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Oto Haffner *, Erik Kučera , Peter Drahoš and Ján Cigánek

Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava,
841 04 Bratislava, Slovakia; erik.kucera@stuba.sk (E.K.); peter.drahos@stuba.sk (P.D.); jan.ciganek@stuba.sk (J.C.)
* Correspondence: oto.haffner@stuba.sk

Received: 24 October 2019; Accepted: 26 November 2019; Published: 28 November 2019 ����������
�������

Abstract: In this paper, a methodology based on weld segmentation using entropy and evaluation by
conventional and convolution neural networks to evaluate quality of welds is developed. Compared
to conventional neural networks, there is no use of image preprocessing (weld segmentation
based on entropy) or data representation for the convolution neural networks in our experiments.
The experiments are performed on 6422 weld image samples and the performance results of both
types of neural network are compared to the conventional methods. In all experiments, neural
networks implemented and trained using the proposed approach delivered excellent results with a
success rate of nearly 100%. The best results were achieved using convolution neural networks which
provided excellent results and with almost no pre-processing of image data required.

Keywords: weld segmentation; local entropy filter; weld evaluation; convolution neural network;
image entropy; Python; Keras; RSNNS; MXNet

1. Introduction

The Fourth Industrial Revolution (Industry 4.0) has opened space for research and development
of new manufacturing methods, systems and equipment based on innovations such as computing
intelligence, autonomous robots, big data, augmented reality, process simulation, quality management
systems, etc. [1].

Weld evaluation is very important quality control process in many manufacturing processes.
Without this technological process, it would be almost impossible to produce welded constructions
with current efficiency—whether we are talking about time, price, or material consumption. It is
therefore necessary to welds be inspected to meet the specified quality level. In order to detect the
possible presence of different weld defects, proper sensing, monitoring and inspection methods are
necessary for quality control. Very effective and non-destructive method for weld evaluation is visual
inspection. Inspection process using this method can be in certain level automated and done by
computer systems [2,3].

Visual inspection of a weld is an important non-destructive method for weld quality diagnostics
that enables to check welded joint and its various parameters. This examination is carried out as a first
examination and able to detect various defects [4].

In this paper, we focus on indirect visual evaluation due to which the evaluation process can be
automated. Indirect inspection can be applied also in places that are not directly accessible, for example
the inner surface of a pipeline, the interior of pressure vessels, car body cavities etc. It also eliminates
errors of human judgment and removes errors caused by workers for such reasons as e.g., fatigue,
inattention or lack of experience.

The improved beamlet transformation for weld toe detection described in [5,6] considers images
which are corrupted by noise. The authors aim at detecting edge borders of welds. The dynamic
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thresholding is performed in one of the beamlet algorithm steps. The algorithm predicts the directional
characteristics of the weld allows to filtrate unsuitable edges. Using this method, it is possible to
directly extract weld seam edges from highly noisy welding images without any pre-processing or
post-processing steps.

In [7], the authors work with pipeline weld images with a very low contrast and corrupted by
noise; this causes problems to conventional edge detectors. At first, the image is noise-filtered using
a morphological operation of opening and closing. Next, the improved algorithm of fuzzy edge
detection is applied. Multi-level fuzzy image improvement is based on interactive searching of optimal
threshold level and multi-directional edge detector which convolution kernel is 5 × 5 with 8 directions
based on gradient searching. The result of the algorithm is compared with detectors as Sobel, canny
FED and fast FED.

Edge detection and histogram projection are used in [8], where histogram projections of tested
welds are compared with a specified similarity threshold used to evaluate quality of the tested welds.
The loaded image pattern has the same specifications (width and position) as the tested image. Always
one vertical line from the pattern and the tested images is compared. Line histograms of pattern and
tested images are computed, the correlation degree of two histograms is computed using the Tukey
HSD difference. A lower correlation degree than the specified correlation threshold indicates edge
defects in this part of the examined image. The procedure is repeated over the entire width of image.

Evaluation of metal cans welds is dealt with in [9]. Can’s weld defects may not be directly related
to welding (they can be brought about by rest of glue, dust, etc.). Therefore, authors use probability
evaluation of two evaluation methods; the Column Gray-Level Accumulation Inspection represents
histogram projection in general. The histogram projections of the pattern and the tested weld are
compared. The comparison of first derivation for making better results is also performed. This method
can detect defects of wider surface. The overall evaluation is done using Dampster-Shafer theory
of evidence.

