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Abstract: Understanding the structuration of spatio-temporal information is a common endeavour to
many disciplines and application domains, e.g., geography, ecology, urban planning, epidemiology.
Revealing the processes involved, in relation to one or more phenomena, is often the first step
before elaborating spatial functioning theories and specific planning actions, e.g., epidemiological
modelling, urban planning. To do so, the spatio-temporal distributions of meaningful variables from
a decision-making viewpoint, can be explored, analysed separately or jointly from an information
viewpoint. Using metrics based on the measure of entropy has a long practice in these domains with
the aim of quantification of how uniform the distributions are. However, the level of embedding of
the spatio-temporal dimension in the metrics used is often minimal. This paper borrows from the
landscape ecology concept of patch size distribution and the approach of permutation entropy used in
biomedical signal processing to derive a spatio-temporal entropy analysis framework for categorical
variables. The framework is based on a spatio-temporal structuration of the information allowing
to use a decomposition of the Shannon entropy which can also embrace some existing spatial or
temporal entropy indices to reinforce the spatio-temporal structuration. Multiway correspondence
analysis is coupled to the decomposition entropy to propose further decomposition and entropy
quantification of the spatio-temporal structuring information. The flexibility from these different
choices, including geographic scales, allows for a range of domains to take into account domain
specifics of the data; some of which are explored on a dataset linked to climate change and evolution
of land cover types in Nordic areas.

Keywords: spatio-temporal information; geolocated data; entropy decomposition; permutation
entropy; patch size distribution; patch shape distribution; multiple scale; co-occurrences;
spatio-temporal data analysis; multiway correspondence analysis; land cover change

1. Introduction

The Shannon entropy plays an important role as a descriptive statistic in various disciplines linked
to the spatial domain, e.g., ecology, social sciences, urban planning [1–4] but often without entirely
taking into account all the characteristics of the spatial or the spatio-temporal dimension as already
proposed [5–10]. Nevertheless, the focus and motivation are often intended for the quantification the
spatial or spatio-temporal structuring of the information provided by a categorical variable of interest.
Entropy, as measuring the level of homogeneity and randomness, has been seen in the literature as a
good candidate. There are many different alternative approaches to entropy, for example see [11,12] in
the context of spatio-temporal clustering which can provide ways of understanding the structuring
of the data, though, not necessarily with a direct way of quantifying it. Our purpose in this paper
is to propose a framework that would reconcile classical approaches involving entropy as a metric
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with more recent literature [5–10]. The goal is how to better take into account the spatio-temporal
embedding of the information that would accommodate an entropy approach.

In the classical approach, an underlying spatial ’structural support’ is usually considered, using a
categorical variable S identifying a set of sub-regions of the whole studied region. For socio-economic
studies S is often a fixed set of administrative units often linked to population sizes. In geographical
studies it can be preferred to use either regular grids or elaborated units based for example on land
conditions or climate, e.g., agro-ecological zoning systems, [13,14]. Then, for a given statistic that can be
mapped to each sub-region (i.e., S = s), such as fraction of coverage of a specific land cover, frequency
of unemployment, number of public buildings, it is possible to quantify the spatial structuration of
that category c by the Shannon entropy:

H(c(S)) = −∑
s

ps|clog(ps|c) = H(S | C = c) (1)

where ps|c = nsc/nc = psc/pc is the proportion of c’s that are in the sub-region s, i.e., nsc is the number
of entities with the characteristic c found in sub-region s among nc in the whole population of entities
N (e.g., persons). For land cover ps|c is the fraction of land occupation in s but relative to the whole
studied area; one might be also interested in the pc|s, the fraction of c within s and so the entropy
H(C | S = s). Note the notation psc is without ambiguity referring to the joint distribution of S
and C, pSC = {psc; (s, c) ∈ S× C} (a matrix), as well as pc = ∑s psc to the distribution of variable
C, i.e., the vector pC = (..., pc, ...) and idem for ps. So, Equation (1) is the entropy of the conditional
distribution of the categorical variable S, knowing C = c. The categorical variable C expresses c as one
of its category, e.g., C corresponds to a land cover classification, to a socio-professional indicator, to a
building typology or a simple dichotomy between cases and at risk of a specific disease.

It provides a quantification describing the repartition of each single category c, spatially across the
sub-regions, e.g., the entropy is maximum if the distribution is uniform, or, reaching very small values
when segregation in a few sub-regions occurs (0 if c is concentrated in only one sub-region s). However,
the spatial organisation of the region in s sub-regions is not taken into account. Any permutation of
the values would give the same entropy, only the semantic attached to the sub-regions is rooting down
a spatial understanding for c. Nonetheless, a sub-region system as such, often represents a level of
aggregation of the observations within each sub-regions s. The number of sub-regions may be too small
to convey sufficient statistical information about topological information between the sub-regions and
multiple scale integration may be looked for in the regioning system. Here, ‘topological’ is understood
as spatial organisation and configuration, e.g., proximity, connection, homogeneity, between and
within observations or units where the observations are in. The interplay of proximities of categories
and multiple co-occurrences have been proposed to define spatial entropy and spatio-temporal entropy
measures [15] but do not pertain easily spatial or spatio-temporal graphical representations even
though local indices are possible. From (1) a further decomposition of the bivariate information S, C
(see Section 2) expresses the role of the spatial support S. Despite not being able to fully provide a
spatial entropy measure for C, it is a useful tool when focusing on characterising a regional system
S or comparing two regional systems S and S′, say encompassing a change of scale, for a range of
economical and socio-demographic variables (i.e., a series of variables like C). Questions such as
“which spatial scale provides the most or least disparity?” can then be approached. It is not particularly
useful when no a priori spatial regional system makes sense as in landscape ecology but the scale
aspect does. So, the decomposition approach constitutes a basis for a framework to the spatial or
spatio-temporal information related to C when using appropriate spatial or spatio-temporal descriptors
that leads to a range of spatio-temporal entropy measures (see Section 3).

Landscape ecology has provided a range of spatial and topological descriptors, e.g., richness,
adjacency, patchiness, connectivity, that help to describe how the spatio-temporally information from a
categorical variable C is organised and its role into understanding associated ecological processes [1,16],
including the role of entropy [17]. The temporal evolution of sizes and shapes of patches per categories
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of a variable C are the consequences of the underlying spatio-temporal processes involved. Therefore,
depicting the information structuring of these spatial-temporal descriptors in interaction, using the
entropy, would contribute to this endeavour. Instead of using external spatial descriptors, linked to
a fixed spatial support as with the above description of S, this paper proposes to use the variables
patch-size, Si and patch-shape Sh to be combined with the information from C in order to decompose
their joint entropy.

A spatial patch can be defined as an homogeneous zone according to a category c and can be also
understood as a cluster. When observations are recorded per elementary units with proportions falling
in that unit (also known as compositional data), a patch may be defined using a minimum proportion
for the same category c, i.e., enough observations with a category c in one unit then considered as a
patch or part of a bigger patch. For compositional data, the patch can take into account a fuzziness
(as a degree of membership of a patch) due to decreasing values of the proportion of the category c.
Note that with such compositional data, patches of different categories may then overlap. Depending
on the modelling choice, separation of the patches can be operated, for example using the dominant
category among the categories in the overlapping patches.

Similarly to the spatial structuration, Equation (1) can also be written for T a time structure
of the observations, with t being a sub-period of the whole time period of observations defined by
the categorical variable T. Order and proximities of the ts allow to define a patch as homogeneous
temporal zone according to a category c from C. A temporal patch is then also associated with variable
descriptors such as Ti for a temporal patch size and temporal patch shape. With compositional data, a
temporal ’shape’, Th can take the form of a pattern of increasing and decreasing proportion values
which becomes close to the notion of motifs, i.e., succession of specific categories. The latter can be also
achieved from borrowing concepts involved in permutation entropy [18–20] to integrate time flow in
the dynamic of the categories, e.g., increase of a proportion of a category c from past to future, motif as
increase followed by a decrease, motifs due to pre-defined possible successions of categories. Therefore,
Size and shape of patches of C are seen here as the basics of the spatio-temporal structuration of C
applicable in various domains, e.g., physical geography, social geography, demography etc. For a
land cover data, knowing the different sizes and shapes for a particular vegetation configuration will
help understanding its ecology, e.g., invasive species; in urban planning these sizes and shapes will
contribute to analyse social segregation and in epidemiology, sizes and shapes may relate to contagion
paths and outbreak mechanisms.

