = m1}, (10)

PM2|Yn M1
(m2|yn, m1) := 1{ f2(m1, yn) = m2}. (11)

Thus, for a (n, N1, N2)-code characterized by ( f1, f2, g1, g2), the joint distribution of random variables
(Xn, Yn, Zn, M1, M2) under the null hypothesis H0 is given by

PXnYnZn M1 M2(xn, yn, zn, m1, m2) = Pn
XYZ(xn, yn, zn)PM1|Xn(m1|xn)PM2|Yn M1

(m2|yn, m1), (12)

and under the alternative hypothesis H1 is given by

P̄XnYnZn M1 M2(xn, yn, zn, m1, m2) = Pn
X(xn)Pn

Y(y
n)Pn

Z(z
n)PM1|Xn(m1|xn)PM2|Yn M1

(m2|yn, m1). (13)

Now, let PYn M1 and PZn M2 be marginal distributions induced by PXnYnZn M1 M2 and let P̄Yn M1 and P̄Zn M2

be marginal distributions induced by P̄XnYnZn M1 M2 . Then, we can define the type-I and type-II error
probabilities at the relay as

β1 := PM1Yn(Ac
Y,n), (14)

β2 := P̄M1Yn(AY,n) (15)

respectively and at the receiver as

η1 := PM2Zn(Ac
Z,n), (16)

η2 := P̄M2Zn(AZ,n) (17)

respectively. Clearly, β1, β2, η1, and η2 are functions of n but we suppress these dependencies
for brevity.

Given above definitions, the achievable rate-exponent region for the hypothesis testing problem
in a two-hop network is defined as follows.

Definition 2. Given any (ε1, ε2) ∈ (0, 1)2, a tuple (R1, R2, E1, E2) is said to be (ε1, ε2)-achievable if there
exists a sequence of (n, N1, N2)-codes such that

lim sup
n→∞

1
n

log Ni ≤ Ri, ∀i ∈ {1, 2}, (18)

lim sup
n→∞

β1 ≤ ε1, (19)

lim sup
n→∞

η1 ≤ ε2, (20)

lim inf
n→∞

− 1
n

log β2 ≥ E1, (21)

lim inf
n→∞

− 1
n

log η2 ≥ E2. (22)
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The closure of the set of all (ε1, ε2)-achievable rate-exponent tuples is called the (ε1, ε2)-rate-exponent region
and is denoted asR(ε1, ε2). Furthermore, define the rate-exponent region as

R := R(0, 0). (23)

2.2. Existing Results

In the following, we recall the exact characterization of R given by Salehkalaibar, Wigger and
Wang ([11] (Corollary 1)). For this purpose, define the following set of joint distributions

Q := {QXYZUV ∈ P(X ×Y ×Z × U × V) : QXYZ = PXYZ, U − X−Y, V −Y− Z}. (24)

Given QXYZUV ∈ Q, define the following set

R(QXYZUV) :=
{
(R1, R2, E1, E2) : R1 ≥ IQ(U; X), R2 ≥ IQ(V; Y),

E1 ≤ IQ(U; Y), E2 ≤ IQ(U; Y) + IQ(V; Z)
}

(25)

Finally, let

R∗ :=
⋃

QXYZUV∈Q
R(QXYZUV). (26)

Theorem 1. The rate-exponent regionR for the hypothesis testing over a two-hop network problem satisfies

R = R∗. (27)

In the following, inspired by Oohama’s variational characterization of rate regions for multiuser
information theory [14–16], we provide an alternative characterization ofR∗. For this purpose, given
any (b, c, d) ∈ R3

+ and any QXYZUV ∈ Q, let

Rb,c,d(QXYZUV) := −IQ(U; Y) + bIQ(U; X)− c(IQ(U; Y) + IQ(V; Z)) + dIQ(V; Y). (28)

be a linear combination of the mutual information terms in (25). Furthermore, define

Rb,c,d := min
QXYZUV∈Q

Rb,c,d(QXYZUV). (29)

An alternative characterization ofR∗ is given by

R∗ =
⋂

(b,c,d)∈R3
+

{
(R1, R2, E1, E2) : −E1 + bR1 − cE2 + dR2 ≥ Rb,c,d

}
. (30)

3. Strong Converse Theorem

3.1. The Case ε1 + ε2 < 1

Theorem 2. Given any (ε1, ε2) ∈ (0, 1)2 such that ε1 + ε2 < 1 and any (b, c, d) ∈ R3
+, for any

(n, N1, N2)-code such that β1 ≤ ε1, η1 ≤ ε2, we have

log β2 + b log N1 + c log η2 + d log N2 ≥ nRb,c,d + Θ(n3/4 log n). (31)

The proof of Theorem 2 is given in Section 4. Several remarks are in order.
First, using the alternative expression of the rate-exponent region in (30), we conclude that for any

(ε1, ε2) ∈ (0, 1)2 such that ε1 + ε2 < 1, we have R(ε1, ε2) = R∗. This result significantly strengthens
the weak converse result in ([11] (Corollary 1)) in which it was shown thatR(0, 0) = R∗.
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Second, it appears difficult to establish the strong converse result in Theorem 2 using existing
classical techniques including image-size characterizations (a consequence of the blowing-up
lemma) [4,6] and the perturbation approach [18]. In Section 4, we combine two recently proposed
strong converse techniques by Liu, van Handel, and Verdú [12] and by Tyagi and Watanabe [13].
In particular, we use the strong converse technique based on reverse hypercontractivity in [12] to
bound the exponent of the type-II error probability at the receiver and the strong converse technique
in [13], which leverages an appropriate change-of-measure technique and replaces hard Markov
constraints with soft information costs, to analyze the exponent of type-II error probability at the relay.
Finally, inspired by the single-letterization steps in ([19] (Lemma C.2)) and [13], we single-letterize the
derived multi-letter bounds from the previous steps to obtain the desired result in Theorem 2.

Third, we briefly comment on the apparent necessity of combining the two techniques in [12,13]
instead of applying just one of them to obtain Theorem 2. The first step to apply the technique in [13]
is to construct a “truncated source distribution” which is supported on a smaller set (often defined
in terms of the decoding region) and is not too far away from the true source distribution in terms
of the relative entropy. For our problem, the source satisfies the Markov chain Xn − Yn − Zn. If we
naïvely apply the techniques in [13], the Markovian property would not hold for the truncated source
(X̃n, Ỹn, Z̃n). On the other hand, it appears rather challenging to extend the techniques in [12] to the
hypothesis testing over a multi-hop network problem since the techniques therein rely heavily on
constructing semi-groups and it is difficult to devise appropriate forms of such semi-groups to be
used and analyzed in this multi-hop setting. Therefore, we carefully combine the two techniques
in [12,13] to ameliorate the aforementioned problems. In particular, we first use the technique in [13]
to construct a truncated source (X̃n, Ỹn) and then let the conditional distribution of Z̃n given (X̃n, Ỹn)

be given by the true conditional source distribution Pn
Z|Y to maintain the Markovian property of the

source (see (56)). Subsequently, in the analysis of error exponents, we use the technique in [12] to
analyze the exponent of type-II error probability at the receiver to circumvent the need to construct
new semi-groups.