In another work [10], the above authors deal with edge detection based on pixel intensity difference
of the foreground and the background. The background pixels’ intensity occurs with a maximum
probability and the distribution of the background pixels fits the Gauss distribution.

The weld visual inspection process performed through image processing on the image sequence
to improve data accuracy is presented in [11]. The Convolution Neural Network (CNN) as an image
processing technique can determine the feature automatically to classify the variation of each weld
defect pattern. A classification using CNN consists of two stages: image extraction using image
convolution, and image classification using neural network. The proposed evaluation system has
obtained classification for four different types of weld defects with validation accuracy of 95.83%.

A technique for automatic endpoint detection of weld seam removal in a robotic abrasive belt
grinding process using a vision system based on deep learning is demonstrated in [12]. The paper
presents results of the first investigative stage of semantic segmentation of weld seam removal states
using encoder-decoder convolutional neural networks (EDCNN). The prediction system based on
semantic segmentation is able to monitor weld profile geometry evolution taking into account the
varying belt grinding parameters during machining which allows further process optimization.

Utilizing computing intelligent using support vector machine (SVM) is presented in [13,14].
Authors developed real-time monitoring system to automatically evaluate the welding quality during
high-power disk laser welding. Fifteen features were extracted from images of laser-induced metal
vapor during welding. To detect the optimal feature subset for SVM, a feature selection method based
on the SFFS algorithm was applied. An accuracy of 98.11% by 10-fold cross validation was achieved
for the SVM classifier generated by the ten selected features. The authors declare the method has the
potential to be applied in the real-time monitoring of high-power laser welding.

The authors of [15–18] deal with the development of a system for automatic weld evaluation using
new information technologies based on cloud computing and single-board computer in the context of
Industry 4.0. The proposed approach is based on using a visual system for weld recognition, and a
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neural network cloud computing for real-time weld evaluation, both implemented on a single-board
low-cost computer. The proposed evaluation system was successfully verified on welding samples
corresponding to a real welding process. The system considerably contributes to the weld diagnostics
in industrial processes of small- and medium-sized enterprises. In [18], the same authors use a
single-board computer able to communicate with an Android smartphone which is a very good
interface for a worker or his shift manager. The basic result of this paper is a proposal of a weld quality
evaluation system that consists of a single-board computer in combination with Android smartphone.

This paper deals with development of a software system for visual weld quality evaluation
based on weld segmentation using entropy and evaluation by conventional and convolution neural
networks. The evaluation of the performance results is compared to the conventional methods (weld
segmentation based on entropy and evaluation using conventional neural networks with and without
weld segmentation). Most experiments of proposed method apply on weld metal, however, one
experiment with convolution neural networks applies also on weld adjected zones. 6422 real and
adjusted laboratory samples of welds are used for experiments. The paper is organized in five sections:
Section 2 deals with preparation of input data for the neural network. Section 3 describes configuration
of used neural networks and their training process. In Section 4 the results of experiments are presented.
In Section 5 we discuss the results.

2. Preparation of Input Data for the Neural Network

The input data for the proposed diagnostic system were represented in the form of grayscale
laboratory samples of metal sheet welds in JPEG format. The samples were pre-classified as OK
(correct) and NOK (incorrect) (Figures 1 and 2). Defective weld samples (NOK) include samples of
various surface defects such as irregular weld bead, excess weld metal, craters, undercut, etc. Welds
images are captured under the same illumination and have the same resolution 263 × 300 pixels.
The total number of evaluated sample images was 6422.

However, for several reasons the image resolution 263× 300 pixels is not suitable for a conventional
neural network due to the necessity of large amount of allocated memory (about gigabytes for thousands
of frames even in a relatively low resolution) and time-consuming network training time.
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Several suitable options for data processing that eliminate the above problems are presented next.
At first, the background weld segmentation is described. Segmentation provides two outputs - the weld
mask and the segmented weld itself. Three transformations of the weld mask into a one-dimensional
feature vector are described further. Feature vectors are useful as inputs for the multilayer perceptron
(MLP)/radial basis function (RBF) neural networks. Finally, the size of the segmented/unsegmented
weld image is reduced when applied in the conventional neural network (if CNN is applied, no size
reduction is needed).

