
entropy

Article

Covariant Relativistic Non-Equilibrium
Thermodynamics of Multi-Component Systems †

Wolfgang Muschik

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany;
muschik@physik.tu-berlin.de
† In memory of Robert Trostel.

Received: 9 September 2019; Accepted: 21 October 2019; Published: 24 October 2019
����������
�������

Abstract: Non-equilibrium and equilibrium thermodynamics of an interacting component in a
relativistic multi-component system is discussed covariantly by exploiting an entropy identity.
The special case of the corresponding free component is considered. Equilibrium conditions and
especially the multi-component Killing relation of the 4-temperature are discussed. Two axioms
characterize the mixture: additivity of the energy momentum tensors and additivity of the 4-entropies
of the components generating those of the mixture. The resulting quantities of a single component and
of the mixture as a whole, energy, energy flux, momentum flux, stress tensor, entropy, entropy flux,
supply and production are derived. Finally, a general relativistic 2-component mixture is discussed
with respect to their gravitation generating energy–momentum tensors.

Keywords: general-covariant multi-component systems; entropy identity; entropy balance of a
component of the mixture; entropy balance of the mixture; multi-temperature relaxation; equilibrium
conditions: 4-temperature’s Killing relation; extended Belinfante/Rosenfeld procedure; 2-component
plain-ghost mixture

1. Introduction

The treatment of multi-component systems is often restricted to transport phenomena in
chemically reacting systems, which means the mixture consisting of different components is shortly
described by 1-component quantities such as temperature, pressure and energy that are not retraced to
the corresponding quantities of the several components of the multi-component system. That is the
case in non-relativistic physics [1–3] as well as in relativistic physics [4–8]. In this paper, the single
component as an interacting member of the mixture is investigated. Thus, each component of the
mixture is equipped with its own temperature, pressure, energy and mass density, which all together
generate the corresponding quantities of the mixture.

Considering a multi-component system, three items have to be distinguished: one component as
a member of the multi-component system which interacts with all the other components of the system;
the same component as a free 1-component system separated from the multi-component system;
and the multi-component system itself as a mixture. which is composed of its components. Here,
all three items are discussed in a covariant-relativistic framework. For finding out the entropy-flux,
-supply, -production and -density, a special tool is used: the entropy identity which constrains the
possibility of an arbitrary choice of these quantities [9–12]. Following J. Meixner and J.U. Keller that
entropy in non-equilibrium cannot be defined unequivocally [13–17], the entropy identity is only an
(well set up) ansatz for constructing a non-equilibrium entropy and further corresponding quantities.
This fact in mind, a specific entropy and the corresponding Gibbs and Gibbs–Duhem equations are
derived. The definition of the rest mass flux densities, of the energy and momentum balances and
of the corresponding balances of the spin tensor are taken into account as constraints in the entropy
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identity by introducing fields of Lagrange multipliers. The physical dimensions of these factors allow
determining their physical meaning.

Equilibrium is defined by equilibrium conditions, which are divided into basic ones given by
vanishing entropy-flux, -supply and -production and supplementary ones such as vanishing diffusion
flux, vanishing heat flux and zero rest mass production [11,12]. The Killing relation of the 4-temperature
concerning equilibrium is shortly discussed. Constitutive equations are out of scope of this paper.
(According to the material theory, the strict distinction between (basic) balance equations, which
are valid for arbitrary materials and constitutive equations characterizing special materials is made.
Introducing the constitutive equations into the balances result in a set of differential equations, which
solve the problem (see Section 9).)

The paper is organized as follows: After this Introduction, the kinematics of a multi-component
system is considered in the next two sections for introducing the mass flux and the diffusion flux
densities. The energy–momentum tensor is decomposed into its (3+1)-split, and the entanglement of
the energy and momentum balances are discussed, followed by non-equilibrium thermodynamics of an
interacting component of the mixture and that of the corresponding free component. The equilibrium
of both is considered. Thermodynamics of the mixture starts with three axioms: additivity of the mass
flux densities, of the energy momentum tensors and of the 4-entropies of the components resulting
in those of the mixture. Entropy, and entropy-flux, -supply and -production are found. The paper
finishes discussing the gravitation generated by a special general-relativistic 2-component system:
one component equipped with a symmetric energy–momentum tensor, a mass density and vanishing
external force density, the other one with a skew-symmetric energy–momentum tensor, an external
force density and vanishing mass density. A summary and an appendix are added.

2. Kinematics

2.1. The Components

We consider a multi-component system consisting of Z components. The component index A runs
from 1 to Z. Each component has its own rest frame BA in which the rest mass density $A is locally
defined (more details in Appendix A.1) These remaining mass densities are relativistic invariants and
therefore frame independent.