Finally, we remark that the techniques (or a subset of the techniques) used to prove Theorem 2
can also be used to establish a strong converse result for other multiterminal hypothesis testing against
independence problems, e.g., hypothesis testing over the Gray-Wyner network [7], the interactive
hypothesis testing problem [9] and the cascaded hypothesis testing problem [10].

3.2. The Case ε1 + ε2 > 1

In this subsection, we consider the case where the sum of type-I error probabilities at the relay
and the receiver is upper bounded by a quantity strictly greater than one. For ease of presentation of
our results, let

Q2 := {QXYZU1U2V ∈ Q(X ×Y ×Z × U1 ×U2 × V) :

QXYZ = PXYZ, U1 − X−Y, U2 − X−Y, V −Y− Z}. (32)

Given any QXYZU1U2V ∈ Q2, define the following set of rate-exponent tuples

R̃(QXYZU1U2V) :=
{
(R1, R2, E1, E2) :R1 ≥ max{IQ(U1; X), IQ(U2; X)}, R2 ≥ IQ(V; X),

E1 ≤ IQ(U1; Y), E2 ≤ IQ(U2; Y) + IQ(V; Z)
}

. (33)

Furthermore, define

R̃ :=
⋃

QXYZU1U2V

R̃(QXYZU1U2V). (34)
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Given any QXYZU1U2V ∈ Q2 and (b1, b2, c, d) ∈ R4
+, define the following linear combination of the

mutual information terms

R̃b1,b2,c,d(QXYZU1U2V)

:= −IQ(U1; Y) + b1 IQ(U1; X) + b2 IQ(U2; X)− c(IQ(U2; Y) + IQ(V; Z)) + dIQ(V; Y), (35)

and let

R̃b1,b2,c,d := min
QXYZU1U2V

R̃b1,b2,c,d(QXYZU1U2V). (36)

Then, based on [14–16], an alternative characterization of R̃ is given by

R̃ =
⋃

(b1,b2,c,d)∈R4
+

{
(R1, R2, E1, E2) : −E1 + b1R1 + b2R1 − cE2 + dR2 ≥ R̃b1,b2,c,d

}
. (37)

Analogously to Theorem 2, we obtain the following result.

Theorem 3. Given any (ε1, ε2) ∈ (0, 1)2 and any (b1, b2, c, d) ∈ R4
+, for any (n, N1, N2)-code such that

β1 ≤ ε1, η1 ≤ ε2, we have

log β2 + b1 log N1 + b2 log N1 + c log η2 + d log N2 ≥ nR̃b1,b2,c,d + Θ(n3/4 log n). (38)

The proof of Theorem 3 is similar to that of Theorem 2 and thus omitted for simplicity.
To prove Theorem 3, we need to analyze two special cases (cf. Figure 2) of our system

model separately:

(i) Firstly, we consider the first hop, which involves the transmitter and the relay only. The first hop
itself is a hypothesis testing problem with a communication constraint [1]. Using the techniques
either in [13] or [12], we can obtain bounds on a linear combination of the rate of the first
encoder and the type-II error exponent of the relay, (i.e., log β2 + b1 log N1 for any b1 ∈ R+) for
any type-I error probability β1 ∈ (0, 1) at the relay.

(ii) Secondly, we study the second special case in which the relay does not make a decision. Using
similar steps to the proof of Theorem 2, we can obtain a lower bound on a linear combination
of the rate at the transmitter, the rate at the relay and the type-II exponent at the receiver (i.e.,
b2 log N1 + c log η2 + d log N2 for any (b2, c, d) ∈ R3

+) for any type-I error probability η1 ∈ (0, 1)
at the receiver.

(iii) Finally, combining the results obtained in the first two steps, we obtain a lower bound on
the linear combination of rates and type-II exponents (as shown in Theorem 3). The proof
is completed by using standard single-letterization steps and the variational formula in
Equation (37).

Xn Yn Zn

f2f1 g

6 6 6

--

6

M2M1

6

ĤY ĤZ

(a) Case 1: consider only the first hop

Xn Yn Zn

f2f1 g

6 6 6

-- M2M1

6

ĤZ

(b) Case 2: ignore the decision at relay

Figure 2. Illustration of the proof sketch of Theorem 3.
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Using Theorem 3, we obtain the following proposition.

Proposition 1. For any (ε1, ε2) ∈ (0, 1)2 such that ε1 + ε2 > 1, we have

R(ε1, ε2) = R̃. (39)

The converse proof of Proposition 1 follows from Theorem 3 and the alternative characterization
of R̃ in (37). The achievability proof is inspired by ([6] (Theorem 5)) and is provided in Appendix A.
The main idea is that we can time-share between two close-to optimal coding schemes, each of which
corresponds to one special case of the current problem as mentioned after Theorem 3.

Recall that in the first remark of Theorem 2, we provide an exact characterization of the
rate-exponent region for any (ε1, ε2) ∈ (0, 1)2 such that ε1 + ε2 < 1. The converse proof follows
from Theorem 2 and the achievability part was given in ([20] (Corollary 1)). Combining the first
remark of Theorem 2 and Proposition 1, we provide an exact characterization of R(ε1, ε2) for any
(ε1, ε2) ∈ (0, 1)2 such that ε1 + ε2 6= 1. We remark the case in which ε1 + ε2 = 1 was also excluded in
the analysis of the successive refinement of hypothesis testing with communication constraints problem
studied by Tian and Chen [6]. In fact, our converse result in Theorem 3 holds for any (ε1, ε2) ∈ (0, 1)2

including the case ε1 + ε2 = 1. However, the achievability result presented in Appendix A holds only
when ε1 + ε2 > 1 and thus we are unable to characterize R(ε1, ε2) when ε1 + ε2 = 1. Because of the
need to propose an achievability scheme which uses completely different techniques to handle the
case in which ε1 + ε2 = 1, which does not dovetail with the main message and contribution of this
paper, we omit this case in this paper.

4. Proof of Theorem 2

4.1. Preliminaries

Before presenting the proof of Theorem 2, in this subsection, we briefly review the two strong
converse techniques that we judiciously combine in this work, namely the change-of-measure technique
by Tyagi and Watanabe [13] and the hypercontractivity technique by Liu et al. [12].

The critical step in the strong converse technique by Tyagi and Watanabe [13] is to construct a
truncated source distribution, which is supported over a small set related to the decoding regions.
Furthermore, the constructed truncated distribution should satisfy the following conditions:

(i) The truncated distribution is close to the original source distribution in terms of the KL
divergence;

(ii) Under the truncated distribution, the (type-I) error probability is small.

Subsequent steps proceed similarly as the weak converse analysis of the problem and lead to
bounds on the rates and (type-II) exponents. We then single-letterize the obtained bounds (using
classical techniques in information theory without the memoryless property, e.g., [21]). Finally, we
relate the single-letterized results to the the variational characterization [14,16] of the fundamental limit
of the problem, which uses the idea of replacing hard Markov constraints with soft information costs.