2.1. Weld Segmentation

The sample images depict the weld itself and the background—metal sheet. The background
does not affect the evaluation of the weld and is masked from the images by the proposed algorithm.
The simplified flowchart of the algorithm is shown in Figure 3.
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After reading the images, local entropy of each pixel is computed according to [19]:

K∑
i=1

K∑
j=1

pi j log2 pi j, (1)

where pi j represents the probability function for the pixel [i, j].
This value contains information about the complexity/unevenness around the pixel.

The neighbourhood radius was set to 8 pixels. To compute the entropy, the filters.rank.entropy
function from the Python library scikit-image was used. The resulting local entropy matrix effectively
finds the edges and texture complexity in the image. The results of filtering can be seen in Figure 4.

As the entropy resolution values were too detailed for our application, the blur filtering was
applied. The anisotropic blur filter from the imager library was implemented, which removes
noise/unimportant details while preserving edges better than other types of blur filters. The blur filter
with an amplitude of 250 was applied (Figure 5).
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The next step is thresholding. In the image matrix, the value 1 (white) represents weld pixels, the
value 0 (black) represents background. Thresholding was implemented using the function threshold
from the imager library. The optimal threshold value was computed automatically using the kmeans
method (Figure 6).
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The thresholding result may have some imperfections—small blobs and unfilled areas. Unfilled
areas are removed using the inverted output of the function bucketfill (imager library). It is applied on
the background of the weld and it finds all pixels of the background. The remaining the pixels are
filled with value 1 (white) (Figure 7a).
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Very small blobs were removed using the function clean (imager library). This function reduces
objects size using morphological erosion, and then increases it. This causes, that very small objects are
removed and the shape of larger object is simplified (Figure 7b).

However, larger blobs were not removed in the previous step. To find the largest object in the
image, the function split_connected (imager library) was used (Figure 8).



Entropy 2019, 21, 1168 7 of 29

Entropy 2019, 21, 1168 7 of 29 

 

 
Figure 8. Step 5 - Finding the largest object. 

  
(a) The resulting weld mask (b) The resulting segmented weld 

Figure 9. Results of segmentation. 

2.2. Vector of Sums of Subfields in the Mask 

The first representation of the mask is a vector which entries are sums of subfields. For input 
images of resolution 263 × 300 pixels, was selected a subfield of 50 × 50 pixels, which corresponds to 
36 values. The function for vector calculation is shown in the Algorithm 1. 

The function ceiling rounds a number to the next higher integer. Using division of the index 𝑖, 𝑗  by the size of the subfield, and subsequently the function ceiling, we obtained 𝑖𝑛𝑑𝐼/𝑖𝑛𝑑𝐽 for the 
selected index 𝑖/𝑗. The function as.vector retypes the resulting two-dimensional array into a vector 
by writing the matrix elements column-wise into a vector. Example of retyping can be understood 
from Figure 10 and Figure 11. 

Graphs for OK and NOK welds (Figure 12) can be compared in Figure 13: the OK mask graph 
has every third value (representing the subfields in the image center) maximal. Values of the NOK 
weld graph are distributed into more columns and the values do not achieve maximum values. The 
main drawback of this representation is that it can be used only for images with the same size. The 
benefit is a multiple reduction of input data (number of mask pixels in our case has been reduced 502-
times). 

Figure 8. Step 5—Finding the largest object.

The segmentation result—the mask and the masked weld can be seen in Figure 9.
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2.2. Vector of Sums of Subfields in the Mask

The first representation of the mask is a vector which entries are sums of subfields. For input
images of resolution 263 × 300 pixels, was selected a subfield of 50 × 50 pixels, which corresponds to
36 values. The function for vector calculation is shown in the Algorithm 1.

The function ceiling rounds a number to the next higher integer. Using division of the index
(i, j) by the size of the subfield, and subsequently the function ceiling, we obtained indI/indJ for the
selected index i/ j. The function as.vector retypes the resulting two-dimensional array into a vector by
writing the matrix elements column-wise into a vector. Example of retyping can be understood from
Figures 10 and 11.

Graphs for OK and NOK welds (Figure 12) can be compared in Figure 13: the OK mask graph has
every third value (representing the subfields in the image center) maximal. Values of the NOK weld
graph are distributed into more columns and the values do not achieve maximum values. The main
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drawback of this representation is that it can be used only for images with the same size. The benefit is
a multiple reduction of input data (number of mask pixels in our case has been reduced 502-times).