In general, the components have different 4-velocities, namely uA
k , A = 1, 2, ..., Z; k = 1, ..., 4,

which all are tensors of first order under Lorentz transformation. We now define the component mass
flux density as a 4-tensor of first order and the component mass production term as a scalar

NA
k := $AuA

k , NAk
;k = ΓA, NA

k NAk = ($A)2c2 ≥ 0. (1)

Here, Equation (1)2 is the mass balance equation of the A-component. Consequently, we introduce
the basic fields of the components

{$A, uA
k }, $A ≥ 0, uA

k uAk = c2, ∀A (2)

The mass production term has two reasons: an external one by mass supply and one internal one
by chemical reactions

ΓA = (ex)ΓA +(in)ΓA. (3)

The external mass supply (ex)ΓA depends on the environment of the system, whereas (in)ΓA is
determined by chemical reactions depending on the set of frame-independent stoichiometric equations,
which are discussed in Appendix A.3.
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2.2. The Mixture

As each component, the multi-component system also has a mass density $ and a 4-velocity uk,
which are determined by the partial quantities of the components. For deriving $ and uk, we apply the
nearly self-evident:

� Mixture Axiom: The balance equation of a mixture looks like the balance equation of a one-component
system. �

Especially here, the mixture axiom is postulated for the balance equations of mass, energy–momentum
and entropy. According to the mixture axiom, the mass balance of the mixture looks according to (1)2

Nk
;k = Γ, Γ = 0, (4)

with vanishing total mass production, if the mass of the mixture is conserved (the mixture as a
closed system).

Now, the question arises: Which quantities of the components of the mixture are additive?
Obviously, neither the mass densities $A nor the 4-velocities uA

k are additive quantities according to
their definitions. Consequently, we demand in accordance with the mixture axiom that the mass flux
densities are additive. (The sign

•
= stands for a setting and := for a definition which is a formal short

form for an expression without any physical background. A setting is a definition induced by physics
determining the axiomatic structure of a theory.) That is,

Setting I:

∑
A

NA
k

•
= Nk =︸︷︷︸

↓

$uk =︸︷︷︸
↓

∑
A

$AuA
k −→ uk = ∑

A

$A

$
uA

k . (5)

mixture axiom (1)1 (6)

For the present, mass density $ and 4-velocity uk of the mixture are unknown. Of course, they
depend on the basic fields of the components in Equation (2). Contraction with uk and use of Equation
(5)2,3 results in

$ =
1
c2 ∑

A
$AuA

k uk =
1
c2 Nkuk =

1
c2 Nk

1
$

Nk −→ $ = ±1
c

√
Nk Nk, (7)

(the sign is determined below) or in more detail

$ = ±1
c

√
∑
A,B

$A$BuA
k uBk. (8)

The mass density $ and the 4-velocity uk of the mixture are expressed by those of the components
according to Equations (8) and (5)4. According to Equation (5)4, the 4-velocity of the mixture is a
weighted mean value of the 4-velocities of the components. For the mass density, we have according
to Equation (7)1 also a with the Kluitenberg factor f A (>0 results from the representation of the
4-velocities in components) weighted mean value of the mass density components [18]

In Equation (7)1 appears the Kluitenberg factor [18]

f A :=
1
c2 uA

k uk =
1
c2

(
uA

α uα + uA
4 u4

)
=

=
1
c2

{
(−vA · v + c2)(1− vA/c2)−1/2(1− v/c2)−1/2

}
> 0 (9)

−→ $ = ∑
A

f A$A = ∑
A

f A(uA
k , uk)$A > 0, (10)
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resulting according to Equations (7)1 and (5)4 in the entanglement of $ and uk, which are not
independent of each other

$ = R($A, uA
k , uk), uk = Uk($

A, uA
k , $). (11)

A comparison of Equation (10) with Equation (7)4 results in

Nk Nk > 0 −→ ukuk > 0, (12)

according to Equation (5)2, thus demonstrating that uk is really a 4-velocity.
According to Equations (5)1 and (1)2, we obtain the additivity of the mass production terms

Nk
;k = ∑

A
NAk

;k = ∑
A

ΓA = Γ −→ ∑
A

exΓA = exΓ, ∑
A

inΓA = inΓ. (13)

The sign of inΓ depends on the considered reaction: it vanishes for chemical reactions and may be
different for nuclear ones.

2.3. The Diffusion Flux

From Equations (5)3 and (9)2 follows

0 = ∑
A

$AuA
k − uk ∑

A
f A$A = ∑

A
$A(uA

k − f Auk). (14)

Introducing the diffusion flux density

JA
k := $A(uA

k − f Auk) = NA
k − $A f Auk −→ ∑

A
JA
k =: Jk = 0, (15)

we obtain

JA
k uk = $A(uA

k uk − f Ac2) = 0, (16)

JA
k uAk = c2$A[1− ( f A)2] =: c2$AwA = wANA

k uAk, (17)

1− wA ≥ 0. (18)

By introducing the projectors

hAm
l := δm

l −
1
c2 uAmuA

l , hm
l := δm

l −
1
c2 umul , (19)

we obtain the following properties of the diffusion flux density:

JAmhk
m = JAk = NAmhk

m (20)

JAmhAk
m = $A f A( f AuAk − uk) (21)

JAk = JAmhAk
m + $AwAuAk = JAmhAk

m + wANAk (22)

JAk
;k = (JAmhAk

m );k + ($AwA);kuAk + $AwAuAk
;k. (23)

According to Equation (20)2, the diffusion flux density is that part of the mass flux density which
is perpendicular to the 4-velocity of the mixture. The diffusion flux density vanishes in 1-component
systems (uA

k ≡ uk) according to f A = f = 1 and Equation (15)1.
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3. The Energy–Momentum Tensor