The advantage of the Tyagi-Watanabe technique lies in its simplicity and similarity to weak
converse analyses. In contrast, the disadvantage of the technique is that the structure of the source
distribution (e.g., Markovian) is potentially lost in the constructed truncated distribution. As we have
illustrated briefly after Theorem 2, this disadvantage prevents us from solely using the Tyagi-Watanabe
technique to prove the strong converse theorem for our setting.

On the other hand, the key technique in the strong converse technique by Liu et al. [12] is the
use of ideas from reverse hypercontractivity. In particular, one needs to use the variational formula
of the KL divergence ([22] (Chapter 12)) and carefully construct Markov semigroups. The operation
of applying a Markov semigroup is similar to a soft version of blowing up of decoding sets [4] for
the discrete memoryless case. The advantage of the strong converse technique by Liu et al. lies
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in its wide applicability (beyond discrete settings) and its versatile performance (beyond showing
strong converses it can be used to show that the second order terms scale as O(

√
n)). However, the

construction of appropriate Markov semigroups is problem-specific, which limits its applicability to
other information-theoretic problems in the sense that one has to construct specific semigroups for
each problem. Fortunately, in our setting this construction and combination with Tyagi-Watanabe’s
technique, is feasible.

4.2. Summary of Proof Steps

In the rest of this section, we present the proof of strong converse theorem for the hypothesis
testing over the two-hop network. The proof follows by combining the techniques in [12,13] and
is separated into three main steps. First, we construct a truncated source distribution PX̃nỸn Z̃n and
show that this truncated distribution is not too different from Pn

XYZ in terms of the relative entropy.
Subsequently, we analyze the exponents of type-II error probabilities at the relay and the receiver
under the constraint that their type-I error probabilities are non-vanishing. Finally, we single-letterize
the constraints on rate and error exponents to obtain desired result in Theorem 2.

To begin with, let us fix an (n, N1, N2)-code with functions ( f1, f2, g1, g2) such that the type-I error
probabilities are bounded above by ε1 ∈ (0, 1) and ε2 ∈ (0, 1) respectively, i.e., β1 ≤ ε1 and η1 ≤ ε2.
We note from (19) and (20) that β1 ≤ ε1 + o(1) and β2 ≤ ε2 + o(1). Since the o(1) terms are immaterial
in the subsequent analyses, they are omitted for brevity.

4.3. Step 1: Construction of a Truncated Distribution

Paralleling the definitions of acceptance regions in (8) and (9), we define the following acceptance
regions at the relay and the receiver as

DY,n = {(xn, yn) : g1( f1(xn), yn) = H0}, (40)

DZ,n = {(xn, yn, zn) : g2( f2( f1(xn), yn), zn) = H0}, (41)

respectively. Note that the only difference between AY,n and DY,n lies in whether we consider the
compression index m1 or the original source sequence xn. Recalling the definitions of the type-I error
probabilities for the relay denoted by β1 in (14) and for the receiver denoted by η1 in (16), and using
(40) and (41), we conclude that

Pn
XY(DY,n) = 1− β1, (42)

Pn
XYZ(DZ,n) = 1− η1. (43)

For further analysis, given any m2 ∈ M2, define a conditional acceptance region at the receiver
(conditioned on m2) as

G(m2) := {zn : g2(m2, zn) = H0}. (44)

For ease of notation, given any (xn, yn) ∈ X n ×Yn, we use G(xn, yn) and G( f2( f1(xn), yn)) (here
f2( f1(xn), yn) plays the role of m2 in (44)) interchangeably and define the following set

Bn :=
{
(xn, yn) : Pn

Z|Y(G(xn, yn)|yn) ≥ 1− ε1 − ε2

1 + 3ε2 − ε1

}
. (45)
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Combining (41), (43) and (44), we obtain

1− ε2 ≤ Pn
XYZ(DZ,n) (46)

= ∑
(xn ,yn)∈Bn

Pn
XY(xn, yn)Pn

Z|Y(G(xn, yn)|yn) + ∑
(xn ,yn) 6∈Bn

Pn
XY(xn, yn)Pn

Z|Y(G(xn, yn)|yn) (47)

≤ Pn
XY(Bn) + (1− Pn

XY(Bn))
1− ε1 − ε2

1 + 3ε2 − ε1
. (48)

Thus, we have

Pn
XY(Bn) ≥

3− 3ε2 + ε1

4
. (49)

For subsequent analyses, let

µ :=
(

min
y:PY(y)>0

PY(y)
)−1

, (50)

θn :=

√
3µ

n
log

8|Y|
1− ε1 − ε2

, (51)

and define the typical set Tn(PY) as

Tn(PY) = {yn : |P̂yn(y)− PY(y)| ≤ θnPY(y) ∀y ∈ Y}. (52)

Using the Chernoff bound, we conclude that when n is sufficiently large,

Pn
Y(Tn(PY)) ≥ 1− 1− ε1 − ε2

4
. (53)

Now, define the following set

Cn := Bn ∩DY,n ∩ (X n × Tn(PY)). (54)

Then, combining (42), (49) and (53), we conclude that when n is sufficiently large,

Pn
XY(Cn) ≥ 1− Pn

XY(Bc
n)− Pn

XY(Dc
Y,n)− Pn

Y(T c
n (PY)) ≥

1− ε1 − ε2

2
. (55)

Let the truncated distribution PX̃nỸn Z̃n be defined as

PX̃nỸn Z̃n(xn, yn, zn) :=
Pn

XY(xn, yn)1{(xn, yn) ∈ Cn}
Pn

XY(Cn)
Pn

Z|Y(z
n|yn). (56)

Note that under our constructed truncated distribution PX̃nỸn Z̃n , the Markov chain X̃n − Ỹn − Z̃n

holds.In other words, the Markovian property of the original source distribution Pn
XYZ is retained for

the truncated distribution PX̃nỸn Z̃n , which appears to be necessary to obtain a tight result if one wishes
to use weak converse techniques. This is critical for our subsequent analyses.

Using the result in (55), we have that the marginal distribution PX̃n satisfies that for any xn ∈ X N ,

PX̃n(xn) = ∑
yn ,zn

PX̃nỸn Z̃n(xn, yn, zn) (57)

≤
Pn

X(xn)

Pn
XY(Cn)

≤
2Pn

X(xn)

1− ε1 − ε2
. (58)
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Analogously to (58), we obtain that

PỸn(yn) ≤
2Pn

Y(y
n)

1− ε1 − ε2
, ∀ yn ∈ Yn, (59)

PZ̃n(zn) ≤
2Pn

Z(z
n)

1− ε1 − ε2
, ∀ zn ∈ Zn. (60)

Finally, note that

D(PX̃nỸn Z̃n‖Pn
XYZ) = D(PX̃nỸn‖Pn

XY) (61)

= log
1

Pn
XY(Cn)

(62)

≤ log
2

1− ε1 − ε2
. (63)

4.4. Step 2: Analyses of the Error Exponents of Type-II Error Probabilities

4.4.1. Type-II Error Probability β2 at the Relay

Let M̃1 and M̃2 be the outputs of encoders f1 and f2 respectively when the tuple of source
sequences (X̃n, Ỹn, Z̃n) is distributed according to PX̃nỸn Z̃n defined in (56). Thus, recalling the
definitions in (10), (11) and (56), we find that the joint distribution of (X̃n, Ỹn, Z̃n, M̃1, M̃2) is given by