Algorithm 1. Computing of subfields sums of the mask

procedure MaskToSums(img, size)
xLen←length(img[ ,1])
yLen←length(img[1, ])
nRows← ceiling(xLen/size)
nCols← ceiling(yLen/size)
res←matrix(0, nRows, nCols)
for i in 1:xLen do

for j in 1:yLen do
if img[i,j] == TRUE then

indI← ceiling(i/size)
indJ← ceiling(j/size)
res[indI, indJ] ++

end if
end for

end for
return as.vector(res)

end procedure
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2.3. Histogram Projection of the Mask

A histogram projection is a vector containing sums of columns and rows of the input image matrix
(Figure 14). In the case of an image mask, these are amounts representing numbers of white pixels.
Thus, the length of the vector corresponds to the vector of the height and width of the image.

In the graphs (Figures 15 and 16) showing the histogram projection of the mask, the difference
between correct and wrong welds is visible. The projection of the correct weld mask is more even,
the sums by columns have an even increase and slope, and the sums per line have small variations.
On the other hand, the histogram projection of the wrong weld mask has a lot of irregularities.
The disadvantage of this representation consists in that it cannot be used for input images of different
resolutions. The resulting projection vector is much larger than other representations. The advantage
is easy implementation and calculation.
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2.4. Vector of Polar Coordinates of the Mask Boundary

A next representation of a weld mask in this paper is the vector of polar coordinates of the mask
boundary. To transform weld masks, an algorithm has been proposed and implemented. Its main
steps are described below.

The first step is to find the x, y coordinates of the mask boundary using the function boundary
(imager library). Then, coordinates of the center of the object [cx, cy] are calculated according to:

cx =
max(x) −min(x)

2
+ min(x), (2)

cy =
max(y) −min(y)

2
+ min(y), (3)

In the next step, the position of the object is normalized (the center is moved to the position [0, 0])
according to the found coordinates. Then, for each boundary point, the coordinates are converted
from Cartesian to polar [r,α] (i.e., distance from center, angle). According to the Pythagorean theorem,
the distance is calculated as follows:

r =
√

x2 + x2, (4)

Calculation of the angle is realized by Algorithm 2:

Algorithm 2. Calculation of angle from Cartesian coordinates

procedure Angle(x, y)
z← x + 1i * y
a← 90 - arg(z) / π * 180
return round(a mod 360)

end procedure
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If the resulting number of coordinates is less than 360, the missing angle values are completed
and the corresponding distances are calculated from the surrounding values by linear interpolation
using the na_approx function (zoo library). The result is a vector with 360 elements, which indices
correspond to the angle values in degrees, and the value is the distance r. The resulting graphs of OK
and NOK weld masks (Figure 17) are in Figures 18 and 19.
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The representation in the form of polar coordinates for the OK weld visibly differs from the
NOK one. The big jumps and variations on the graph are caused by large irregularities in the weld
shape. The advantage of such representation is that it can be used for any input mask resolution.
The disadvantage is a complicated calculation. Generally, mask representations contain information
only about the shape of the weld, which can be considered as a disadvantage because texture information
is important input data for the neural network.
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2.5. Data Preparation for Neural Network

Weld images and feature vectors were stored in two data structures of type list. The first list
represented welds classified as NOK (incorrect); the second list welds classified as OK (correct).
For neural networks, it was necessary to combine data, i.e., to transform and randomly mix them.
For MLP and RBF networks, each input vector has to have assigned a classification value 0 (incorrect)
or 1 (correct). Then, the vectors were merged together and with randomly mixed elements. Next,
the L2-normalization was applied to the data. Finally, 85% of training and 15% of test samples were
selected randomly. For convolution neural networks, the images were 5-times reduced, then the data
type was converted to a three-dimensional array data structure. In the arrays, the dimensions were
transposed to represent to correspond to the following structure: [number o f images ∗ length ∗ height].
The vector of zeros with the same length as the first dimension corresponded to the first array (array of
NOK welds). The vector of ones corresponded to the second array (array of OK welds). The arrays
and vectors were merged into a common list and their elements were mixed randomly. Then, 77% of
training samples, 15% of test samples and 8% of validation samples were selected.

3. Configuration and Training of Neural Networks

Several neural network architectures were configured for comparison and testing. Their parameters
were changed during the experiments and the experiment results were compared and evaluated.
Both RBF and MLP networks were configured in The Stuttgart Neural Network Simulator for R
language - RSNNS library, the MLP networks were configured in the Keras library, and the convolution
networks were configured in the Keras and the MXNet libraries.