3.1. Free and Interacting Components

The energy–momentum tensor TAkl of the A-component consists of two parts

TAkl =
0
T Akl + ∑

B
WAkl

B , WBkl
B = 0. (24)

Here,
0
T Akl is the energy–momentum tensor of the free A-component, which is the case if there are

no interactions between the A-component and the other ones. WAkl
B describes the interaction between

the B-component and the A-component. The interaction between the external environment and the
A-component is given by the external force density kAl , which appears in the energy–momentum
balance equation

TAkl
;k = kAl = ΩAl +

1
c2 uAluA

mkAm, ΩAluA
l = 0, (25)

and in the balance equations of

energy: uA
l TAkl

;k = uA
l kAl =: ΩA, (26)

and momentum: hAm
l TAkl

;k = hAm
l kAl =: ΩAm. (27)

Consequently, the interaction of the A-component with the other components of the mixture
modifies the energy–momentum tensor of the free A-component. Additionally, its interaction with the
environment shows up in the source of the energy–momentum balance. According to its definition,
TAkl is the energy–momentum tensor of the “A-component in the mixture”.

3.2. (3+1)-Split

The (3+1)-split of the in general non-symmetric energy–momentum tensor of the A-component is

TAkl =
1
c2 eAuAkuAl + uAk pAl +

1
c2 qAkuAl + tAkl . (28)

This energy–momentum tensor of the material theory is not induced by a Lagrangian or a
variational problem. It presents a quantity on its own. An example is the energy–momentum tensor
which is needed for describing liquid crystals or polar fluids: it is non-symmetric because the stress
tensor tkl of these materials is non-symmetric and a Lagrangian with respect to the equations of
motion—here the balance equations of the basic fields—does not exist. This is the reason Equation (28)
is used in this paper.

The (3+1)-components of the energy–momentum tensor in Equation (28) are (the (3+1)-split is
made by taking the physical meaning of Equations (29) and (30) into account, see Equation (36) to
Equation (39))

eA :=
1
c2 TAjmuA

j uA
m, pAl :=

1
c2 hAl

m TAjmuA
j , (29)

qAk := hAk
j TAjmuA

m, tAkl := hAk
j TAjmhAl

m , (30)

qAkuA
k = 0, pAluA

l = 0, tAkluA
k = 0, tAkluA

l = 0. (31)

The (3+1)-split of tensors is a usual tool in relativistic continuum physics. The
(3+1)-components—generated by the split—have physical significance which originally is hidden in
the unsplit tensors. Thus, we generate by (3+1)-splitting the following covariant quantities of the
A-component: the energy density eA, the momentum flux density pAl , the energy flux density qAk, the
stress tensor tAkl .
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The symmetric part of the energy–momentum tensor in Equation (28) is

TA(kl) =
1
c2 eAuAkuAl +

1
2c

uAk
(

cpAl +
1
c

qAl
)
+

1
2c

(
cpAk +

1
c

qAk
)

uAl + tA(kl), (32)

and its anti-symmetric part is

TA[kl] =
1
2c

uAk
(

cpAl − 1
c

qAl
)
− 1

2c

(
cpAk − 1

c
qAk
)

uAl + tA[kl]. (33)

The stress tensor is composed of the pressure pA > 0, ∀A, and the viscous tensor πAkl

tAkl = −pAhAkl + πAkl , tAk
k = −3pA. (34)

For interpreting the (3+1)-components, we now consider their physical dimensions. According to
Equations (19) and (9)1, we have (the bracket [�] signifies the physical dimension of �)

[hAl
m ] = 1, [ f A] = 1. (35)

By taking Equations (34), (35)1 and (28) into account, we obtain

[tAkl ] = [pA] = [πAkl ] = [eA] = [qAk]
s
m

= [pAl ]
m
s

, (36)

pressure = [pA] =
N
m2 =

Nm
m3 = energy density =

=
kg m

s2
1

m2 = kg
m
s

1
m3

m
s

= momentum flux density, (37)

[qAk] = [eA]
m
s

=
Nm
m3

m
s

= energy flux density, (38)

[pAl ] = kg
m
s

1
m3 = momentum density. (39)

The (3+1)-split in Equation (28) of the energy–momentum tensor can be written in a more compact
form

TAkl =
1
c2 QAkuAl + τAkl , (40)

ulTAkl =: QAk = eAuAk + qAk, hm
l TAkl =: τAkm = uAk pAm + tAkm. (41)

The energy–momentum tensor in Equation (40) is that of the A-component in the mixture,
which means—as discussed in Section 3.1—the A-component is not a free system and the
(3+1)-split-components eA, qAk, pAl and tAkl include the internal interaction of the A-component with
all the other ones.