PX̃nỸn Z̃n M̃1 M̃2
(xn, yn, zn, m1, m2) = PX̃nỸn Z̃n(xn, yn, zn)PM1|Xn(m1|xn)PM2|Yn M1

(m2|yn, m1). (64)

Let PM̃1Ỹn be induced by PX̃nỸn Z̃n M̃1 M̃2
. Combining (8) and (56), we conclude that

PM̃1Ỹn(AY,n) = ∑
xn ,yn ,zn ,m1,m2 :
g1(m1,yn)=H0

PX̃nỸn Z̃n M̃1 M̃2
(xn, yn, zn, m1, m2) (65)

= ∑
xn ,yn :g1( f1(xn),yn)=H0

Pn
XY(xn, yn)1{(xn, yn) ∈ Cn}

Pn
XY(Cn)

(66)

= ∑
xn ,yn

Pn
XY(xn, yn)1{(xn, yn) ∈ Cn}

Pn
XY(Cn)

(67)

= 1. (68)

where (67) follows from the definition of DY,n in (40) and the fact that DY,n ⊆ Cn.
Thus, using the data processing inequality for the relative entropy and the definition of β2 in (15),

we obtain that

D(PM̃1Ỹn‖PM1 Pn
Y) ≥ Db(PM̃1Ỹn(AY,n)‖PM1 Pn

Y(AY,n)) (69)

= − log
(

PM1 Pn
Y(AY,n)

)
(70)

= − log β2. (71)



Entropy 2019, 21, 1171 12 of 23

Furthermore, recalling that M1 denotes the output of encoder f1 when (Xn, Yn, Zn) ∼ Pn
XYZ and

M̃1 denotes the output of encoder f1 when (Xn, Yn, Zn) ∼ PX̃nỸn Z̃n , and using the result in (58), we
conclude that

PM̃1
(m1) = ∑

xn ,yn ,zn : f1(xn)=m1

PX̃nỸn Z̃n(xn, yn, zn) (72)

= ∑
xn : f1(xn)=m1

PX̃n(xn) (73)

≤ ∑
xn : f1(xn)=m1

2Pn
X(xn)

1− ε1 − ε2
(74)

≤
2PM1(m1)

1− ε1 − ε2
, (75)

for any m1 ∈ M1. Thus, combining (59), (71) and (75), we have

− log β2 ≤ D(PM̃1Ỹn‖PM1 Pn
Y) (76)

= D(PM̃1Ỹn‖PM̃1
PỸn) + EPM̃1Ỹn

[
log

PM̃1
(M̃1)PỸn(Ỹn)

PM1(M̃1)Pn
Y(Ỹ

n)

]
(77)

≤ D(PM̃1Ỹn‖PM̃1
PỸn) + EPM̃1Ỹn

log

2PM1 (M̃1)

1−ε1−ε2

2Pn
Y(Ỹ

n)
1−ε1−ε2

PM1(M̃1)Pn
Y(Ỹ

n)

 (78)

= I(M̃; Ỹn) + 2 log
2

1− ε1 − ε2
. (79)

4.4.2. Type-II Error Probability η2 at the Receiver

In this subsection, we analyze the error exponent of the type-II error probability at the receiver.
For this purpose, we make use of the method introduced in [12] based on reverse hypercontractivity.
We define the following additional notation:

• Give PYZ ∈ P(Y ×Z), define

α := max
y,z

PZ|Y(z|y)
PZ(z)

∈ (1, ∞). (80)

In the subsequent analysis, we only consider the case when α > 1. When α = 1, choosing t = 1√
n

instead of the choice in (101), we can obtain a similar upper bound for − log η2 as in (102), where
the only difference is that Ψ(n, ε1, ε2) should be replaced by another term scaling in order Θ(

√
n).

• Given any (ε1, ε2) ∈ (0, 1)2 such that ε1 + ε2 < 1, let

Ψ(n, ε1, ε2) := 2

√
n(α− 1) log

1 + 3ε2 − ε1

1− ε1 − ε2
. (81)

• Give any m2 ∈ M2 and zn ∈ Zn, let

h(m2, zn) := 1{zn ∈ G(m2)}. (82)
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• Two operators in ([12] (Equations (25), (26), (29)))

Λα,t = (exp(−t) + α(1− exp(−t))PZ)
⊗n, (83)

Tyn ,t =
n

∏
i=1

(exp(−t) + (1− exp(−t))PZ|yi
). (84)

Note that in (84), we use the convenient notation PZ|y(z) = PZ|Y(z|y). The two operators in (83) and
(84) will be used to lower bound D(PZ̃n M̃2

‖Pn
Z P̄M2) via a variational formula of the relative entropy

(cf. ([12] (Section 4))).
Let PZ̃n M̃2

, PZ̃n |M̃2
, PZ̃n |Ỹn be induced by the joint distribution PX̃nỸn Z̃n M̃1 M̃2

in (64) and let P̄M2 be
induced by the joint distribution P̄XnYnZn M1 M2 in (13). Invoking the variational formula for the relative
entropy ([22] (Equation (2.4.67))) and recalling the notation P( f ) = EP[ f ], we have

D(PZ̃n M̃2
‖Pn

Z P̄M2) ≥ PZ̃n M̃2

(
log Λα,th(M̃2, Z̃n)

)
− log

(
(Pn

Z P̄M2)
(
Λα,th(M2, Zn)

))
. (85)

Given any m2 ∈ M2, similar to ([12] (Equations (18)–(21))), we obtain

Pn
Z(Λα,th(m2, Zn))

= Pn
Z
(
(exp(−t) + α(1− exp(−t))PZ)

⊗nh(m2, Zn)
)

(86)

=
(

exp(−t) + α(1− exp(−t))
)nPn

Z
(
h(m2, Zn)

)
(87)

≤ exp((α− 1)nt)Pn
Z
(
h(m2, Zn)

)
. (88)

Thus, averaging over m2 with distribution P̄M2 on both sides of (88), we have

(Pn
Z P̄M2)(Λα,th(M2, Zn))

≤ exp((α− 1)nt)(P̄M2 Pn
Z)
(
h(M2, Zn)

)
(89)

= exp((α− 1)nt)η2, (90)

where (90) follows from the definition of η2 in (17).
Furthermore, given any m̃2 ∈ M2, we obtain

PZ̃n |m̃2
(log Λα,th(m̃2, Z̃n)) (91)

=
(

∑̃
yn

PZ̃n |ỹn PỸn |M̃2
(ỹn|m̃2)

)
(log Λα,th(m̃2, Z̃n)) (92)

= ∑̃
yn

PỸn |M̃2
(ỹn|m̃2)PZ̃n |ỹn(log Λα,th(m̃2, Z̃n)) (93)

≥ ∑̃
yn

PỸn |M̃2
(ỹn|m̃2)PZ̃n |ỹn(log Tyn ,th(m̃2, Z̃n)) (94)

≥ ∑̃
yn

PỸn |M̃2
(ỹn|m̃2)