3.1. RBF Network

To implement the RBF network, the RSNNS library was chosen (just in this one the RBF network
template is available). Three RBF networks were configured using the function rbf (RSNN library).
The set parameters were the number of units in the hidden layer and the number of epochs, the initial
parameters had default values. The best configurations were chosen experimentally. Configuration
details are in Figures 20–22.
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3.2. MLP Network

Experiments with training and testing of MLP networks showed, that a one-layer architecture
is sufficient for our data representation. The performance of the network was very good and the
difference from multiple hidden layers was negligible. To keep the objectivity, MLP networks had
the same configuration in both libraries. The sigmoid activation function and the randomize weights
initialization functions were used. For the NN training, the error backpropagation algorithm with
learning parameter 0,1 was used.

The implementation in the RSNNS library uses the mlp function for configuration and training.
Configuration details are in Figures 23–25.
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Figure 25. Settings for MLP network - for the polar coordinates vector.

The implementation of the MLP network in the Keras library required a detailed list of layers
in the code. Two layer_dense layers were used; the first one defines the hidden layer with the ReLU
activation function, and the second one defines the output layer with the size 2 (two output categories)
using the softmax activation function (Figure 26).
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3.3. Convolution Neural Network

For an objective comparison of the Keras and MXNet libraries, the same convolution network
architecture in both libraries was used at first, however in the MXNet library, training such a neural
network was too slow. Thus, we designed our own architecture with a better learning time performance.
The discussion about the results is provided in the next Section 4.

The architecture of the convolution network 1 is shown in Figure 27 and visualized in Figure 28.
The architecture includes a list of all layers and the size of output structures for both NN. Two pairs
of convolution and pooling layers were used, the convolution being applied twice before the first
pooling layer. The input image size was 56 × 60. The number of convolution filters was 32 at the
beginning, in further convolution filters it rose to 64. A dropout was used between some layers to
prevent overtraining of the neural network by deactivating a certain percentage of randomly selected
neurons. At the end, the flatten layer was used to convert the resulting structure into a one-dimensional
vector used as an input for a simple MLP network with one hidden layer containing 256 neurons.
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The architecture of the convolution network 2 is visualized in Figure 29. Two pairs of 
convolution and pooling layers were used, however in this case a double convolution occurs only in 
the second layer. There is also a difference in the design of the convolution, where the parameter 
stride (step of the filter) is 3,3. Dropout was used only in two places. 

Figure 27. Architecture of the convolution neural network 1.

Entropy 2019, 21, 1168 15 of 29 

 

 
Figure 27. Architecture of the convolution neural network 1. 

 
Figure 28. Architecture visualization of the convolution neural network 1. 

Parameters of individual layers are shown in the diagram in Figure 28. For example, the 
convolution layer (red) contains a list of 3 × 3 - filter size, 3 × 3 - stride, 32 - number of filters. 

The architecture of the convolution network 2 is visualized in Figure 29. Two pairs of 
convolution and pooling layers were used, however in this case a double convolution occurs only in 
the second layer. There is also a difference in the design of the convolution, where the parameter 
stride (step of the filter) is 3,3. Dropout was used only in two places. 

Figure 28. Architecture visualization of the convolution neural network 1.

Parameters of individual layers are shown in the diagram in Figure 28. For example, the
convolution layer (red) contains a list of 3 × 3 - filter size, 3 × 3 - stride, 32 - number of filters.

The architecture of the convolution network 2 is visualized in Figure 29. Two pairs of convolution
and pooling layers were used, however in this case a double convolution occurs only in the second
layer. There is also a difference in the design of the convolution, where the parameter stride (step of
the filter) is 3,3. Dropout was used only in two places.
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4. Results 
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4. Results

This chapter presents results of code profiling, weld segmentation and evaluation of
neural networks.

4.1. Code Profiling

Profiling was done using the profvis library at the level of the code line. The output is an interactive
visualization using memory listing in MB and computing time in ms for each code line. The example
can be seen in Figure 30.
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Profiling was performed on a desktop computer with parameters listed in Table 1 (the graphic
card was not used).

Table 1. Technical specifications of PC.