The paper proposes a framework approach integrating the Shannon decomposition theorem
(Section 2) using these spatio-temporal descriptors. The modus operandi of this framework is detailed
in Section 7 and illustrated with a land cover evolution data in Section 8. The three major steps are:
(i) defining patches rules, (ii) extracting the multiway information crossing spatio-temporal patch characteristics
and C, and, (iii) quantifying and mapping the spatio-temporal information from entropy decomposition and
related methods. This framework, termed the patch size and shape entropy (PsishENT) framework, is based
on the Shannon entropy and existing spatio-temporal approaches of the Shannon entropy itself [6,8,15]
on the rendered information in (ii) (Section 3). As part of (iii) a multiway correspondence analysis
can be used [21,22] (Section 5) which is related to the concept of mutual information reminded in
Section 2. This multiway analysis provides a decomposition for which, each part has an interpretation
similar to a product of the spatial, temporal and categorical distributions, therefore providing after a
transformation a simple entropy decomposition (see Sections 2 and 5). These three major steps of the
framework are detailed within their potential sub-steps in the next few sections before summarising
the approach in Section 7.
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2. Using Shannon’s Multivariate Decomposition Entropy

Equation (1) shows that the historical approach into a spatial entropy introduced the conditional
entropy as a natural way forward. When considering all the categories of the variable of interest C,
so expending for all c’s of C and using the joint entropy, (1) becomes:

H(C, S) =de f −∑
s,c

psclog(psc) (2)

= −∑
c

pclog(pc)−∑
c

pc ∑
s

ps|clog(ps|c)

= H(C) + H(S | C) (3)

= −∑
s

pslog(ps)−∑
s

ps ∑
c

pc|slog(pc|s)

= H(S) + H(C | S) (4)

known as the entropy decomposition theorem [23,24], where the roles of S and C in the bivariate
distribution can be swapped as expressed by Equations (3) and (4). Note that this presentation is not
limited to the spatial context and S or C can be any categorical variables. H(C) is then the entropy for
the overall distribution of the c categories of the variable C in the considered region, without explicit
integration of the role of the spatial dimension. H(S | C) is the mathematical expectation of Formula (1)
over all c values and expresses the role of C in the potential structuration of the sub-regions, i.e.,
if H(S | C) is small then C contributes substantially in highlighting differences (non uniformity) in S.
It implies a spatial configuration due to C in the sub-regions but without knowing which categories are
the most involved. The decomposition involving H(C | S), expressing how S contributes in describing
C distribution, or, how S influences C non-uniformity, might be more interesting in representing
spatially the impact of the variable C for example by visualising the S sub-regions using the statistic
Hratio

C|s =de f ps.H(C | S = s)/H(C | S), for each sub-region s. This normalisation called from now on,
conditional entropy ratio, is a normalisation adapted to the analysis of parts of the conditional entropy.

A normalisation of the Shannon entropy such as Hu(S) =de f −1/log(|S|)∑s pslog(ps), allows to
get a span between 0 and 1, i.e., 1 for ’completely’ uniform (u) distribution. If the former normalisation
(ratio) has the advantage of being self-referring, mapping Hu(C | S = s) = 1/log(|C|)H(C | S = s)
is independent of the number of categories used and allows sub-regions comparisons and the above
statistic is the same:

Hratio
C|s1,s2,... =de f (ps1.H(C | S = s1) + ps2.H(C | S = s2) + ...)/H(C | S)

= (ps1.Hu(C | S = s1) + ps2.Hu(C | S = s2) + ...)/Hu(C | S) (5)

= Hu−ratio
C|s1,s2,...

Using the normalisation respective to uniform distribution, Equations (3) and (4) become:

Hu(C, S) = −1/(log(|S|) + log(|C|))∑
s,c

psclog(psc) (6)

=
log(|C|)

log(|S|) + log(|C|)Hu(C) +
log(|S|)

log(|S|) + log(|C|)Hu(S | C) (7)

=
log(|S|)

log(|S|) + log(|C|)Hu(S) +
log(|C|)

log(|S|) + log(|C|)Hu(C | S) (8)

The decomposition theorem of the entropy is not specific to S and C, only a bivariate imformation
is required. Recently [10] used the entropy decomposition theorem with a bivariate information
referring to the categories, C and spatially adjacent categories by then allowing a decomposition of
the entropy of the spatial contiguity of categories from the adjacency distribution, i.e., similarly to
co-occurrences of order 2, [6].
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Using Equation (3), one gets [H(C, S)− H(S | C)]− H(C | S) = H(C)− H(C | S) which from
Equation (4) is also [H(C, S)− H(C | S)]− H(S | C) = H(S)− H(S | C) therefore:

H(C)− H(C | S) = H(S)− H(S | C) =de f MI(C, S) (9)

defining the Mutual Information (MI) between the two variables c and S. Then from Equation (3) or (4):

H(C, S) = H(S) + H(C)−MI(C, S) (10)

leads to another way of defining the mutual information that is by the Kullback-Leibler divergence
between pSC = {psc; (s, c) ∈ S× C} and pS ⊗ pC = {ps pc; (s, c) ∈ S× C}, i.e., the joint distribution
and its approximation under the hypothesis of independence,

DKL(pSC | pS ⊗ pC) = ∑
sc

psclog(psc/(ps pc)) =
de f MI(C, S) (11)

From Equations (10) and (11), if S and C are statistically independent, i.e., psc = ps pc, or similarly
the c profiles in different sub-regions are all the ’same’ (proportionals), then we have additivity of their
respective entropy when considering the joint information. It does not mean that C is not structured
spatially, only that the structuration S is expressing a common spatial structure (irrespective to c’s).
Another structuration S′ might reflect otherwise.

2.1. With Spatial and Temporal Supports

The entropy decomposition theorem, in the form of Equation (10), is easily extendable to
multivariate situations, within a spatial or non-spatial context:

H(C1, C2, ..., Cp) =
p

∑
v=1

H(Cv)−MI(C1, C2, ..., Cp) (12)

for p categorical variables C1, C2, ..., Cp, with the conceptually easily generalisable mutual information
of the p variables: MI(C1, C2, ..., Cp) = DKL(pC1C2...Cp | pC1 ⊗ pC2 ...⊗ pCp). Within a spatio-temporal
context for one categorical variable C, this takes the form:

H(C, S, T) = H(C) + H(S) + H(T)−MI(C, S, T) (13)

= H(S, T) + H(C | S, T) = H(C) + H(S, T | C)

= H(S) + H(T | S) + H(C | S, T) (14)

= H(S) + H((C, T) | S)

= H(S) + H(T | S)− H(S | T) + H(C, S | T)

= MI(S, T) + H(T | S) + H(C, S | T) (15)

= MI(S, T) + H(S | T) + H(C, T | S) (16)

generalising Equation (4) or (3).
These different formulations provide ways of decomposing and representing graphically each

component as patterns, e.g., a map of the Hu(C | S = s, T = t) = 1/log(|C|)H(C | S = s, T = t) for all
s at chosen t (intervals or sub-periods) or as time series plot at chosen sub-regions s.

3. Taking into Account Spatio-Temporal Relative Proximities

The structuration of the observations from knowing their distribution jointly for S, T and C leads
to the multivariate decomposition theorem of the classical Shannon entropy but again no topological
properties are really involved. However, as only the three-way data table S× T × C containing the
distribution of occurrences of observations is used, it is also possible to use a distribution co-occurrences
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instead [6,15]. By then, the decomposition theorem will be framed within a spatio-temporal entropy
measure. For a chosen order of co-occurrence k, counting the number of co-occurrences among the
observations oi with C(oi) = c is made from considering the observations in a manifold Est within an
Euclidean space, e.g.,:

o1, o2, o3 ∈ Est are in co-occurrence of order k = 3 for C = c,

if maxo,o′∈{o1,o2,o3}d(o, o′) ≤ dε (17)

where d being the distance used in all cells stc

and dε a chosen collocation distance parameter.