(
1 +

1
t

)
log PZ̃n |ỹn

(
h(m̃2, Z̃n)

)
(95)

=

(
1 +

1
t

)(
∑̃
yn

PỸn |M̃2
(ỹn|m̃2) log PZ̃n |ỹn(G(m̃2))

)
. (96)

where (94) follows from ([12] (Lemma 4)) and (95) follows similarly to ([12] (Equations (14)–(17))).
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Thus, averaging on both sides of (96) over m̃2 with distribution PM̃2
and using the definition of

the joint distribution PX̃nỸn Z̃n M̃1 M̃2
in (64), we obtain that

PZ̃n M̃2
(log Λα,th(M̃2, Z̃n))

≥
(

1 +
1
t

)(
∑

ỹn ,m̃2

PỸn M̃2
(ỹn, m̃2) log PZ̃n |ỹn(G(m̃2))

)
(97)

=

(
1 +

1
t

)
∑

x̃n ,ỹn ,m̃1,m̃2

(
PX̃nỸn(x̃n, ỹn)1{m̃1 = f1(x̃n), m̃2 = f2(m̃1, ỹn)}

× log
(

∑
z̃n :g2(z̃n ,m̃2)=H0

Pn
Z|Y(z̃

n|ỹn)

))
(98)

=

(
1 +

1
t

)(
∑

x̃n ,ỹn

Pn
XY(x̃n, ỹn)1{(x̃n, ỹn) ∈ Cn}

Pn
XY(Cn)

log Pn
Z|Y(G(x̃n, ỹn)|ỹn)

)
(99)

≥
(

1 +
1
t

)
log

1− ε1 − ε2

1 + 3ε2 − ε1
, (100)

where (100) follows from the definitions of Bn in (45) and Cn in (54).
Therefore, combining (85), (90) and (100) and choosing

t =

√
1

n(α− 1)
log

1 + 3ε2 − ε1

1− ε1 − ε2
, (101)

via simple algebra, we obtain that

− log η2 ≤ D(PZ̃n M̃2
‖PZn P̄M2) + Ψ(n, ε1, ε2)− log

1− ε1 − ε2

1 + 3ε2 − ε1
. (102)

In the following, we further upper bound D(PZ̃n M̃2
‖PZn P̄M2). For this purpose, define the

following distribution

P̄M̃2
(m2) := ∑

yn ,m1

PM̃1
(m1)PỸn(yn)1{m2 = f2(m1, yn)}. (103)

Combining the results in (59) and (75), and recalling that P̄M2 is induced by joint distribution
P̄XnYnZn M1 M2 in (13), for any m2 ∈ M2, we have

P̄M̃2
(m2) ≤

( 2
1− ε1 − ε2

)2
(

∑
yn ,m1

PM1(m1)Pn
Y(y

n)1{m2 = f2( f1(xn), yn)}
)

(104)

=
4P̄M2(m2)

(1− ε1 − ε2)2 . (105)

Thus, combining (60) and (105), we have

D(PZ̃n M̃2
‖Pn

Z P̄M2)

= D(PZ̃n M̃2
‖PZ̃n P̄M̃2

) + EPZ̃n M̃2

[
log

PZ̃n(Z̃n)P̄M̃2
(M̃2)

Pn
Z(Z̃n)P̄M2(M̃2)

]
(106)

≤ D(PZ̃n M̃2
‖PZ̃n P̄M̃2

) + EPZ̃n M̃2

[
log

2Pn
Z(Z̃n)

1−ε1−ε2

4P̄M2 (M̃2)

(1−ε1−ε2)2

Pn
Z(Z̃n)P̄M2(M̃2)

]
(107)

= D(PZ̃n M̃2
‖PZ̃n P̄M̃2

) + 3 log
2

1− ε1 − ε2
. (108)
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Therefore, combining (102) and (108), we have

− log η2 ≤ D(PZ̃n M̃2
‖PZ̃n P̄M̃2

) + Ψ(n, ε1, ε2)− log
1− ε1 − ε2

1 + 3ε2 − ε1
− 3 log

1− ε1 − ε2

2
. (109)

4.5. Step 3: Analyses of Communication Constraints and Single-Letterization Steps

For any (n, N1, N2)-code, since M̃i ∈ Mi for i ∈ {1, 2}, we have that

log N1 ≥ H(M̃1) ≥ I(M̃1; X̃n, Ỹn), (110)

log N2 ≥ H(M̃2) ≥ I(M̃2; Ỹn). (111)

Furthermore, from the problem setting (see (64)), we have

I(M̃1; Ỹn|X̃n) = 0, (112)

For subsequent analyses, given any (b, c, d, γ) ∈ R4
+, define

R(n)
b,c,d,γ := −I(M̃1; Ỹn) + bI(M̃1; X̃n, Ỹn)− cD(PZ̃n M̃2

‖PZ̃n P̄M̃2
) + dI(M̃2; Ỹn) + γI(M̃1; Ỹn|X̃n)

+ (b + d + γ)D(PX̃nỸn‖PXnYn ). (113)

Combining the results in (63), (79), (109) to (112), for any γ ∈ R+, we obtain

log β2 + b log N1 + c log η2 + d log N2 + cΨ(n, ε1, ε2)

≥ R(n)
b,c,d,γ + log

1− ε1 − ε2

1 + 3ε2 − ε1
+ (b + d + γ + 5) log

1− ε1 − ε2

2
. (114)

The proof of Theorem 2 is complete by the two following lemmas which provide a single-letterized
lower bound for R(n)

b,c,d,γ and relate the derived lower bound to Rb,c,d. For this purpose, recalling the
definition of θn in (51), we define the following set of joint distributions

Q1 :=
{

QXYZUV ∈ P(X ×Y ×Z × U × V) :

QZ|Y = PZ|Y, X−Y− Z, V −Y− Z,

|QY(y)− PY(y)| ≤ θnPY(y), ∀y ∈ Y
}

. (115)

Given QXYZUV ∈ Q1, define

∆b,d,γ(QXYZUV) := (b + γ)D(QXY‖PXY) + dD(QY‖PY) + γIQ(U; Y|X). (116)

Recall the definition of Rb,c,d(QXYZUV) in (28). Define

Rb,c,d,γ := min
QXYZUV∈Q1

(
Rb,c,d(QXYZUV) + ∆b,d,γ(QXYZUV)

)
. (117)

The following lemma presents a single-letterized lower bound for R(n)
b,c,d,γ.

Lemma 1. For any (b, c, d, γ) ∈ R4
+,

R(n)
b,c,d,γ ≥ nRb,c,d,γ. (118)

The proof of Lemma 1 is inspired by ([13] (Prop. 2)) and provided in Appendix B.
Combining the results in (114) and Lemma 1, we obtain the desired result and this completes the

proof of Theorem 2.
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Lemma 2. Choosing γ =
√

n, we have

nRb,c,d,γ + log
1− ε1 − ε2

1 + 3ε2 − ε1
+ (b + d + γ + 5) log

1− ε1 − ε2

2
≥ nRb,c,d + Θ(n3/4 log n). (119)

The proof of Lemma 2 is inspired by ([19] (Lemma C.2)) and provided in Appendix C.