3.3. Additivity

We now consider the equivalent-system composed of the Z components: that is the mixture which
consists of these Z interacting components. Because this interaction is already taken into account by
the (3+1)-split-components, the energy–momentum tensors of the components are additive without
additional interaction terms. Consequently, the energy–momentum tensor Tkl of the mixture is

Setting II:

Tkl :=
1
c2 Qkul + τkl •= ∑

A
TAkl = ∑

A

( 1
c2 QAkuAl + τAkl

)
. (42)
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Multiplication with ul results by use of Equations (9)1 and (41)2 in

Qk = ∑
A

(
QAk f A + τAklul

)
, (43)

and by multiplication with hm
l , Equation (42) results in

τkm = ∑
A

(
QAkgAm + τAklhm

l

)
, (44)

gAm :=
1
c2 uAlhm

l =
1
c2 (u

Am − f Aum) =
1

c2$A JAm. (45)

For a 1-component system (uA
k ≡ uk), we obtain according to Equation (45) gAm = gm = 0 taking

f A = f = 1 into account.

3.4. (3+1)-Components of the Mixture

Starting with Equation (41), we obtain

QAkuA
k = c2eA, QAkhAm

k = qAm, (46)

τAkmuA
k = c2 pAm, τAkmhAj

k = tAjm. (47)

According to Equations (40) and (42)1, these relations are analogous to those of the mixture.
Consequently, from Equation (43) follows

Qkuk =: c2e = ∑
A

(
QAk f Auk + τAkluluk

)
, (48)

and with Equation (46)1 resulting in the energy density of the mixture

c2e = ∑
A

(
c2eA( f A)2 + qAk f Auk + c2 pAl f Aul + tAkluluk

)
. (49)

From Equation (43) follows

Qkhm
k =: qm = ∑

A

(
f AQAkhm

k + hm
k τAklul

)
, (50)

and with Equation (46)2 resulting in the energy flux density of the mixture

qm = ∑
A

(
c2eA f AgAm + qAk f Ahm

k + c2 pAl gAmul + tAklhm
k ul

)
. (51)

From Equation (44) follows

τkmuk =: c2pm = ∑
A

(
QAkukgAm + τAklhm

l uk

)
, (52)

and with Equation (47)1 resulting in the momentum density of the mixture

c2pm = ∑
A

(
c2eA f AgAm + qAkukgAm + c2 pAl f Ahm

l + tAklhm
l uk

)
. (53)

From Equation (47)2 follows finally

τkmhj
k =: tjm = ∑

A

(
QAkgAmhj

k + τAklhm
l hj

k

)
(54)
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which by taking Equation (41) into account results in the stress tensor and the pressure of the mixture

tjm = ∑
A

(
c2eAgAjgAm + qAkhj

kgAm + c2 pAl gAjhm
l + tAklhj

khm
l

)
, (55)

p = −1
3
tjmhjm = −1

3 ∑
A

(
QAkgAmhj

k + τAklhm
l hj

k

)
hjm =

= −1
3 ∑

A

( 1
c2 QAkuAphkp + τAklhkl

)
=

= −1
3 ∑

A

( 1
c2 (e

AuAk + qAk)uAphkp + (uAk pAl + tAkl)hkl

)
. (56)

The additivity of the energy–momentum tensors in Equation (42) results in Equations (49), (51),
(53) and (55), relations which express the (3+1)-components of the energy–momentum tensor of the
mixture as those of the components and their velocities{

e, qk, pk, tkl
}

= F
(

eA, qAk, pAk, tAkl , uAk, $($A, uA
k , uk), uk($A, uA

k , $)
)

, (57)

Tkl =
1
c2 eukul + ukpl +

1
c2 q

kul + tkl , tkl = −phkl +�πkl . (58)

The 4-velocity uk is given by Equation (5)4.
The influence of the additivity of the energy–momentum tensors on the balance equations of

energy and momentum is investigated in the next section.

4. Entanglement of Energy and Momentum Balances

If the energy-momentum tensors of the A-component and of the mixture are TAkl and Tkl ,
the energy and momentum balances are according to the mixture axiom by use of Equations (26)
and (27)

energy: uA
l TAkl

;k = ΩA, ulT
kl

;k = Ω, (59)

momentum: hAm
l TAkl

;k = ΩAm, hm
l T

kl
;k = Ωm. (60)

The balances in Equations (59)3 and (60)3 follow from Equations (26) and (27) by the mixture
axiom. Here, ΩA and Ω are the energy supplies, and ΩAm and Ωm the momentum supplies of the
A-component and of the mixture.

The (3+1)-split of the divergence of the energy–momentum tensor of the A-component results by
use of Equation (19)1 in

δm
l TAkl

;k = TAkm
;k = hAm

l TAkl
;k +

1
c2 uAmuA

l TAkl
;k. (61)

If the component index A is cancelled in Equation (61), we obtain the decomposition of the
divergence of the energy–momentum tensor of the mixture. Taking Equations (59) and (60) into
account, these divergences can be written as

TAkm
;k = ΩAm +

1
c2 uAmΩA, Tkm

;k = Ωm +
1
c2 umΩ. (62)

The additivity of the energy–momentum tensors in Equation (42) results in the additivity of the
force densities (this is a strong argument supporting the validity of Setting II in Equation (42))

km = Ωm +
1
c2 umΩ = ∑

A

(
ΩAm +

1
c2 uAmΩA

)
= ∑

A
kAm. (63)



Entropy 2019, 21, 1034 9 of 43

Taking Equations (26)2 and (27)2 into account, we obtain by multiplication of Equation (63) with
um and hp

m, respectively,

Ω = ∑
A

(
ΩAmum + f AΩA

)
, Ωp = ∑

A

(
ΩAmhp

m + gApΩA
)