From this three-way table of counts of co-occurrences, a three-variate distribution of
co-occurrences [6] is achieved, i.e., a spatio-temporal distribution of C that can be used with the
Shannon entropy decompositions, i.e., Equations (13) to (16). For each cell stc of the three-way data
table S× T × C, any non-negative indicator positively correlated, across st, with count of observations
can also lead to a three-variate distribution-like table that can be used with the Shannon entropy
decompositions formula, e.g., a local version of the distance-ratio weight used in [5]:

dratio
stc =de f mean(o1,o2)∈Wd(o1, o2)

mean(o1,o2)∈Bd(o1, o2)

where W = {(o1, o2) ∈ Est × Est | C(o1) = c, C(o2) = c} (18)

and B = {(o1, o2) ∈ Est × Est | C(o1) = c, C(o2) 6= c}

The local computation within each Est, of co-occurrences distributions, or of distance-ratio weights
are subject to a border effect that is not encountered with the occurrences distributions. However,
it is easy to modify formulations (17) or (18) to allow overlaps but enforcing at least one of the oi to
be in Est and the others within a small distance, db, to the border. That distance needs to be smaller
than dε, by then minimising the over-count of co-occurrences, and, if db is relatively smaller than the
average distance between two observations in st, the estimation of dratio

stc will not be too affected, i.e.,
proximities across the border will be taken into account without smoothing too much the values across
neighbouring Est’s. Without these overlaps, there could be under-estimation for the co-occurrences or
distance-ratio statistics when a large number of observations are made close to borders.

3.1. With a Symmetric or Non-Symmetric Spatio-Temporal Approach

In integrating the spatio-temporal approach of co-occurrences, the approach taken in the previous
sub-section has been non-symmetric. Multiple observations were identified first with their category c,
then their geolocation, spatio-temporally were taken into account within a Est, i.e., a semantic bias was
focusing on the c’s observations scattered spatio-temporally. So, in definitions (17) or (18) the distances
were spatial distances at time t within the sub-region s, Est. To be fully symmetric the co-occurrence
definition needs to be:

o1, o2, o3 ∈ Estc = {o ∈ S × T × C | C(o) = c, S(o) = s, T(o) = t}
are in co-occurrence of order k = 3,

if maxo,o′∈{o1,o2,o3}d(o, o′) ≤ dε (19)

where d() being the distance in S × T × C
and dε a chosen collocation distance parameter

In the definition (19), S is the spatial dimensional space in which the regional system S is
embedded, similarly for T as a temporal dimensional space and C a variable space where categorical
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variables can be expressed. The distances in S and T are the natural Euclidean distances and in C,
proximities can be expressed as 0 or 1 or using a dissimilarity taking into account closeness between
categories. Then, a distance in S × T × C has to be chosen, e.g., sum of the distances in each dimension,
their product, their maximum?

The equivalence of this definition to the former definition in (17) for particular settings highlights
in fact the substantial conceptual difference. Implicitly, in definition (17) there was no distance per
se for time T, Est being a snapshot of the spatial sub-region s at time t, neither for categories C, i.e.,
implicit infinite distance for different categories or times, making the two definitions equivalent.
Combining arithmetically distances in each sub-space or building a multidimensional distance is
not straightforward due to the different scales and semantics involved. Therefore, it might be more
appropriate to use a distance-rule across the three spaces S , T , C, such as:

d(o, o′) ≤ dε ⇔


dS (o, o′) ≤ dεS

dT (o, o′) ≤ dεT

dC(o, o′) ≤ dεC

(20)

instead of a distance in S × T × C. Noticeably, the definition (19) establishes now a co-occurrence
not just for c but s and t too, as a joint category (s, t, c), then from (20), the criterion
maxo,o′∈{o1,o2,o3}[d(o, o′)] ≤ dε is enough to record a co-occurrence of observations, here of order
k = 3. However, the co-occurrence "of what?" can take different forms. The first line in definition (19)
is modulated with set of chosen rules, i.e., the set of strict values in (19) are complemented by another
distance-rule based criterion, allowing to adopt multiple categorisations of the co-occurrence, therefore
multiple co-occurrences at once. For example, if for each pairs of observations in the co-occurrence
(of order k = 3), dS (o, o′) ≤ drS < dεS , then S(o1), S(o2) and S(o3) are valid spatial categorisations (S)
for this co-occurrence, idem with T and C. This sort of fuzzy characterisation effectively removes the
problem of the ’border effect’ mentioned in the previous section. The majority across each categorical
variable could also characterise a co-occurrence, e.g., o1, o2, o3 satisfying definition (20) and o1 with
(s, t′, c), o2 with (s′, t, c), o3 with (s′, t′, c′) giving a categorisation of the co-occurrence as (s′, t′, c), so
not necessarily reflecting any of these observations.

Similarly, the local distance-ratio weight definition is asymmetric by essence but S or T can
be focused on, not just C. A fully symmetric version, looking at categories defined as stc, leads to
indicators that can take various forms depending on the choice of distances, e.g., closer to its definition
as global indice [5], or to its spatio-temporal version [25,26]:

dratio
stc =de f mean(o1,o2)∈Wd(o1, o2)

mean(o1,o2)∈Bd(o1, o2)

where W = {(o1, o2), o1, o2 ∈ S × T × C | ∃ o ∈ Ostc, d(o1, o) ≤ dW and d(o2, o) ≤ dw} (21)

and B = {(o1, o2), o1o2 ∈ S × T × C | ∃ o ∈ Ostc, d(o1, o) ≤ dB and ∀ o ∈ Ostc, d(o2, o) ≥ dB}
given Ostc = {o ∈ S × T × C | C(o) = c, S(o) = s, T(o) = t}

From playing symmetrical roles in the data table S × T × C, as it does for the occurrence
distribution used for the joint Shannon entropy, Equations (13) to (16) can be fully expressed within the
spatio-temporal entropy approaches of k-co-occurrences or localised indices such as the distance-ratio.
As a consequence when replacing S and T, the structural framework of sub-regions and calendar
chunks, by topological descriptors of C such as patches size or shapes, allows the framework to study
directly spatio-temporal topological interactions of C, i.e., topological relations between a labelling
from C with a spatial labelling from C and a temporal labelling from C.
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4. Constructing the Spatial and Temporal Patches Characteristics

Considering of spatial and temporal patches as embedding the spatio-temporal structuring context
for Section 2 has a twofold outcome. First, from categorising spatio-temporally the variable of interest
C, it enables to relate different parts of the entropy decomposition to the spatial or the temporal or the
spatio-temporal processes involved with C. Second, it allows a topological interpretation compatible
with the spatio-temporal entropy approaches with proximities from Section 3.

The data structure concerning the spatio-temporal distribution for the categorical variable C is
either a compositional data per areal units or a set of single observations, each available at a point or
areal unit. For a compositional data, a vector of the counts for each category represents the distribution
of C in each unit. In the case of single observations only a single value from C = c is an attribute of
that observation. In the following of the paper, these will be termed compositional data and observational
data respectively; without further description an observation will refer to both types.

The spatial or temporal patch criteria once established, patch size and patch shape can be defined
accordingly. The categorical variables SP and TP will identify spatial and temporal patches across all
c’s. As defined in the introduction, the generic definition of a patch is about connected observations of
the same category. For compositional data, a chain or group of adjacent units will make a patch with
a minimum proportion of c in each unit. For observational data, the connection of the observations
with c have to be established using distance threshold (spatially, temporally or spatio-temporally).
Then a patch is the set of points (or basic geometries) that encapsulate the observations which can
be identified as the graph of the connected observations or by the convex hull of the observations
or any other shape containing these observations. For both types of data, overlaps of patches may
occurs. The patch size is defined by the count observations being part of, or falling into, the patch.
Those remarks are valid for spatial and temporal patches SP and TP and define Si and Ti as patch size
categorical variables. Note that if the range of sizes values is too large, groups of sizes may be defining
the categories in Si and Ti.

With this generic definition of patches, shapes will be referring to the 2D geometry of the patch
for spatial aspects and 1D geometry for time. When fuzziness of the patch is taken into account, for
example with a proportion above a minimum required to be qualified as patch of c’s for compositional
data or with a semantic distance across c categories for observational data, 2D + 1 geometry and
1D + 1 geometry are describing the shape. The +1 reflects the degree of membership. They can be
referred as flat patterns (2D or 1D) or profile patterns (2D + 1 and 1D + 1). If for 1D no specific shape
categorisation can be made, with 2D and 2D + 1, clustering the shapes from geometric measures such
as perimeter, volume, principal axes compactness, etc. can be used to further categorise the shape to
be used as Sh.