Operating System Windows 7 Professional 64-bit

Processor Intel Core i7-2600 CPU @ 3,40 GHz

Memory 16 GB DDR3

Disc Samsung SSD 850 EVO 500 GB

4.2. Results of Data Preparation and Segmentation

Segmentation was successful for all tested weld samples. For some NOK defective welds which
consisted of several parts or contained droplets, only the largest continuous weld surface was segmented,
which was considered to be a correct segmentation for proposed methodology. Segmentation examples
are shown in Figure 31.
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Figure 31. Examples of weld segmentation results (a–p).

The segmentation time is an important indicator in comparison of results. Results of profiling
different parts of the segmentation process can be seen in Figure 32. Code profiling was carried out
using a computer with the technical specification shown in Table 1.
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Figure 32. Results of segmentation process profiling.

Segmentation was performed by concatenating the outputs from functions load.image, grayscale,
entropyFilter, createMask, and segmentWeld. Almost all functions in this section of the program were
performed very quickly (within 30 ms) except for the entropyFilter function, which took an average of
158 ms to be completed. This function is the most important part of the segmentation algorithm; the
time was acceptable. The average time to complete the whole segmentation was 194 ms. The average
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amount of memory allocated was 74.76 MB. For MLP and RBF networks, the next step was to transform
masks into feature vectors. The profiling results of functions performing three types of transformations
can be seen in Figure 33.
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The results show that these functions are optimal, taking up minimal memory and time. The mean
values for computing the vector of sums of subfields in the mask are 16 ms and 0.1 MB; for the
histogram projection vector, it is less than 10 ms and less than 0.1 MB (estimation of profiling tool,
real values are immeasurably small). Values for the polar coordinates vector are 18 ms and 7.56 MB.
Presented results are also shown in Table 2.

Table 2. Algorithms results for transform masks into feature vectors.

Data Interpretation Time [ms] Memory [MB]

the vector of sums of subfields in the mask 16 0.1

histogram projection vector 10 0.1

polar coordinates vector 18 7.56

4.3. Criteria for Evaluation of Neural Network Results

As the main criterion for results evaluation the confusion matrix was chosen. The main diagonal of
the confusion matrix contains the numbers of correctly classified samples, the antidiagonal contains the
numbers of incorrectly classified samples; the smaller values in the antidiagonal, the more successful
the prediction model. In a binary classification this matrix contains four values (Figure 34): TP—true
positive; FP—false positive; FN—false negative; TN—true negative.
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The accuracy was computed from the confusion matrix and is expressed as the ratio of correctly
classified samples to all samples, see Equation (5) [20].

Accuracy =

∑
TP +

∑
TN∑

all samples
, (5)

Accuracy is an objective criterion only if the FN and FP values are similar.
A more objective criterion for comparing results is the F-score. The F-score is calculated as the

harmonic average of the precision and the recall (sensitivity) values [20], the best score corresponds to
F-score = 1:

Precision =

∑
TP∑

TP +
∑

FP
, (6)

Recall =
∑

TP∑
TP +

∑
FN

, (7)

F− score =
2 ∗Recall ∗ Precision∑

TP +
∑

FN Recall + Precision
, (8)

To visualize the success of neural network classification, the ROC (Receiver operating
characteristics) curve was chosen. It shows the recall (sensitivity) value depending on the value
1-specificity at the variable threshold [20] (Figure 35):

Speci f icity =

∑
TN∑

TN +
∑

FP
, (9)
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4.4. Results of Neural Network Classificaton

We configured and tested neural networks for all data representations (in total 15 experiments).
For a better clarity, the experiments results are labelled using labels from Table 3.

Table 3. Labels of neural network experiment.

Test Label Network Type Library Data Format

rbf-rsn-sum01 RBF RSNNS Subfields sum
rbf-rsn-hpr02 RBF RSNNS Histogram projection
rbf-rsn-pol03 RBF RSNNS Polar coordinates

mlp-rsn-sum04 MLP RSNNS Subfields sum
mlp-rsn-hpr05 MLP RSNNS Histogram projection
mlp-rsn-pol06 MLP RSNNS Polar coordinates

mlp-ker-sum07 MLP Keras Subfields sum
mlp-ker-hpr08 MLP Keras Histogram projection
mlp-ker-pol09 MLP Keras Polar coordinates

cnn-ker-ori10 CNN 1 Keras Original
cnn-ker-seg11 CNN 1 Keras Segmented

cnn-mxn-ori12 CNN 1 MXNet Original
cnn-mxn-seg13 CNN 1 MXNet Segmented

cnn-mxn-ori14 CNN 2 MXNet Original
cnn-mxn-seg15 CNN 2 MXNet Segmented

The first tests were carried out for RBF and MLP networks with input data formats according to
Table 3. Resulting confusion matrices for RBF networks are as follows:

rb f − rsn− sum01 =

[
502 14
15 433

]
,

rb f − rsn− hpr02 =

[
434 0
83 447

]
,

rb f − rsn− pol03 =

[
435 0
82 447

]
,

(10)