. (64)

Inserting Equations (26) and (27), we obtain in more detail

ulT
kl

;k = ∑
A

{(
hAm

l um + f AuA
l

)
TAkl

;k

}
, (65)

hp
l T

kl
;k = ∑

A

{(
hAm

l hp
m + gApuA

l

)
TAkl

;k

}
. (66)

As Equation (64) indicates, the additivity of the energy–momentum tensors causes that the
supplies of energy and momentum are entangled, expressed by the inequalities

∑
A

f AΩA 6= Ω, ∑
A

ΩAmhp
m 6= Ωp. (67)

In addition, if the total force density supply and the total momentum supply are zero according
to Equation (62)2,

Tkl
;k = 0 −→ Ωiso = 0 ∧ Ωm

iso = 0, (68)

(∧: the conjunction of the formal logic) we obtain according to Equation (64)1,2

∑
A

ΩAm
iso um = −∑

A
f AΩA

iso 6= 0, (69)

∑
A

ΩAm
iso hp

m = −∑
A

gApΩA
iso 6= 0. (70)

As expected, the supplies of energy and momentum remain entangled in a system of vanishing
total force and momentum densities. The entanglement vanishes for such isolated systems for which
the force and momentum supplies for all A-components are zero.

5. The Spin Tensor

5.1. (3+1)-Split

The (3+1)-split of the spin tensor of an A-component is defined by inserting Equation (19)1 into

SAkab = SAmpqδk
mδa

pδb
q . (71)

Introducing the following covariant abbreviations

sAmj := SAkabuA
k hAm

a hAj
b , sAmji := SAkabhAm

k hAj
a hAi

b (72)

ΞAm := SAkabuA
k uA

a hAm
b , ΞAmj := SAkabhAm

k uA
a hAj

b , (73)

Equation (71) results in

SAkab = −SAkba =

= uAa
( 1

c4 uAkΞAb +
1
c2 ΞAkb

)
− uAb

( 1
c4 uAkΞAa +

1
c2 ΞAka

)
+ sAkab +

1
c2 uAksAab. (74)

By Equations (72) and (73), the following quantities are introduced: the spin density sab, the spin
density vector Ξb, the couple stress skab and the spin stress Ξkb.
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Analogously to Equations (40) and (41), a more compact form of the spin tensor is

SAkab = 2uA[aLAkb] + MAkab, (75)

LAkb :=
1
c4 uAkΞAb +

1
c2 ΞAkb, MAkab := sAkab +

1
c2 uAksAab. (76)

Taking Equations (72) and (73) into account, we obtain

SAkabuA
a = c2LAkb, SAkabhAm

a hAn
b = MAkmn, (77)

expressions which are needed for formulating the entropy identity below.

5.2. Additivity

Analogously to Setting II, we introduce the spin tensor of the mixture as the sum of the spin
tensors of the A-components.

Setting III:

Skab := 2u[aLkb] + Mkab •
= ∑

A
SAkab = ∑

A

(
2uA[aLAkb] + MAkab

)
=

= ∑
A

{
2uA[a

( 1
c4 uAkΞAb] +

1
c2 ΞAkb]

)
+ sAkab +

1
c2 uAksAab.

}
. (78)

According to the mixture axiom, the spin tensor of the mixture is defined by Equation (78)1 as
spin of a 1-component system resulting from Equation (75) by setting A ≡ 1→ blank.

5.3. (3+1)-Components of the Mixture

From Equation (78)1, we obtain by taking the mixture axiom and Equation (77) into account

Skabua = c2Lab = ∑
A

(
2uA[aLAkb] + MAkab

)
ua, (79)

Skabhm
a hn

b = Mkmn = ∑
A

(
2uA[aLAkb] + MAkab

)
hm

a hn
b . (80)

The (3+1)-components of the spin tensor of the mixture result from Equations (72) and (73) using
the mixture axiom

smj = Skabukhm
a hj

b, smji = Skabhm
k hj

ahi
b (81)

Ξm = Skabukuahm
b , Ξmj = Skabhm

k uahj
b, (82)

and by inserting Equation (78)4 or Equation (79) and Equation (80).

5.4. Spin Balance Equation

If there exists an external angular momentum density

mab = −mba, (83)

a spin balance equation of each A-component and of the mixture has to be taken into account

SAkab
;k =

1
c2 mAab, Skab

;k =
1
c2 mab. (84)



Entropy 2019, 21, 1034 11 of 43

According to Setting III,

∑
A

mAab = mab (85)

the additivity of the partial angular momenta is valid.