Motifs, defined when the patch criterion includes the possibility of having more than one category
c in the patch, from proximity relations, define other types of shapes. A spatial motif may be for
example, the shape of a patch with two categories, c1 and c2 with c1 being dominant (related to size),
the motif with c2 dominant being more likely to be included as well. It can also involves a topological
relation, e.g., c1 most often in the North of c2, or c1’s surrounded by c2’s. It can corresponds to a patch
composite as suggests the latter examples. A temporal motif may be a sequence of first c1 observations
for a number of time units followed by a number of time units with c2, etc. The definition of the
categories of shapes, as pattern, as motifs or both is of course a matter of the application in ecology, in
economy, or epidemiology, as well as the level of complexity desired [20,27].

Focusing on the temporal dimension, the permutation entropy can be modulated by a distance, a
meaningful difference, between observations when assessing their order, and so the occurrences of
specific permuted patterns. This fuzzy assessment of the order is important when willing to separate
really meaningful changes from smaller random changes. A similar refinement of the patterns or
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motifs has been proposed in [20] with an example on distance to the mid point within a pattern of
length 3. For a given time series, the members of a permutation class πk can be defined as:

(xt, t = 0, ..., (N − 1); τ; l = 3)πk = {(xt+τ , xt+2τ , xt+3τ) | xt+πk(1)τ ≤ xt+πk(2)τ ≤ xt+πk(3)τ} (22)

where πk refers to one of the 3! permutations of the triple (1,2,3), implicitly referring to the length of
the pattern l with a lag τ. For example, if three values are ranked like xt+τ ≤ xt+3τ ≤ xt+2τ then the
triplet belongs to the pattern or motif of the permutation πk(1, 2, 3) = (1, 3, 2). It is a sequence with an
increase between (t + τ) and (t + 2τ) and a decrease between (t + 2τ) and (t + 3τ) to a value higher
than (t + τ). In [20], two groups for any permutation are differentiated, if d(xt+πk(3)τ , xt+πk(2)τ) ≥
d(xt+πk(2)τ , xt+πk(1)τ) or not, making πk = 123 into a 123t representing a larger increase followed
by a smaller (relatively to mid point) and 123b representing a smaller increase followed by a larger.
For categorical variables, this presentation supposes either there is a predefined ordinal relationship
between the categories or a compositional data where the motifs are worked on the proportions of a
given category c. The permutation approach ensuring that all alternatives motifs are to be used in the
entropy is not necessary or always welcome. Rules to define a range of specific patterns can replace
the full permutation approach. Besides varying the parameter τ and l one may be interested in simple
patterns of increase or decrease with l = 2 but also allowing the patches to join up for various length
of increases or decreases, i.e., when Ti becomes prominent.

The categorical variables Si, Sh, Ti and Th are replacing spatial and temporal categorisation of S
and T. They are not used any more to pinpoint an observation in the time flow of space but characterise
spatio-temporally the ’locality’ of where and when the observation occurred. The goal of this ’locality’
will be to encompass the local ’topology’ in space and time that is induced by the observations of C
in the neighbourhood. Then, the spatio-temporal support exogenous to C processes disappears to
become an inherent part of C. Note that the categorical variables SP and TP can also be considered as
background information, a the spatio-temporal ’support’ similar to what S and T were providing but
with the fundamental difference that SP is changing across time and TP across the space. Therefore
they can be used directly only for entropy decomposition only at a specific time for SP or specific
spatial unit for Tp but also within a ’cumulative’ approach, e.g., SP describing all the set of all spatial
patches at given times.

Once a set of specific topological characteristics linked to the spatio-temporal distribution of C are
chosen, the joint distribution is established, from occurrences along with various choices of ’counting’
statistics leading to the three-variate distribution of interest (Section 3) and the entropy decomposition
theorem(s) (Section 2) can be used. The next section proposes an alternative decomposition setting on
which entropy can apply.

5. Using Multiway Correspondence Analysis

An important part of the PsishENT framework comes from the fact that the Shannon
decomposition theorem(s) of Section 2 is based on working out a joint distribution to produce from
the observations the multiway contingency table before using conditional probability properties.
Equations (12) and (13), involving the mutual information, reflect the role played by the statistical
independence of the categorical variables involved to build the joint distribution. Therefore, analysing
the structure of independence of the multiway contingency table representing this joint distribution
contributes to the spatio-temporal characterisation induced by C. The correspondence analysis of
a two-way contingency table [28,29] provides a decomposition of the χ2 statistic of independence
using a Singular Value Decomposition (SVD) of a specific matrix: ∑r σ2

r = 1 + χ2/N, where the
σrs are the singular values of the matrix of the pij/(pi pj), using the vectors pI and pJ as weights
in the sum of squares and inner product for each dimensional variables I and J [21]. In [21], this
presentation has been extended to analysing a multiway table using tensor algebra as an extension
of matrix calculus. The decomposition, say for a generic three-way data contingency table, of the
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pstc/(ps pt pc) for (s, t, c) ∈ S× T × C (where S, T and C are here taken as generic categorical variables
in the PsishENT framework, e.g., Si, Th, C), and pstc being a normalised measure correlated to the
proportion of occurrences for the observations with categories s, t and c can be written:

pSTC/(pS ⊗ pT ⊗ pC) = 1 + ∑
r

σr(vSr ⊗ vTr ⊗ vCr ) (23)

where ∀r, ‖vSr‖2
pS

= ∑s psv2
Sr s

= 1 and similarly for the other component vectors. Equation (23) can
be written:

pSTC = (pS ⊗ pT ⊗ pC) + ∑
r

σr(pSvSr )⊗ (pTvTr )⊗ (PCvCr )

= ∑
r=0

σr(pSvSr )⊗ (pTvTr )⊗ (pCvCr ) (24)

where vS0 , vT0 , and vCo are the vectors of 1’s with corresponding dimensions, e.g., 1S = (1, ..., 1) of
length the number of categories in S, and σ0 = 1. As in the SVD, the σ2

r are the maximum weighted
sum of squares of a projection of the tensor pSTC/(pS ⊗ pT ⊗ pC) onto rank-one tensors (u⊗ v⊗ w).
The rank-one tensors vSr ⊗ vTr ⊗ vCr are the one reaching maximum singular values according to the
PTAk algorithm used for the multiway correspondence analysis [21], the FCAk method.

If the vectors vSr , vTr , and vCr were non-negative, a simple normalisation would make
Equation (24) a decomposition like a weighted sum of latent joint distributions of independent
variables. This is already the case for r = 0, as (pSvS0)⊗ (pTvT0)⊗ (pCvC0) = (pS ⊗ pT ⊗ pC) is the
joint distribution of S, T, C as if they were independent and, H(pS⊗ pT⊗ pC)) = H(S)+ H(T)+ H(C).
For any given r > 0, with a non-negative tensor (pSvSr )⊗ (pTvTr )⊗ (pCvCr ) = µr(pS′r ⊗ pT′r ⊗ pC′r ),
with µr = (∑s psvsr )(∑t ptvtr )(∑c pcvcr ) and pS′r = pSvSr /(∑s psvsr ), idem for the other components,
then H(pS′r ⊗ pT′r ⊗ pC′r )) = H(S′r) + H(T′r) + H(C′r). So, the FCAk method, after providing the tensor
decomposition of the statistic 1+ χ2/N with χ2 the weighted distance to 1 of the ratio to independence
(pstc/(ps pt pc)), would provide an interpretation of the associations expressed in each optimal rank-one
tensors, in terms of additive entropy across the dimensions. Multiway correspondence analysis
proposes then an alternative to the mutual information as a metric measuring associations between
involved variables. From its set of latent variables, each rescaled rank-one tensor would express a
spatio-temporal structuring in interaction with C extracted for the initial multiway data table within
an independence paradigm. Ratios such as,

H(S′r)/H(pS′r ⊗ pT′r ⊗ pC′r ) (25)

or
(H(T′r) + H(C′r))/H(pS′r ⊗ pT′r ⊗ pC′r ) (26)

would highlight the entropic contribution from S′ to the information structuring extracted from the
rank-one tensor.