From the matrices (10) it is evident that the RBF network performed bad when classifying NOK
welds—they are often classified as OK. ROC curves of trained RBF networks are depicted in Figure 36.
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ROC curves for MLP networks are depicted Figure 37 and Resulting confusion matrices are as
follows:

mlp− rsn− sum04 =

[
516 1
1 446

]
,

mlp− rsn− hpr05 =

[
5017 0

0 447

]
,

mlp− rsn− pol06 =

[
514 1

3 446

]
,

(11)

mlp− ker− sum07 =

[
517 15
17 446

]
,

mlp− ker− hpr08 =

[
511 2
23 459

]
,

mlp− ker− pol09 =

[
522 13
12 448

]
,

(12)
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Figure 37. ROC curves for experiments with MLP networks.

The results show that the MLP implementation in the RSNNS library was more successful
compared with the Keras library. The networks had no problem to classify correct (OK) or incorrect
(NOK) welds. FP and FN values were approximately similar. The resulting calculated accuracy and
F-scores shown in Table 4 describe the performance of the trained neural networks.

Table 4. Accuracy a F-score for RBF and MLP networks.

Test Label Accuracy F-Score

rbf-rsn-sum01 0.9699 0.9719
rbf-rsn-hpr02 0.9139 0.9127
rbf-rsn-pol03 0.9149 0.9139

mlp-rsn-sum04 0.9979 0.9981
mlp-rsn-hpr05 1.0000 1.0000
mlp-rsn-pol06 0.9959 0.9961

mlp-ker-sum07 0.9678 0.9700
mlp-ker-hpr08 0.9761 0.9761
mlp-ker-pol09 0.9766 0.9766
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The results show that MLP networks are much more successful. Using default RBF initialization
weights the RBF network less successful. From a practical point of view, MLP networks are more
suitable for weld evaluation.

It was hard to compare the results for MLP networks, they provided similar results for all data
representations. The RBF network achieved significantly better results in the vector of sums of subfields
in the mask data representation.

It was found out, that using the same network configuration in the two libraries yields slightly
different results. The implementation in the RSNNS library was almost 100% successful and therefore
it was considered as the best candidate for practical use.

Training profiling for RSNN library was done next. Although training in the Keras library
allocated less memory, the training time was several times longer than in case of the RSNNS library.
Using vector of sums of subfields in the mask, the MLP network training time in RSNNS took less than
one second, while using the Keras library was tens of seconds. The list of training profiling results is
shown in Table 5.

Table 5. Profiling of RBF and MLP networks training.

Test Label. Time [ms] Memory [MB]

rbf-rsn-sum01 6660 687.6
rbf-rsn-hpr02 42,530 775.6
rbf-rsn-pol03 32,080 752.3

mlp-rsn-sum04 850 769.8
mlp-rsn-hpr05 9890 653.7
mlp-rsn-pol06 17,270 672.0

mlp-ker-sum07 52,830 485.2
mlp-ker-hpr08 45,660 410.4
mlp-ker-pol09 46,420 401.9

Comparison of convolution neural nets was again based on the confusion matrices, ROC curves,
accuracy and F-scores. The input of the networks were just images of welds without any filtration and
masked welds without background (black background). Confusion matrices are as follows:

cnn− ker− ori10 =

[
534 1
0 460

]
,

cnn−mxn− ori12 =

[
559 8
1 431

]
,

cnn−mxn− ori14 =

[
498 0
0 460

]
,

(13)

cnn− ker− seg11 =

[
534 0
0 461

]
,

cnn−mxn− seg13 =

[
558 0
2 439

]
,

cnn−mxn− seg15 =

[
498 0
0 460

]
,

(14)

Classification error in convolution neural networks was minimal, therefore the ROC curve was
evaluated as ideal for all experiments with indistinguishable differences. For all neural nets, the ROC
curve was the same (Figure 38).