5. Discussion and Future Work

We strengthened the result in ([11] (Corollary 1)) by deriving a strong converse theorem for
hypothesis testing against independence over a two-hop network with communication constraints
(see Figure 1). In our proof, we combined two recently proposed strong converse techniques [12,13].
The apparent necessity of doing so comes from the Markovian requirement in the source distribution
(recall (1)) and is reflected in the construction of a truncated distribution in (56) to ensure the Markovian
structure of the source sequences is preserved. Subsequently, due to this constraint, the application
the strong converse technique by Tyagi and Watanabe in [13] was only amenable in analyzing the
type-II error exponent at the relay. On the other hand, to analyze the type-II error exponent at the
receiver, we need to carefully adapt the strong converse technique based on reverse hypercontractivity
by Liu, van Handel and Verdú in [12]. Furthermore, to complete the proof, we carefully combine the
single-letterization techniques in [12,13].

Another important take-home message is the techniques (or a subset of the techniques) used in
this paper can be applied to strengthen the results of other multiterminal hypothesis testing against
independence problems. If the source distribution has no Markov structure, it is usually the case that
one can directly apply the technique by Tyagi and Watanabe [13] to obtain strong converse theorems.
Such examples include [7–9]. On the other hand, if the source sequences admit Markovian structure,
then it appears necessary to combine techniques in [12,13] to obtain strong converse theorems, just as
it was done in this paper.

Finally, we discuss some avenues for future research. In this paper, we only derived the strong
converse but not a second-order converse result as was done in ([12] (Section 4.4)) for the problem of
hypothesis testing against independence with a communication constraint [1]. Thus, in the future, one
may refine the proof in the current paper by deriving second-order converse or exact second-order
asymptotics. Furthermore, one may also consider deriving strong converse theorems or simplifying
existing strong converse proofs for hypothesis testing problems with both communication and privacy
constraints such as that in [23] by using the techniques in the current paper. It is also interesting to
explore whether current techniques can be applied to obtain strong converse theorems for hypothesis
testing with zero-rate compression problems [3].
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Appendix A. Achievability Proof of Proposition 1

Fix any joint distribution QXYZU1U2V ∈ Q2. Let ( f ′1, g′1) be an encoder-decoder pair with rate
R1 = IQ(U1; X) for the hypothesis testing with communication constraint problem [1] (i.e., no receiver
in Figure 1) such that the type-II error probability decays exponentially fast at speed no smaller than
E1 = IQ(U1; Y) and the type-I error probability is vanishing, i.e., log N′1 ≤ nR1, β′2 ≤ exp(−nE1) and
β′1 ≤ ε′1 for any ε′1 > 0. Furthermore, let ( f ′′1 , f ′′2 , g′′1 , g′′2 ) be a tuple of encoders and decoders with rates
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(R1, R2) = (IQ(U2; X), IQ(V; Y)) for the problem in Figure 1 such that the type-II error probability at
the receiver decays exponentially fast at speed no smaller E2 = IQ(V; Z) and type-I error probability
at the receiver is vanishing, i.e., log N′′1 ≤ nR1, log N′′2 ≤ nR2, η′′2 ≤ exp(−nE2) and η′′1 ≤ ε′2 for any
ε′2 > 0. Such tuples of encoders and decoders exist as proved in [1,11]. Furthermore, letA′1 ⊆ X n ×Yn

be the acceptance region associated with ( f ′1, g′1) at the relay and let A′2 ⊆ X n × Yn × Zn be the
acceptance region associated with ( f ′′1 , f ′′2 , g′′1 , g′′2 ) at the receiver.

Now, let us partition the source space X n into two disjoint sets X n
1 and X n

2 such that X n
1 ∪ X n

2 =

X n, Pn
X(X n

1 ) > 1− ε1 and Pn
X(X n

2 ) > 1− ε2. We construct an (n, N1, N2)-code as follows. Given a
source sequence Xn, if Xn ∈ X n

1 , then encoder f ′1 is used; and if otherwise, the encoder f ′′1 is used.
Furthermore, an additional bit indicating whether Xn ∈ X n

1 is also sent to the relay and further
forwarded to the receiver by the relay. Given encoded index M1, if Xn ∈ X n

1 , the relay uses decoder g′1
to make the decision; otherwise, if Xn ∈ X n

2 , the relay declares hypothesis H1 to be true. Furthermore,
in both cases, the relay transmits an index M2 using encoder f ′′2 . Given the index M2, if Xn ∈ X n

1 , the
receiver declares hypothesis H1 to be true; otherwise, the receiver uses decoder g′′2 to make the decision.

The performance of the constructed (n, N1, N2)-code is as follows. In terms of rates, we have

log N1 ≤ nR1 + 1, (A1)

log N2 ≤ nR2 + 1. (A2)

The type-I error probability at the relay satisfies that

1− β1 = Pn
XY{A′1 ∩ (X n

1 ×Yn)} (A3)

≥ Pn
X{X n

1 } − Pn
XY{(A′1)c} (A4)

≥ 1− ε1, (A5)

where (A5) follows when n is sufficiently large and thus ε′1 can be made arbitrarily close to zero.
Furthermore, the type-II error probability at the relay can be upper bounded as follows

β2 = Pn
XPn

Y{A′1 ∩ (X n
1 ×Yn)} (A6)

≤ Pn
XPn

Y{A′1} (A7)

= β′2 (A8)

≤ exp(−nE′1). (A9)

Similarly, for n sufficiently large, the error probabilities at the receiver can be upper bounded as follows

η1 = 1− Pn
XYZ{A′′2 ∩ (X n

2 ×Yn ×Zn)} (A10)

≤ 1− Pn
X(X n

2 ) + Pn
XYZ

(
(A′2)c) (A11)

≤ ε2, (A12)

and

η2 = Pn
XPn

Y Pn
Z{A′′2 ∩ (X n

2 ×Yn ×Zn)} (A13)

≤ Pn
XPn

Y Pn
Z{A′′2 } (A14)

≤ exp(−nE′′2 ). (A15)

The achievability proof of Proposition 1 is now complete.
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Appendix B. Proof of Lemma 1

Recall the definition of distribution P̄M̃2
(see (103)). Noting that PM̃2

is the marginal distribution
induced by PX̃nỸn Z̃n M̃1 M̃2

(see (64)), we have that for any m̃2 ∈ M2

PM̃2
(m̃2) = ∑

yn ,m1

PỸn M̃1
(yn, m1)1{m̃2 = f2(m1, yn)}. (A16)

Thus, applying the data processing inequality for the relative entropy, we have that

I(M̃1; Ỹn) = D(PỸn M̃1
‖PỸn PM̃1

) (A17)

≥ D(PM̃2
‖P̄M̃2

). (A18)

Using (A18) and following similar steps to the proof of weak converse in ([11] (Equationation (186))),
we obtain

D(PZ̃n M̃2
‖PZ̃n P̄M̃2

) = I(M̃2; Z̃n) + D(PM̃2
‖P̄M̃2

) (A19)

≤ I(M̃2; Z̃n) + I(M̃1; Ỹn). (A20)