6. Thermodynamics of Interacting Components

6.1. The Entropy Identity

Starting with the (3+1)-split of the entropy 4-vector and the entropy balance equation

SAk = sAuAk + sAk −→ SAk
;k = σA + ϕA, (86)

sA :=
1
c2 SAkuA

k , sAk := SAmhAk
m (87)

we have to define the following four quantities in accordance with the balance equations of mass
in Equation (1)2, of energy in Equation (26), of momentum in Equation (27) and of spin in Equation
(84)1: the entropy density sA, the entropy flux density sAk, the entropy production σA and the
entropy supply ϕA. Because there is no unequivocal entropy [15] and, consequently, also no unique
entropy density, entropy-flux, entropy-production and entropy-supply, we need a tool which helps
to restrict the arbitrariness for defining entropies. Such a tool is the entropy identity [10,11], which
is generated by adding suitable zeros to the entropy in Equation (86)1, which are related to the
balances that are taken into account. These zeros are generated by choosing the following expressions:
NAk, uA

l TAkl , hAm
l TAkl , uA

a SAkab, hAm
a hAn

b SAkab. Consequently according to Equations (1), (41) and
(77), the entropy identity is chosen as

SAk ≡ sAuAk + sAk + κA
(

NAk − $AuAk
)
+

+λA
(

uA
l TAkl − eAuAk − qAk

)
+

+λA
m

(
hAm

l TAkl − uAk pAm − tAkm
)
+ (88)

+ΛA
m

(
uA

a hAm
b SAkab − 1

c2 uAkΞAm − ΞAkm
)
+

+ΛA
mn

(
hAm

a hAn
b SAkab − sAkmn − 1

c2 uAksAmn
)

.

The fields of Lagrange multipliers κA, λA, λA
m, ΛA

m and ΛA
mn are quantities whose physical

meaning becomes clear in the course of the exploitation of the entropy identity. Here, κA and λA are
scalars, undefined for the present, and for the likewise arbitrary quantities λA

m, ΛA
m and ΛA

ab, tensors
of first and second order. An identification of these Lagrange multipliers is given below after the
definitions of entropy flux density, entropy production density and supply in Section 6.3.

The entropy identity in Equation (89) depends on the balances which are taken into consideration
as constraints: the balances of mass, energy, momentum and spin. The electro-magnetic field and
quantum fields are included, if the energy–momentum tensor and the spin tensor of these fields are
inserted into Equation (89).

Considering the third, fourth and fifth rows of Equation (89), we obtain that the velocity parts of
λA

m, ΛA
m and ΛA

mn can be set to zero according to Equations (72) and (73). The symmetric part of ΛA
mn

does not contribute to the fifth row of Equation (89) and therefore it is set to zero, too

λA
mhAm

l = λA
l , ΛA

mhAm
b = ΛA

b , ΛA
mnhAm

a hAn
b = ΛA

ab = −ΛA
ba. (89)
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The entropy identity in Equation (89) becomes by rearranging

SAk ≡ uAk
(

sA − κA$A − λAeA − λA
m pAm −ΛA

m
1
c2 ΞAm −ΛA

mn
1
c2 sAmn

)
+

+sAk + κANAk +
(

λAuA
l + λA

l

)
TAkl − λAqAk − λA

l tAkl + (90)

+
(

ΛA
b uA

a + ΛA
ab

)
SAkab −ΛA

mΞAkm −ΛA
mnsAkmn.

This identity transforms into an other one by differentiation and by taking the balance equations
of mass in Equation (1)2, of energy–momentum in Equation (25), of spin in Equation (84)1 and of
entropy in Equation (86)2 into account.

SAk
;k ≡

[
uAk

(
sA − κA$A − λAeA − λA

m pAm −ΛA
m

1
c2 ΞAm −ΛA

mn
1
c2 sAmn

)]
;k
+

+sAk
;k + κA

;k NAk + κA
(
(ex)ΓA +(in)ΓA

)
+

+
(

λAuA
l + λA

l

)
;k

TAkl +
(

λAuA
l + λA

l

)
kAl −

−
(

λAqAk
)

;k −
(

λA
l tAkl

)
;k +

+
(

ΛA
b uA

a + ΛA
ab

)
;k

SAkab +
(

ΛA
b uA

a + ΛA
ab

) 1
c2 mAab −

−
(

ΛA
mΞAkm

)
;k
−
(

ΛA
mnsAkmn

)
;k

= σA + ϕA. (91)

Here, σA is the entropy production and ϕA the entropy supply of the A-component. The identity
in Equation (91) changes into the entropy production, if sA, sAk and ϕA are specified below.

Rearranging the entropy identity results in

SAk
;k ≡ uAk

;k

(
sA − κA$A − λAeA − λA

m pAm −ΛA
m

1
c2 ΞAm −ΛA

mn
1
c2 sAmn

)
+

+uAk
(

sA − κA$A − λAeA − λA
m pAm −ΛA

m
1
c2 ΞAm −ΛA

mn
1
c2 sAmn

)
;k
+

+
(

sAk − λAqAk − λA
l tAkl −ΛA

mΞAkm −ΛA
mnsAkmn

)
;k
+

+κA(ex)ΓA +
(

λAuA
l + λA

l

)
kAl +

(
ΛA

b uA
a + ΛA

ab

) 1
c2 mAab +

+κA
;k NAk + κA(in)ΓA +

(
λAuA

l + λA
l

)
;kTAkl +

(
ΛA

b uA
a + ΛA

ab

)
;k

SAkab =

= σA + ϕA. (92)

Now, we look for terms of the fifth row of Equation (92) which fit into the first three rows of
Equation (92). The shape of these terms is [uAk

;kscalar/uAkscalar;k] according to the first two rows of
Equation (92) and [ΨAk

;k (ΨAkuA
k = 0)] according to the third row. None of the seven terms of the

fourth and fifth rows of Equation (92) have this shape, but inserting the energy–momentum tensor and
the spin tensor into the fifth row of Equation (92) may generate such terms.