The resulting accuracy and F-scores along with the number of epochs needed to train the networks
are listed in Table 6.
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Table 6. Accuracy and F-scores for convolution neural network experiments.

Test Label Epochs Accuracy F-Score

cnn-ker-ori10 5 0.9990 0.9991
cnn-ker-seg11 4 1.0000 1.0000

cnn-mxn-ori12 6 0.9910 0.9920
cnn-mxn-seg13 3 0.9980 0.9982

cnn-mxn-ori14 4 1.0000 1.0000
cnn-mxn-seg15 4 1.0000 1.0000

For convolution networks, changes of accuracy after each epoch for both training (blue line) and
validation data (green line) are shown in Figure 39. The charts show that training with non-segmented
weld images started at a lower accuracy and the learning was slower (Figure 40).
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The progress of training for the Keras library was more uniform, without steps. The graphs can
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The success rate for all networks was higher than 99%. The decisive factor for comparison were
the code profiling results shown in Table 7.



Entropy 2019, 21, 1168 27 of 29

Table 7. Code profiling results for designed convolution neural networks.

Test Label Epochs Time [ms] Memory [MB]

cnn-ker-ori10 5 38,610 186.9
cnn-ker-seg11 4 30,660 180.0

cnn-mxn-ori12 6 119,630 4.7
cnn-mxn-seg13 3 82,580 2.6

cnn-mxn-ori14 4 12,170 157.9
cnn-mxn-seg15 4 11,850 3.7

It can be concluded, that the network with the architecture shown in Figure 29 in Section 3.3
implemented using the MXNet library was the fastest. With a training time 12.170 ms and a 100%
success also for non-segmented data it is considered the best choice for practical use.

Although the MLP network (mlp-rsn-sum04) was similarly successful and several times faster in
training, the preparation of the representation in the form of the vector of sums of subfields in the mask
took considerably more time. The number of training samples was approximately 5400, the average
time to obtain a mask of one sample was 164 ms, and the vector calculation was 16 ms, in total 972 ms.

4.5. Profiling Single Weld Diagnostics

In practice, neural network training is not a frequent process. Usually, the network is trained once
and then implemented for prediction. Therefore, at the end we decided to evaluate the prediction of one
weld for the most successful models. The provided results represent the average of five independent
tests. The list can be seen in Table 8 along with the average image preparation time and memory
required to prepare the weld input image for the specific diagnostic model.

Table 8. Profiling results for single weld diagnostics.

Test Label Image Time Preparation [ms] Diagnostic Time [ms] Memory [MB]

mlp-rsn-sum04 210 20 0.2
mlp-rsn-hpr05 194 240 3.0
mlp-rsn-pol06 198 105 1.8
cnn-mxn-ori14 14 14 0.5
cnn-mxn-seg15 194 4 0.5

The diagnostic profiling results confirmed that the best solution was the classification of the weld
using the convolution net with the architecture shown in Figure 29 in Section 3.3. The average image
loading time and its 5× reduction took only 14 ms on average, and evaluation time was 14 ms.

5. Discussion

The aim of this paper was to develop a neural network based methodology to evaluate quality of
welds. Several types of neural networks implemented in several software libraries were compared
with respect to performance. It was necessary to prepare the data (images of welds) into a format
suitable for neural network processing. For some types of networks (convolution) the input data
preparation was minimal (segmentation or no segmentation), while for other networks (MLP, RBF), a
sophisticated data preprocessing was required (filtering, equalizing and segmenting the image based
on entropy). Each library required its own input data format which also had to be taken into account
during programming. The main result of the paper is confirmation, that the convolutional neural
networks can be used for weld quality evaluation without using image preprocessing and in case of
using no segmentation, they can be used for evaluation not only weld metal but also adjected zones.

Neural networks were configured experimentally to achieve the best performance and the obtained
results were compared. In all cases, neural networks implemented and trained using the proposed
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approach delivered excellent results with a success rate of nearly 100%. Thus, we can recommend any
of the tested libraries to solve the weld quality evaluation problem. The best results were achieved
using convolution neural networks which provided excellent results and with almost no pre-processing
of image data required. The longer training time of these networks is acceptable in practical usage.

In summary, based on achieved experimental results, convolution neural networks have shown to
be a promising approach for weld evaluation and will be applied in the future research dealing with
evaluation of images in the real welding processes. The convolutional neural networks can be used for
weld quality evaluation without using image preprocessing.
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