Using (A20) and the definition of R(n)
b,c,d,γ in (113), we have the following lower bound for R(n)

b,c,d,γ

R(n)
b,c,d,γ ≥ −I(M̃1; Ỹn) + b

(
D(PX̃nỸn‖PXnYn) + H(X̃n, Ỹn)− H(X̃n, Ỹn|M̃1)

)
− c
(

I(M̃2; Zn) + I(M̃1; Ỹn)
)
+ d
(

D(PX̃nỸn‖PXnYn) + H(Ỹn)− h(Ỹn|M̃2)
)

+ γ
(

D(PX̃nỸn‖PXnYn) + H(Ỹn|X̃n)− H(Ỹn|X̃n, M̃1)
)
. (A21)

The rest of the proof concerns single-letterizing each term in (A21). For this purpose, for each j ∈ [n],
we define two auxiliary random variables Uj := (M̃1, X̃ j−1, Ỹ j−1) and Vj := (M̃2, Ỹ j−1) and let J be
a random variable which is distributed uniformly over the set [n] and is independent of all other
random variables.

Using standard single-letterization techniques as in [21], we obtain

I(M̃1; Ỹn) = ∑
j∈[n]

I(M̃1; Ỹj|Ỹ j−1) (A22)

≤ ∑
j∈[n]

I(M̃1, Ỹ j−1; Ỹj) (A23)

≤ ∑
j∈[n]

I(M̃1, X̃ j−1, Ỹ j−1; Ỹj) (A24)

= nI(UJ , J; ỸJ), (A25)

and

H(X̃n, Ỹn|M̃1) = nH(X̃J , ỸJ |UJ , J). (A26)
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Furthermore, analogous to ([13] (Prop. 1)), we obtain that

H(X̃n, Ỹn) + D(PX̃nỸn‖Pn
XY) = ∑

xn ,yn
PX̃nỸn(xn, yn) log

1
Pn

XY(xn, yn)
(A27)

= ∑
xn ,yn

PX̃nỸn(xn, yn) ∑
j∈[n]

log
1

PXY(xj, yj)
(A28)

= ∑
j∈[n]

PX̃jỸj
(xj, yj) log

1
PXY(xj, yj)

(A29)

= n
(

H(X̃J , ỸJ) + D(PX̃JYJ
‖PXY)

)
. (A30)

Subsequently, we can single-letterize I(M̃2; Z̃n) as follows:

I(M̃2; Z̃n) = ∑
j∈[n]

I(M̃2; Z̃j|Z̃j−1) (A31)

≤ ∑
j∈[n]

I(M̃2, Z̃j−1, Ỹ j−1; Z̃j) (A32)

= ∑
j∈[n]

I(M̃2, Ỹ j−1; Z̃j) (A33)

= nI(VJ , J; Z̃J), (A34)

where (A33) follows from the Markov chain Z̃j−1 − M̃2Ỹ j−1 − Z̃j implied by the joint distribution
of (X̃n, Ỹn, Z̃n, M̃1, M̃2) in (64). Furthermore, using similar proof techniques to ([13] (Prop. 1)) and
standard single-letterization techniques (e.g., in [4] or [21]), we obtain that

H(Ỹn|X̃n) + D(PX̃nỸn‖Pn
XY) ≥ n

(
H(ỸJ |X̃J) + D(PX̃JỸJ

‖PXY)
)
, (A35)

H(Ỹn) + D(PX̃nỸn‖Pn
XY) ≥ n

(
H(ỸJ) + D(PYJ‖PY)

)
, (A36)

H(Ỹn|M̃2) = nH(ỸJ |VJ , J), (A37)

H(Ỹn|M̃1, X̃n) ≤ nH(ỸJ |XJ , UJ , J). (A38)

Let U := (UJ , J), V := (VJ , J), X′ := X̃J , Y′ := ỸJ and Z′ := Z̃J . Using the joint distribution
PX̃nỸn Z̃n M̃1 M̃2

in (64), we conclude that the joint distribution of random variables (X′, Y′, Z′, U, V),
denoted by QX′Y′Z′UV , belongs to the set Q1 defined in (115). The proof of Lemma 1 is complete by
combining (A21) to (A38) and noting that IQ(X′, Y′; U) ≥ IQ(X′; U).

Appendix C. Proof of Lemma 2

Given any γ ∈ R+, let Q(γ)
XYZUV achieve the minimum in (117). Recall the definition of θn in (51)

and define a new alphabet Ṽ := V ∪ {v∗}. We then define a joint distribution P(γ)

YṼ by specifying the
following (conditional) marginal distributions

P(γ)

Ṽ (v) :=
1

1 + θn
Q(γ)

V (v)1{v 6= v∗}+ θn

1 + θn
1{v = v∗}, (A39)

P(γ)

Y|Ṽ(y|v) := Q(γ)
Y|V(y|v)1{v 6= v∗}+

(
1 + θn

θn
PY(y)−

1
θn

Q(γ)
Y (y)

)
1{v = v∗}. (A40)
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Thus, the induced marginal distribution P(γ)
Y satisfies

P(γ)
Y (y) = ∑

v∈Ṽ
P(γ)

Ṽ (v)P(γ)

Y|Ṽ(y|v) (A41)

=

(
∑

v∈V

1
1 + θn

Q(γ)
V (v)Q(γ)

Y|V(y|v)
)
+

(
PY(y)−

1
1 + θn

Q(γ)
Y (y)

)
(A42)

= PY(y). (A43)

Furthermore, let P(γ)

Ṽ|Y be induced by P(γ)

YṼ and define the following distribution

P(γ)

XYZUṼ = PXYZQ(γ)
U|XP(γ)

Ṽ|Y. (A44)

Recall the definition of Rb,c,d(·) in (28). The following lemma lower bounds the difference between

Rb,c,d(Q
(γ)
XYZUV) and Rb,c,d(P(γ)

XYZUṼ) and is critical in the proof of Lemma 2.

Lemma A1. When γ =
√

n, we have

Rb,c,d(Q
(γ)
XYZUV)− Rb,c,d(P(γ)

XYZUṼ) ≥ Θ
(

log n
n1/4

)
. (A45)

The proof of Lemma A1 is deferred to Appendix D.
Now, using the assumption that Q(γ)

XYZUV is a minimizer for Rb,c,d,γ in (117), the fact that

∆b,d,γ(Q
(γ)
XYZUV) ≥ 0 (see (116)) and the result in (A45), we conclude that when γ =

√
n,

Rb,c,d,γ = Rb,c,d(Q
(γ)
XYZUV) + ∆b,d,γ(Q

(γ)
XYZUV) (A46)

≥ Rb,c,d(P(γ)

XYZUṼ) + Θ
(

log n
n1/4

)
(A47)

≥ Rb,c,d + Θ
(

log n
n1/4

)
, (A48)

where (A48) follows from the definition of Rb,c,d in (29) and the fact that P(γ)

XYZUṼ ∈ Q (see (24)).
The proof of Lemma 2 is complete by using (A48) and noting that when γ =