However, the PTAk algorithm used in the FCAk method is not a non-negative tensor
decomposition, but has the property of providing a nested decomposition (within a hierarchical
system) similarly to SVD, which existing non-negative tensor decomposition algorithms (NNTF)
do not possess [30]. So besides for r = 0, the vSr , vTr , and vCr will have negative entries, just
because of orthogonality constraints set up in the algorithm. However, for each rank-one tensor
(pSvSr )⊗ (pTvTr )⊗ (pCvCr ), the tensor:

CTRr =
de f (pSv2

Sr
)⊗ (pTv2

Tr
)⊗ (pCv2

Cr
) (27)

termed the CTR-tensor, satisfies the positivity and corresponds to a product of distributions as
∑s(pSv2

Sr
)s = ∑s psv2

Sr s
= 1, from Equation (23), idem for the other components. Each ps(vSr )

2
s %
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is a relative contribution (CTR) of the category s to the component vSr of the rth rank-one tensor, which
contributes at σ2

r /(1 + χ2/N)% of the whole decomposition or σ2
r /(χ2/N)% to the departure from

complete independence used in 2-way correspondence analysis [28] and multiway correspondence
analysis (FCAk) [21]. Therefore, CTRr quantifies the role of each combination stc within the
rank-one tensor and is expressing its spatio-temporal structuring in interaction with C. Ratios such
as, HR(S)

CTRr
= H(pSv2

Sr
)/H(CTRr) or HR∗(S)CTRr

= (H(pSv2
Tr
) + H(pSv2

Cr
))/H(CTRr) highlight the

entropic contribution to the relative importance from S in the information structuring extracted
from the rank-one tensor. Linked the CTRr is the rank-one tensor itself for which a non-negative
approximation would allow a similar entropy decomposition.

Instead of using an NNTF, analytic solutions to extract meaningful positive rank-one tensors from
an optimal decomposition such as SVD or Equation (24) have been proposed [31,32], mostly used as
initialisation of an NNTF algorithm though with optimality on their own. Following the approach
in [31] a rank-one tensor of order k = 3 can be decomposed as:

(x⊗ y⊗ z) = (x+ − x−)⊗ (y+ − y−)⊗ (y+ − y−)

= (x+ ⊗ y+ ⊗ z+ + x− ⊗ y− ⊗ z+ + x− ⊗ y+ ⊗ z− + x+ ⊗ y− ⊗ z−) (28)

− (x+ ⊗ y+ ⊗ z− + x+ ⊗ y− ⊗ z+ + x− ⊗ y+ ⊗ z+ + x− ⊗ y− ⊗ z−)

= (x⊗ y⊗ z)+ − (x⊗ y⊗ z)− (29)

where u+ and u− are respectively the positive and negative parts of a vector u, i.e., u = u+ − u− with
u+

i = ui, i f ui > 0 and = 0 otherwise, u−i = −ui, i f ui < 0 and = 0 otherwise. From this definition,
∀i, u+

i u−i = 0, so u+ ⊥ u−. Because of the tensor product and non-overlaps of u+ and u−, it is easy
to see that each non-zero cell in (x ⊗ y⊗ z) comes from exactly one term in the right hand side of
Equation (28), so in one term either in (x ⊗ y⊗ z)+ or (x ⊗ y⊗ z)− by then defined. Moreover, as
u+ ⊥ u−, u ∈ {x, y, z}, all rank-one tensors involved Equation (28) are orthogonal by construction.
The orthogonality occurs for two vectors of the tensor product in between two rank-one tensors in
either (x⊗ y⊗ z)+ or (x⊗ y⊗ z)−, and at least once between rank-one tensors from these two groups.
Therefore, (x⊗ y⊗ z)+ and (x⊗ y⊗ z)− have a minimal non-negative decomposition of maximum
r = 4 rank-one tensors. For example if x = x+, (x⊗ y⊗ z)+ = (x+ ⊗ y+ ⊗ z+ + x+ ⊗ y− ⊗ z−) and
(x⊗ y⊗ z)− = (x+ ⊗ y+ ⊗ z− + x+ ⊗ y− ⊗ z+).

Now, each rank-one tensor (pSvSr ⊗ pTvTr ⊗ pCvCr ) in Equation (24) can be analytically
decomposed as (pSvSr ⊗ pTvTr ⊗ pCvCr )

+ and (pSvSr ⊗ pTvTr ⊗ pCvCr )
− with their respective

non-negative rank-one tensors decomposition that can be interpreted similarly to a
µr(pS′r ⊗ pT′r ⊗ pC′r ) above.

6. Cartographic Representations of the Quantified Information

Section 2 gave an example of a graphical representation for C as expressed by the Shannon
decomposition theorem. Within the PsishENT framework, C graphical maps but also Si, Sh, Ti and
Th graphical maps can be produced at first as categorical maps using the spatial patch and temporal
patch background identification, SP and TP. For example, a simple coloured geographical map can
highlight spatial sizes from Si, for one particular c or the Hu(Si | C = c) at each patch with C = c.
Considering all c’s a map of the Hu(C | Si = si) at each patch of size si can be produced, highlighting
the heterogeneity in Ce depending on the patch sizes, or Hu(C | Si = si, Ti = ti) at given specific
time size patches. For the latter, it is possible to produce a series of geographical map from reporting
Hu(C | Si = si, Ti = ti) at each patch of size si at each time of a chosen temporal patch of size ti.
Similarly, at a given patch of si a time series plot with Hu(C | Si = si, Ti = ti) at each ti can be used.

Various plots can be produced based on background SP and TP references with possible
overlaps, with a role similar to the spatio-temporal support of the observations, and then using
their categorisations with C, Si, Sh, Ti and Th with the entropy decomposition to report the chosen
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statistics. Endless possibilities of visualisations are foreseen including dynamical plots of SP across
time or Ts across space (time series), where time and space may refer to the vision of a ’constant’
support such as T and S in the Section 3.

The multiway correspondence analysis provides natural ways of plotting spatio-temporal
associations across C as well as spatial cartographic maps, e.g., spatial or spatio-temporal scores
from reconstructing a particular rank-one tensor its CTR.

7. The PsishENT Operational Framework

All the previous sections constitute the building blocks of the PsishENT framework which
integrate all these aspects within a successive set of choices and analyses. In Figure 1, a generic
workflow of using the framework is presented where the three major steps reflect their multiple
choices that are detailed in the previous sections.

In (i), after possible transformations of the initial data (not shown here) the definitions of spatial
and temporal patches are made, based on rules (i.e., topology, fuzziness etc.), which generate categorical
variables Si and/or Sh, Ti and/or Th which may result in classes of sizes or shapes after aggregation
rules (Section 4). In (ii), choosing the variables involved (dimensions of the multiway table) and the
statistic to compute cell values in the multiway table, includes various choices, i.e., a positive value for
each multiway indices, e.g., C = c, Si = 1, Ti = 3 (Section 3).

Figure 1. Modus Operandi of the patch size and shape entropy (PsishENT) framework.

The simplest being the number of occurrences, the purpose is to render a multiway distribution
like table that is encapsulating the chosen spatio-temporal topological features for C. Then, in (iii),
a series of analyses based on entropy decomposition theorem (Section 2) and other methods (Section 5)
that embed distribution decompositions that are related to for example criteria of independence,
homogeneity, uniformity, can be performed to produce results in forms of summary table (e.g., break
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down of entropy), maps and curves (e.g., time series of a statistic based on an entropy), see Section 6
or from the equations listed in previous sections.

The following section shows various uses of the framework in the context of land cover evolution
generated from a climate change simulation. However, the PsishENT framework is adapted to different
kind of domains in physical geography, health geography, epidemiology, demography, urban planning
or even big data (geolocated social information) for observational or compositional data, as long as
concepts of patches, patch sizes and patch shapes would have a meaningful interpretation for the
domain. The framework is working with one or more categorical variables observed, measured or
simulated spatio-temporally. For quantitative variables, transformations in the first place such as
clustering or quantile separation can be applied beforehand.

8. Illustrative Example of Land Cover Forecasts

The PsishENT framework offering a range of analyses based on entropy decomposition to
highlight spatio-temporal information structuring, the purpose of this example is to show the most
simple and illustrative aspects and its flexibility. The data comes from a climate simulation using a
Land Surface Model (LSM) predicting the plant functional types (pfts) between 2014 and 2100 [33].
Plant functional types describe the vegetation that constitutes the land cover, e.g., boreal broadleaf
shrubs, C3 grass. The LSM is driven under a climate forcing scenario, here the RCP8.5 defined by the
Intergovernmental Panel on Climate Change (IPCC). RCP8.5 represents a trajectory of concentration
of greenhouse gas that would occur for a targetted radiative forcing in 2100, here of 8.5 W/m2; this
would mean a global average warming of +3.7◦C in 2050 [34].