The third term of the fifth row of Equation (92) becomes

(λAuA
l );kTAkl =

(
λA

;kuA
l + λAuA

l;k

)( 1
c2 eAuAkuAl + uAk pAl +

1
c2 qAkuAl + tAkl

)
=

=λA
;kuAkeA + λAuA

l;kuAk pAl + λA
;kqAk − pAλAuAk

;k + λAuA
l;kπAkl , (93)

λA
l;kTAkl =λA

l;k

( 1
c2 eAuAkuAl + uAk pAl +

1
c2 qAkuAl + tAkl

)
(94)
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Summing up Equations (93) and (94) results in (the signs �,
︷︸︸︷
� , �︸︷︷︸ and �̃ mark terms which

are related to each other in the sequel)(
λAuA

l + λA
l

)
;k

TAkl = λA
;k

(
qAk + eAuAk

)
+ λAuA

l;k

(
πAkl + uAk pAl

)
−

−pAλAuAk
;k + λA

l;k

( 1
c2 eAuAkuAl + uAk pAl +

1
c2 qAkuAl + tAkl

)
. (95)

Evidently, the term −pAλAuAk
;k belongs to the first row of Equation (92). After having inserted

the underlined term of Equation (95), the first two rows of Equation (92) become (
•

is the “component

time derivative”
•
� A := �A

;kuAk)

uAk
;k

(
sA − κA$A − λAeA − pAλA − λA

m pAm −ΛA
m

1
c2 ΞAm −ΛA

mn
1
c2 sAmn

)
+

+
(

sA − κA$A − λAeA − pAλA︸ ︷︷ ︸−λA
m pAm −ΛA

m
1
c2 ΞAm −ΛA

mn
1
c2 sAmn

)•
+ (pAλA)

•︸ ︷︷ ︸ =
=
[
uAk

(
sA − κA$A − λAeA − pAλA − λA

m pAm −ΛA
m

1
c2 ΞAm −ΛA

mn
1
c2 sAmn

)]
;k
+

+ ˜(pAλA)• . (96)

Thus, a rearranging of the entropy identity in Equation (92) results by taking Equation (96) into
account

SAk
;k ≡[

uAk
(

sA − κA$A − λAeA − pAλA − λA
m pAm −ΛA

m
1
c2 ΞAm −ΛA

mn
1
c2 sAmn

)]
;k
+

+ ˜(pAλA)• +
(

sAk − λAqAk − λA
l tAkl −ΛA

mΞAkm −ΛA
mnsAkmn

)
;k +

+κA(ex)ΓA +
(

λAuA
l + λA

l

)
kAl +

(
ΛA

b uA
a + ΛA

ab

) 1
c2 mAab +

+κA
;k NAk + κA(in)ΓA +

(
ΛA

b uA
a + ΛA

ab

)
;k

SAkab +

+λA
;k

(
qAk + eAuAk

)
+ λAuA

l;k

(
πAkl + uAk pAl

)
+

+
•
λ

A
l

( 1
c2 eAuAl + pAl

)
+ λA

l;k

( 1
c2 qAkuAl + tAkl

)
= σA + ϕA. (97)

The third term of the fourth row of Equation (97) results in(
ΛA

b uA
a + ΛA

ab

)
;k

SAkab =

=
(

ΛA
b;kuA

a + ΛA
b uA

a;k + ΛA
ab;k

)(
uAaLAkb − uAbLAka + MAkab

)
. (98)
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If Equations (89) and (76) are taken into account, these nine terms are:

ΛA
b;kc2LAkb = ΛA

b;k

( 1
c2 uAkΞAb + ΞAkb

)
, (99)

ΛA
b uA

a;k︸︷︷︸ uAa︸︷︷︸ LAkb = 0, (100)

ΛA
ab;kuAaLAkb = ΛA

ab;kuAa
( 1

c4 uAkΞAb +
1
c2 ΞAkb

)
, (101)

−ΛA
b;kuA

a uAbLAka = −ΛA
b;k uA

a︸︷︷︸ uAb
( 1

c4 uAk ΞAa︸︷︷︸+ 1
c2 ΞAka︸︷︷︸ ) = 0, (102)

− ΛA
b︸︷︷︸ uA

a;k uAb︸︷︷︸ LAka = 0, (103)

−ΛA
ab;kuAbLAka = −ΛA

ab;kuAb
( 1

c4 uAkΞAa +
1
c2 ΞAka

)
, (104)

ΛA
b;k uA

a︸︷︷︸MAkab︸ ︷︷ ︸ = 0, (105)

ΛA
b uA

a;k MAkab = ΛA
b uA

a;k

(
sAkab +

1
c2 uAksAab

)
, (106)

ΛA
ab;k MAkab = ΛA

ab;k

(
sAkab +

1
c2 uAksAab

)
. (107)

Rearranging of Equations (99)–(107) results in:

Equations (99) and (106):
•
Λ A

b
1
c2 ΞAb + ΛA

b;kΞAkb −ΛA
b uA

a

(
sAkab

;k +
1
c2

•
s Aab

)
, (108)