√
n,

log
1− ε1 − ε2

1 + 3ε2 − ε1
+ (b + d + γ + 5) log

1− ε1 − ε2

2
= Θ(

√
n). (A49)

Appendix D. Proof of Lemma A1

In subsequent analyses, all distributions indicated by P(γ) are induced by P(γ)

XYZUṼ . We have

D(Q(γ)
XYU‖P

(γ)
XYU) = D(Q(γ)

XY‖P
(γ)
XY ) + IQ(γ)(U; Y|X). (A50)

Recalling the definitions of Rb,c,d in (29) and Rb,c,d,γ in (117), we conclude that for any γ ∈ R+,

Rb,c,d,γ ≤ Rb,c,d ≤ b log |X |+ d log |Y| =: a′. (A51)
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Using the definition of ∆b,d,γ(QXYZUV) in (116) and recalling that Q(γ)
XYZUV is a minimizer for Rb,c,d,γ,

we have

γD(Q(γ)
XYU‖P

(γ)
XYU) ≤ ∆b,d,γ(Q

(γ)
XYZUV) (A52)

= Rb,c,d,γ − Rb,c,d(Q
(γ)
XYZUV) (A53)

≤ a′ + (c + 1) log |Y|+ c log |Z| =: a. (A54)

We can now upper bound IPγ(Ṽ; Y) as follows:

IP(γ) (Ṽ; Y) = D(P(γ)

Y|Ṽ‖P
(γ)
Y |P

(γ)

Ṽ
) (A55)

= D(P(γ)

Y|Ṽ‖PY |P
(γ)

Ṽ
) (A56)

=
1

1 + θn
D(Q(γ)

Y|V‖PY |Q
(γ)
V ) +

θn

1 + θn
D
(

1 + θn

θn
PY −

1
θn

Q(γ)
Y

∥∥∥∥PY

)
(A57)

=
1

1 + θn

(
D(Q(γ)

Y|V‖Q
(γ)
Y |Q

(γ)
V ) + D(Q(γ)

Y ‖PY)
)
+

θn

1 + θn
D
(

1 + θn

θn
PY −

1
θn

Q(γ)
Y

∥∥∥∥PY

)
(A58)

≤ 1
1 + θn

IQ(γ) (V; Y) +
1

1 + θn

a
γ
+

θn

1 + θn
log µ, (A59)

where (A56) follows from (A43), and (A59) follows from the result in (A54), the fact that D(Q(γ)
Y ‖PY) ≤

D(Q(γ)
XYU‖P

(γ)
XYU) and the definition of µ in (50). Thus, when γ =

√
n, recalling the definition of θn in

(51), we have

IQ(γ)(V; Y) ≥ IP(γ)(Ṽ; Y)− a
γ
− θn log µ (A60)

= IP(γ)(Ṽ; Y) + Θ
(

1√
n

)
. (A61)

Similar to (A59), we obtain

IP(γ)(Ṽ; Z)

= D(P(γ)

Z|Ṽ‖P
(γ)
Z |P

(γ)

Ṽ ) (A62)

= D(P(γ)

Z|Ṽ‖PZ|P
(γ)

Ṽ ) (A63)

=
1

1 + θn
D(Q(γ)

Z|V‖PZ|Q
(γ)
V ) +

θn

1 + θn
D
(

1 + θn

θn
PZ −

1
θn

Q(γ)
Z

∥∥∥∥PZ

)
(A64)

=
1

1 + θn

(
D(Q(γ)

Z|V‖Q
(γ)
Z |Q

(γ)
V ) + D(Q(γ)

Z ‖PZ)
)
+

θn

1 + θn
D
(

1 + θn

θn
PZ −

1
θn

Q(γ)
Z

∥∥∥∥PZ

)
(A65)

≥ 1
1 + θn

IQ(γ)(V; Z), (A66)

where (A64) follows since Q(γ) ∈ Q1 (see (115)) implies that Q(γ)
Z|Y = PZ|Y and the Markov chains

Z−Y− X and V −Y− Z holds and thus using (A39) to (A40), we have

P(γ)

Z|Ṽ(z|v) =
∑y PZ|Y(z|y)PṼ(v)PY|Ṽ(y|v)

PṼ(v)
(A67)

=
∑y Q(γ)

Z|Y(z|y)Q
(γ)
V (v)Q(γ)

Y|V(y|v)

Q(γ)
V (v)

(A68)

= Q(γ)
Z|V(z|v), (A69)
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and

P(γ)

Z|Ṽ(z|v
∗) =

∑y PZ|Y(z|y)PṼ(v
∗)PY|Ṽ(y|v∗)

PṼ(v∗)
(A70)

= ∑
y

Q(γ)
Z|Y(z|y)

(1 + θn

θn
PY(y)−

1
θn

Q(γ)
Y (y)

)
(A71)

=
1 + θn

θn
PZ(z)−

1
θn

Q(γ)
Z (z), (A72)

Therefore, we have

IQ(γ)(V; Z) ≤ (1 + θn)IP(γ)(Ṽ; Z) (A73)

≤ IP(γ)(Ṽ; Z) + θn log |Z| (A74)

= IP(γ)(Ṽ; Z) + Θ
(

1√
n

)
. (A75)

Let ‖P−Q‖ be the `1 norm between P and Q regarded as vectors. Using Pinsker’s inequality, the
result in (105), and the data processing inequality for the relative entropy [17], we obtain

‖Q(γ)
UX − P(γ)

UX‖ ≤
√

2 log 2 · D(Q(γ)
UX‖P

(γ)
UX) (A76)

≤
√

2 log 2 · D(Q(γ)
XYU‖P

(γ)
XYU) (A77)

≤

√
2a log 2

γ
. (A78)

From the support lemma ([21] (Appendix C)), we conclude that the cardinality of U can be upper
bounded by a function depending only on |X |, |Y| and |Z| (these alphabets are all finite). Thus, when
γ =
√

n, invoking ([4] (Lemma 2.2.7)), we have

|H(Q(γ)
UX)− H(P(γ)

UX)| ≤

√
2a log 2

γ
log
|U ||X |√

2a log 2
γ

= Θ
(

log n
n1/4

)
. (A79)

Similar to (A79), we have

|IQ(γ)(U; X)− IP(γ)(U; X)| ≤ Θ
(

log n
n1/4

)
, (A80)

|IQ(γ)(U; Y)− IP(γ)(U; Y)| ≤ Θ
(

log n
n1/4

)
. (A81)

Combining (A61), (A75), (A80) and (A81), when γ =
√

n, using the definition of Rb,c,d(·) in (28),
we have

Rb,c,d(Q
(γ)
XYZUV)

≥ −(c + 1)IQ(γ)(U; Y) + bIQ(γ)(U; X)− cIQ(γ)(V; Z) + dIQ(γ)
(V; Y) (A82)

≥ −(c + 1)IP(γ)(U; Y) + bIP(γ)(U; X)− cIP(γ)(Ṽ; Z) + dIP(γ)(Ṽ; Y) + Θ
(

log n
n1/4

)
(A83)

= Rb,c,d(P(γ)

XYZUṼ) + Θ
(

log n
n1/4

)
. (A84)

The proof of Lemma A1 is now complete.
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