For each spatial grid cell (here with a resolution of 2◦ of latitude and longitude) a fraction of
occupation of each pft is estimated within the forecasting at each simulation time step. So, the data used
here corresponds to a compositional data. The full list of pfts used in the LSM ORCHIDEE (ORganizing
Carbon and Hydrology in Dynamic EcosystEms), with the version ORCHIDEE_HLveg [33,35] is given
in Appendix. Note that ’bare ground’ is also taken as a pft. To come back to an observational data one
can transform the data such as considering the dominant pft in each of the single grid cell with its
fraction as a weight or considering each grid cell as an observation for each pft with a weight, i.e.,
multiple observations for a given c (a pft), a pft, with common spatio-temporal positions. To determine
the patches the description using weights was used but dominant categories as summary was also
used to represent the data graphically.

Figure 2 displays the distribution (as proportion of cells over a year) of the dominant pfts. From
the year 2025, the already higher spatial proportion of pft9 dominance,boreal needleleaf summergreen,
than most pfts, keeps increasing from 25% to almost 40% in 2099 and in the meantime pft13, boreal
broadleaf shrubs, decreases from 25% to 10%. From 2039 to 2099, pft10 dominance, C3 grass, halved,
while in the meantime pft4 doubles and pft6 increases from 1% to 7%, temperate needleleaf evergreen
and temperate broadleaf summergreen respectively. The boreal needleleaf evergreen, pft7, shows a
sudden drop in 2059 from 5% to 2%, after a drop of 5% between 2014 and 2025 (halved). In Figure 3,
the exact evolution of the proportions of occupation for pft9, pft13, and pft4 are coherent with what has
been described, so far, but the information is not quantified.

Figure 4 confirms spatially the changes observed in Figure 2, from looking at the dominant pft
per spatial grid cell at the three years 2020, 2050 and 2100. pft9 is increasing mostly in Russia; pft13
is disappearing from the Fennoscandia region and southern Russia to appear in northern Russia
replacing pft10 there; pft4 and pft6 are replacing pft10, pft7 and pft13 in the Fennoscandia area.
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Figure 2. Dominant pfts in each spatial grid cell per year.

Figure 3. Spatial spread for pft9, pft13 and pft4 in June for years 2020, 2050 and 2100.

Spatial patches of size 1, i.e., one grid cell, were created for fractions of a pft category greater than
15%. Grid cells belonging to more than one patch (i.e., more than one pft category with an occupation
greater than 15%) occurred every year with on average a grid cell belonging to 2.2 patches (median is
2, maximum is 6). Then adjacent patches of size 1 for the same pft generated spatial patches of various
sizes for a given year and a given pft. In Figure 5, the temporal evolution of the distribution of patch
sizes are displayed where sizes have been grouped into 7 classes: 1, 2, >2, >7, >25, >50, >100, with
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for example >25 grouping patches of sizes 26, 27, ..., 50. From 2050, patches of class size 1 have an
important increase with a bump between 2060 and 2080, classes 2, >2 and >25 show a steady increase
whilst the number of patches from classes >7 and >50 are relatively decreasing; >100 relatively stable.

Figure 4. Spatial spread of dominant pfts in each grid cell for years 2020, 2050 and 2100 (list of pfts
given in Figure 2 and in Appendix A).

Figure 5. Frequencies of the 7 classes of spatial patches over 846 inland grid cells for all pfts where
a 1 patch is a grid-cell with fraction >15% (wider solid lines are smoother fit of the time series) in
thinner lines.

The variation in vertical spread at years 2020, 2050 and 2100 in Figure 5 can be linked to the results
in Table 1. Indeed in 2020 the curves can be grouped in three: size 1, sizes 2 to >7 and sizes >25 to sizes
>100, in 2050 the spread appears less structured and in 2100, size 1 group is important as the grouping
sizes >50 and >100. However, much care is needed here as in Table 1 it is the frequencies of grid cells
involved in Si and only the number of patches in Figure 5.

For temporal patches the distribution of sizes have a median of 68 a mean of 59 and a third
quartile of 87 out of a potential of 87 successive points from 2014–2100 (the total length). pft1, bare
ground is the pft with the most uniform distribution in temporal patches Ti. Pfts 4, 10, 12, 14, were
represented equally in medium range patch size and high range patch size (very little in small range
patch sizes); Pfts 6, 7 and 8 were more in medium range patch size than high range patch size (very
little in small range patch sizes) whilst pfts 5, 9 and 13 were concentrated in high range temporal
patch sizes.

In Table 1 is reported at years 2020, 2050 nd 2100 the decomposition of the Shannon entropy using
the normalisation relative to a uniform distribution and given in Equation (8). The closer to 1 Hu is, the
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more uniform the distribution is. Due to the normalisation lines 1 and 2, for example, add up to give
line 5, once applied the coefficients e.g., 0.7030593 ∗ (0.4479736) + 0.6548033 ∗ (0.5520264) = 0.6764207.
The spatial patch sizes Si as well as C alones show an increase of entropy while Si | C shows a decrease
highlighting the increasing effect of C in determining the sizes Si. However, the conditional entropy
Hu(Si | C) is already quite low in 2020, highlighting the dependence of Si classes of the sizes of spatial
patches from the pfts categories in C.

Table 1. Decomposition of the normalised Shannon entropy, Equation (8), for the spatial patch sizes
classes Si and the pft categories variable C (11 categories out of 14, see Appendix A) at 2020, 2050 and
2100. ( log(|S|)

log(|S|)+log(|C|) = 0.4479736 and log(|C|)
log(|S|)+log(|C|) = 0.5520264)

Hu(.) Year 2020 Year 2050 Year 2100

Si 0.7030593 0.7933917 0.7640653
C | Si 0.6548033 0.5613683 0.6314215

C 0.8520292 0.8745148 0.9297879
Si | C 0.4600228 0.4075092 0.3963961

Si, C 0.6764207 0.6653087 0.6908424

From this table (Table 1) and parts involved in the conditional entropies one can represent spatially
the heterogeneity due to spatial sizes Si that are revealed by the occurring patch sizes per spatial grid.
In Figure 6 are geographically mapped the parts contributing to the conditional entropy for C knowing
local spatial sizes Si, i.e., the sum of the pSi Hu(C | Si = si) for all the sizes si. The closer to 0 the
more homogeneous the distribution of C is as due to the spatial sizes involved in the local patches.
The theoretical maximum heterogeneity is the value given in Table 1 if all sizes Si were involved, so
Figure 6 is mapping the % of that maximum value as indicated in Equation (6). Where there was no
patches mapped values are missing and can be interpreted as uniformity in C because of no patches
found. Changes in homogeneity given the local spatial patch sizes are quite dramatic and shows more
changes than only the dominant pft recorded per spatial grid as in Figure 4. The two Figures are indeed
complementary. Over the 2020-2100 period, one obverses in Figure 6 a loss of homogeneity given the
patch sizes in the Fennoscandia area whilst a slight increase in homogeneity is seen in western and
southern east Russia between 2020 and 2050 followed by a slighter decrease at 2100. Northern Russia
shows a decrease in homogeneity between 2020 and 2050 followed by an increase at 2100.

Figure 6. Map of the ratios to conditional entropy Hu(C | Si) of Table 1 from occurring local patch
sizes (ranges: 2020 2%–77%, 2050 2%–80%, 2100 0%–92%).

Similarly, in Figure 7 is represented the conditional entropy ratio for Hu(Si | C) where local
patches of C values were used to map the local effect. Overall over the 2020-2100 period, there was an
increase in homogeneity as the conditional entropy is decreasing (see Table 1). Spatially there is an
increase in homogeneity of patch sizes given the involved ptfs (C) in all areas, so either less variation in
pfts or in their patch sizes.
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Figure 7. Map of the ratios to conditional entropy Hu(Si | C) of Table 1 from occurring local patches of
C (ranges: 2020 1%–87%, 2050 0%–89%, 2100 1%–67%).

Integrating time patches sizes Ti can be done in various ways using the PsishENT framework, e.g.,
decompositions as in Section 3 or using the multiway correspondence analysis (Section 5). The latter
one is enabling an additive entropy decomposition of modelled spatio-temporal interaction of C from
each rank-one tensors. Then, for a chosen time, e.g., 2020, 2050 and 2100, and a chosen class in C or
the local dominant C category (pft), a map of a score built at each grid cell from rank-one components
weights for C, Si and Ti can be used to render the information structuring provided by selected
rank-one tensors from the multiway correspondence analysis.The score can be also the corresponding
CTR-tensor to render the contributing influence at a grid cell.

Using multivariate occurrences of Si× Ti× C gives a 7× 8× 11 contingency table analysed by
the multiway correspondence analysis. The rank-one tensor of independence of the three variables Si,
Ti and C, i.e., corresponding to r = 0 in Equation (24) has its components from the multiway table
margins, in Table 2 along with other rank-one tensors CTRs also in Table 3.

Table 2. Margins of the multiway table Si× Ti× C and Signed CTRs (rounded %) for the rank-one
tensor of the FC3 representing 40.9% and 16.7% of the variability (see entropy decomposition in Table 4).

Margins & Tensor 40.9% Tensor 16.7%
Si Ti C

1 2 1 1 pft1 10
2 2 2 1 pft4 6

>2 5 >2 1 pft5 2
>7 14 >4 2 pft6 4

>25 12 >7 8 pft7 4
>50 23 >20 7 pft8 4
>100 42 >30 21 pft9 23

>60 59 pft10 13
pft12 5
pft13 22
pft14 7

Si Ti C

1 3 1 1 pft1 5
2 3 2 1 pft4 0

>2 7 >2 1 pft5 10
>7 35 >4 2 pft6 0
>25 2 >7 8 pft7 2
>50 2 >20 7 pft8 6

>100 −48 >30 21 pft9 −21
>60 59 pft10 7

pft12 21
pft13 −22
pft14 6

It represents 40.9% of variability of the data, i.e., σ2
0 / ∑r σ2

r as expressed in Equation (24). Large
spatial patches, Si > 100 and Si > 50, are most frequent as well as long time patches, Ti > 60, but
recording the count of grid cells involved per patch size creates an expected monotonic increases.
pft9, pft13, pft10 and pft1 are the most frequent patches. Associations across the 3 dimensions (Si, Ti,
C as pfts) are linked to the CTRs and the signs of the coordinates, in the decomposition (24)) and
Equation (27). Signed CTRs for the rank-one tensors are reported in Tables 2 and 3. For example, for
the rank-one tensor representing 16.7% of variability (or 28.26% within the 60.1% left after complete
independence captured by the first rank-one tensor, r = 0), Si > 100 is mostly associated with pft13
and pft9 whilst Si > 7 is with pft12 and to a less extent with pft5, all with mostly very long and long
time patches, Ti > 60 and Ti > 30 (the time component is the same as for complete independence).
For the rank-one tensor of 9.54% of variability (with the same spatial patch size component), pft1 is
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associated with small time size patches 1, 2 and medium sizes >7, opposed to pft9 with large time
patches >60.

Table 3. Signed CTRs (rounded %) for the rank-one tensor of the FC3 of the table Si×Ti×C representing
9.54% and 3.55% of the variability (see entropy decomposition in Table 4).

Tensor 9.54% Tensor 3.55%
Si Ti C

1 2 1 18 pft1 60
2 2 2 15 pft4 0

>2 5 >2 11 pft5 −1
>7 14 >4 9 pft6 1

>25 12 >7 18 pft7 3
>50 23 >20 6 pft8 2
>100 42 >30 1 pft9 −29

>60 −24 pft10 0
pft12 0
pft13 −4
pft14 0

Si Ti C

1 −16 1 27 pft1 −81
2 −9 2 29 pft4 1

>2 −26 >2 14 pft5 5
>7 −15 >4 13 pft6 3
>25 −5 >7 9 pft7 1
>50 7 >20 0 pft8 1

>100 22 >30 −2 pft9 0
>60 −8 pft10 3

pft12 3
pft13 0
pft14 2

For the complete independence, rank-one tensor with 40.9% of variability, which is also the
CTR-tensor, the normalised entropy is Hu(pSi ⊗ pTi ⊗ pC)) = 1/log(|Si| ∗ [Ti| ∗ |C|])(log(|Si|) ∗
Hu(pSi) + log(|Ti|) ∗ Hu(pTi) + log(|C|) ∗ Hu(pC)) = 0.764 with Hu(pSi) = 0.786, Hu(pTi) = 0.595
and Hu(pC) = 0.894. Therefore, within this 40.9% of variability where large spatio-temporal patches
of mostly of pft9, pft13 but also pft10 or pft1, temporal patches are more structuring than spatial and
distinction of pfts. CTRs entropy decomposition for the first best tensors of the FCA3 optimisation are
in Table 4.

Table 4. CTR-tensor entropy decomposition for the FCA3 of the multiway table Si× Ti× C: the four
best rank-one tensors, Equation (24), representing altogether 70.69% of variability

Hu(.) Tensor 40.9% Tensor 16.70% Tensor 9.54% Tensor 3.55%

Si 0.786 0.661 0.786 0.929
Ti 0.596 0.596 0.908 0.830
C 0.894 0.830 0.452 0.356

CTR− tensor 0.765 0.703 0.701 0.683

Note for the last two tensors (9.54% and 3.55% of variability), the structuring due to pfts becomes
more important as the entropy for C becomes smaller. In Figure 8, maps of the first three CTR-tensors
are complementing the quantifications of the information from Tables 2 and 4. For each grid cell, the
geometric mean of the product of the component weights (for the local Si, Ti and C) as each score from
Equation (27) were signed with the local C component weight in order to highlight the differences
in pfts. This gives a spatial intensity of the patterns of spatial sizes Si, temporal patches Ti and the
categorical variable C (here the pfts). The differentiation due to the sign of C weights is useful here but
multiple maps per pfts could be used instead which would allow not to focus only on the dominant pft.

If the Figures 2–4 are very informative on the land cover evolution for this data, they do not
allow quantification of the different roles of C and the spatio-temporal embedding. The PsishENT
framework provides this type of information as well help to characterise each influence from other
graphical representations. First of all, pfts categories have variant patch sizes (time and space). Some
pfts categories are, along time, increasingly explaining the patch sizes distributions which are related
to increased homogeneity e.g., pft9 (boreal needleleaf summergreen) evolution to larger patches.
A tendency to increase of a spatial fragmentation is also quantified (see Table 1) which are localised in
Figures 6 and 7. Using correspondence analysis (FCAk) or the spatio-temporal multiway table with
spatial and time patch sizes with C (pfts) enabled a double quantification (Tables 2 and 4) in specific
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patterns of associations (each rank-one tensor) and using entropy to evaluate the structuring aspect of
the components in the tensors. Spatio-temporal intensity of the effects could be mapped (Figure 8).
If fortunately the PsishENT approach allows to retrieve some tendencies seen using simple graphics,
the quantification are useful and some hidden patterns can be also detected such as pft12 (mosses)
disappearing the north of Fennoscandia and Russia (see Table 2 and Figure 8).

Figure 8. C-signed CTR-tensor spatial scores rebuilt for the dominant pft in June for years 2020, 2050
and 2100.

9. Discussion & Conclusions

In order to study the information structuring from a categorical variable C, the proposed
spatio-temporal entropy framework (PsishENT) makes use of topological characteristics for C in
time space and geographical space. These characteristics are related to patches sizes, Si and Ti and
shape Sh and Th. Then, PsishENT reuses entropy decomposition theorem to derive information
quantifications from different choices of multivariate distribution of the characteristics using
occurrences, co-occurrences or a local non-negative statistical indice. Complementary to the use
of conditional entropy for the decomposition theorem, multiway correspondence analysis fitting the
multivariate distribution from a sum of rank-one tensors expresses another alternative decomposition.
Quantification of the contribution of each rank-one tensor and its positive approximation allow additive
entropy across the characteristics involved in the multivariate distribution. Both quantifications and
decomposition of the information can lead to spatio-temporal representations helping to interpret the
entropy values.

A land cover evolution data example was used to illustrate some aspects of the PsishENT
framework. Examples of quantification of the spatio-temporal information, decomposition and
graphical representations were demonstrated, highlighting some principles of the framework.
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Quantification and sometimes double quantification (from correspondence analysis followed by
entropy) can be powerful when comparing different spatio-temporal patterns. Making use of both
sizes and shapes would lead to more complex choices that were not looked into for this illustrative
example but the framework is generic and flexible enough to adapt to a range of interests and
specificities of the data.

The monotonic increase of occurrences due to the number of grid cells involved in classes for
larger patches will be even more prominent with co-occurrences or local statistic linked to a proximity
assessment. This may be seen as a bias in the framework but induce indeed a topological forcing as the
basic natural model of patches. Therefore classes of patch sizes or shapes play here an important role.
To cancel off this baseline effect, it is also possible to record in the multiway tables the spatio-temporal
patches as basic occurrences, not the cells within the patches. Results for the land cover data example
with this other choice and using the same analyses are given in Appendix B where similarities and
complementarities with Section 8 are also highlighted. Other scale levels in between the basic units,
grid cells for our example and spatial or spatio-temporal patches, e.g., using less stringent rules,
could be used, integrating another variable seen as the focused topological support. Multiple scale
comparison analysis could therefore be performed using the PsishENT for different scales with the
normalised entropy or integrating multiple Si for example.

Looking for the spatio-temporal structuring of more than one categorical variable of interest, say
C and C′, is possible using the framework with for each categorical variable a choice of Si and S′i etc.
and on one hand the entropy decomposition theorem could be applied with various forms, though
could become complicated. On the other hand, using the multiway correspondence analysis approach
which is indeed linked to the mutual information concept, would provide a double quantification and
decomposition in patterns involving both C and C′ which can be evaluated and decomposed using
the entropy.
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The following abbreviations are used in this manuscript:
2D 2-dimensional Euclidean representation of the geographical space
2D+1 2D footprint with a positive height
CTR Relative Contribution (in correspondence analysis)
IPCC International Panel on CLimate Change
FCAk Factorial Correspondence Analysis of a k-ways table
PTAk Principal Tensor Analysis of k-way array
RCP Representative Concentration Pathway
LSM Land Surface Model
PsishENT Patch size and shape Entropy
NNTF Non-Negative Tensor Factorisation

Appendix A. Plant Functional Types

The pfts with a * in Table A1 were not used in the entropy analysis.
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Table A1. List of plant functional types (pfts) used in ORCHIDEE HLveg [35]

pfts Full Name

pft1 bare ground
pft2* tropical broadleaf evergreen
pft3* tropical broadleaf raingreen
pft4 temperate needleleaf evergreen
pft5 temperate broadleaf evergreen
pft6 temperate broadleaf summergreen
pft7 boreal needleleaf evergreen
pft8 boreal broadleaf summergreen
pft9 boreal needleleaf summergreen
pft10 C3 grass
pft11* C4 grass
pft12 NonVascular moss and lichen
pft13 boreal broadleaf shrubs
pft14 C3 arctic grass
pft15* C3 agriculture
pft16* C4 agriculture

Appendix B. PsishENT Analysis Using Distribution of Patches

The example used the distribution of grid-cells to built the contingency table Si× Ti× C. Here
the same table is produced and analysed using the distribution of patches for Si and Ti. Altogether
over the 151826 grid-cells involved in patches (previous analysis), 20998 distinct patches are present
(over the 87 years). Table A2 shows similar trends as for the results in Table 1 concerning the entropy
decomposition for Si, Ti and C. The pattern of the conditional entropy C | Si is similar and the one for
Si | C is decreasing more showing the increasing effect of C determining the sizes Si. However, for Si
there is a relatively stable entropy level whilst for C this is still relatively decreasing. Levels of entropy
are nonetheless higher.

Table A2. Decomposition of the normalised Shannon entropy, Equation (8), for the spatial patch sizes
classes Si and the pft categories variable C. Results from Table 1 are left at the bottom of the table
for comparisons.

Hu(.) Year 2020 Year 2050 Year 2100

patches distribution
Si 0.9609153 0.9768040 0.9409071

C | Si 0.7314626 0.6296681 0.7008305
C 0.8994154 0.8859183 0.9554671

Si | C 0.7539514 0.6610335 0.6271249

Si, C 0.8342513 0.7851758 0.8083785

grid-cells distribution
Si 0.7030593 0.7933917 0.7640653

C | Si 0.6548033 0.5613683 0.6314215
C 0.8520292 0.8745148 0.9297879

Si | C 0.4600228 0.4075092 0.3963961

Si, C 0.6764207 0.6653087 0.6908424

Performing the correspondence analysis and entropy decomposition on the obtained FCA3’s
CTRs gives Tables A3–A5. The complete independence tensor, rank-one tensor expressing 44.3% of
the variability shows more structure from Ti (than Si or C), however with an entropy of 0.870 and
a high CTR-tensor entropy of 0.923 (Table A5). Long temporal patches have higher marginals and
here >7, >30 and >60. Idem for Si with a more uniform marginal distribution, C highligthing pft1 and
pft10. In comparison with the result with the distribution of grid-cells pft9 is now less prominent but
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pft13 still appears as important and pft1 has the highest marginal. Similarly to the rank-one tensor
representing 9.54% for the analysis on grid-cells distribution, the tensor here representing 15.4% also
associated to the Si marginal (i.e., tensor 44.3%), one has pft1 dominant with Ti of 1 or 2 but now nearly
as much in Si of 1 as >50.

Table A3. Margins of the multiway table Si× Ti× C using the patches distribution and Signed CTRs
(rounded %) for the rank-one tensor of the FC3 representing 44.3% and 15.4% of the variability (see
entropy decomposition in Table A5).

Margins & Tensor 44.3% Tensor 15.4%
Si Ti C

1 16 1 4 pft1 20
2 9 2 4 pft4 4

>2 15 >2 3 pft5 2
>7 19 >4 7 pft6 7

>25 15 >7 21 pft7 5
>50 25 >20 11 pft8 7
>100 11 >30 26 pft9 3

>60 24 pft10 16
pft12 9
pft13 15
pft14 12

Si Ti C

1 16 1 23 pft1 73
2 9 2 18 pft4 −4

>2 15 >2 11 pft5 −2
>7 19 >4 9 pft6 −6

>25 15 >7 7 pft7 −1
>50 25 >20 −2 pft8 −4
>100 11 >30 −21 pft9 −5

>60 −9 pft10 −1
pft12 −2
pft13 0
pft14 −2

For the rank-one tensor representing 8.7%, also associated to Ti marginal like the rank-one tensor
representing 16.7% of the previous analysis, pft13 is similarly dominant with large spatial and temporal
patches, then involving pft4 with a similar pattern and slightly pft9 as in the previous analysis. Also
for this tensor, pft12 with long temporal patches and medium spatial patches (Si > 7) is also retrieved.
For the tensor 4.7% in Table A4, pft13 and pft8 are associated to large spatial patches Si > 25 and
long temporal patches Ti > 30 or very large Si > 100 and very long Ti > 60 whilst to a less intensity
pft4 and pft9 are with Ti > 60 and Si > 25. This pattern was not in the first rank-one tensors in the
previous analysis.

Table A4. Margins of the multiway table Si× Ti× C using the patches distribution and Signed CTRs
(rounded %) for the rank-one tensor of the FC3 representing 8.7% and 4.7% of the variability (see
entropy decomposition in Table A5).

Margins & Tensor 8.7% Tensor 4.7%
Si Ti C

1 6 1 4 pft1 4
2 5 2 4 pft4 −13

>2 4 >2 3 pft5 4
>7 12 >4 7 pft6 −7

>25 −3 >7 21 pft7 2
>50 −2 >20 11 pft8 0
>100 −69 >30 26 pft9 −9

>60 24 pft10 3
pft12 10
pft13 −39
pft14 9

Si Ti C

1 0 1 1 pft1 4
2 0 2 3 pft4 15

>2 -3 >2 1 pft5 0
>7 1 >4 3 pft6 9

>25 50 >7 8 pft7 0
>50 −2 >20 −3 pft8 −26
>100 −44 >30 −62 pft9 10

>60 18 pft10 1
pft12 0
pft13 −35
pft14 0



Entropy 2019, 21, 1112 23 of 24

Table A5. CTR-tensor entropy decomposition for the FCA3 of the multiway table Si× Ti× C: the four
best rank-one tensors, Equation (24), representing altogether 73% of variability

Hu(.) Tensor 44.3% Tensor 15.4% Tensor 8.7% Tensor 4.66%

Si 0.985 0.985 0.571 0.483
Ti 0.870 0.919 0.870 0.598
C 0.920 0.471 0.806 0.683

CTR− tensor 0.923 0.771 0.755 0.594
repeat of Table 4

Hu(.) Tensor 40.9% Tensor 16.70% Tensor 9.54% Tensor 3.55%

Si 0.786 0.661 0.786 0.929
Ti 0.596 0.596 0.908 0.830
C 0.894 0.830 0.452 0.356

CTR− tensor 0.765 0.703 0.701 0.683
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