Equations (101), (104) and (107):
•
Λ A

ab

( 1
c4 uA[aΞAb] +

1
c2 sAab

)
+ ΛA

ab;k

( 1
c2 uA[aΞAkb] + sAkab

)
. (109)

A comparison of Equations (108) and (109) with the first two rows of Equation (97) demonstrates
that a term which fits into these rows does not appear in Equations (108) and (109). Thus, by taking
Equation (96) into account, a rearranging of the entropy identity in Equation (92) results in

SAk
;k≡[

uAk
(

sA − κA$A − λAeA − pAλA − λA
m pAm −ΛA

m
1
c2 ΞAm −ΛA

mn
1
c2 sAmn

)]
;k
+

+ ˜(pAλA)• +
(

sAk − λAqAk − λA
l tAkl −ΛA

mΞAkm −ΛA
mnsAkmn

)
;k
+

+κA(ex)ΓA +
(

λAuA
l + λA

l

)
kAl +

(
ΛA

b uA
a + ΛA

ab

) 1
c2 mAab +

+κA
;k NAk + κA(in)ΓA + λA

;k

(
qAk + eAuAk

)
+ λAuA

l;k

(
πAkl + uAk pAl

)
+

+
•
λ

A
l

( 1
c2 eAuAl + pAl

)
+ λA

l;k

( 1
c2 qAkuAl + tAkl

)
+

+
•
Λ A

b
1
c2 ΞAb + ΛA

b;kΞAkb −ΛA
b uA

a

(
sAkab

;k +
1
c2

•
s Aab

)
+

+
•
Λ A

ab

( 1
c4 uA[aΞAb] +

1
c2 sAab

)
+ ΛA

ab;k

( 1
c2 uA[aΞAkb] + sAkab

)
=

= σA + ϕA. (110)

This entropy identity is incomplete: the multi-temperature relaxation is missing which is
generated by the different partial temperatures of the components of the mixture. Because of lucidity,
the treatment of multi-temperature relaxation is postponed and is considered in Section 6.4. In the
next section, we now specify sA, sAk, ϕA and σA.
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6.2. Exploitation of the Entropy Identity

6.2.1. Entropy Density, Gibbs and Gibbs–Duhem Equations

We now define the entropy rest density sA according to the first row of Equation (110)

Setting IV:

sA •
= κA$A + λAeA + pAλA + λA

l pAl + ΛA
m

1
c2 ΞAm + ΛA

mn
1
c2 sAmn, (111)

resulting in the specific rest entropy

sA

$
= κA $A

$
+ λA eA

$
+ pAλA 1

$
+ λA

l
pAl

$
+ ΛA

m
1
c2

ΞAm

$
+ ΛA

mn
1
c2

sAmn

$
. (112)

A non-equilibrium state space—which is spanned by the independent variables—contains, besides
$A, $, and eA, the spin variables ΞAm and sAmn as well as pAl , which extends the state space in
the sense of Extended Thermodynamics (if the energy–momentum tensor is presupposed to be
symmetric—consequently pAl = (1/c2)qAl is valid according to Equation (33)—the momentum
density is replaced by energy flux density which in non-relativistic Extended Thermodynamics is set
as a non-equilibrium variable, even if the stress tensor is non-symmetric) [19,20]. Consequently, we
choose the state space [21]

zA =
(

cA,
1
$

,
eA

$
,

pAl

$
,

ΞAm

$
,

sAmn

$

)
, cA :=

$A

$
, (113)

introducing the concentration cA.
The corresponding Gibbs equation according to Equations (112) and (113) is

( sA

$

)•
= κA •

c A + λA
( eA

$

)•
+ pAλA

(1
$

)•
+ λA

l

( pAl

$

)•
+

+ΛA
m

1
c2

(ΞAm

$

)•
+ ΛA

mn
1
c2

( sAmn

$

)•
(114)

Differentiation of Equation (112) results in the Gibbs–Duhem equation by taking (114) into account

0 =
•
κ AcA+

•
λ

A eA

$
+ (pAλA)

• 1
$
+
•
λ

A
l

pAl

$
+

•
Λ A

m
1
c2

ΞAm

$
+

•
Λ A

mn
1
c2

sAmn

$
, (115)

resulting in
˜(pAλA)• = −

•
κ A$A−

•
λ

AeA−
•
λ

A
l pAl−

•
Λ A

m
1
c2 ΞAm−

•
Λ A

mn
1
c2 sAmn. (116)
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Taking Equations (116) and (111) into account, the entropy identity in Equation (110) becomes

SAk
;k≡ −

•
κ A$A︸ ︷︷ ︸− •λ AeA −

•̂
λ A

l pAl −
˜•

Λ A
m

1
c2 ΞAm −

︷ ︸︸ ︷
•
Λ A

mn
1
c2 sAmn +

+
(

sAk − λAqAk − λA
l tAkl −ΛA

mΞAkm −ΛA
mnsAkmn

)
;k
+

+κA(ex)ΓA +
(

λAuA
l + λA

l

)
kAl +

(
ΛA

b uA
a + ΛA

ab

) 1
c2 mAab +

+ κA
;k NAk︸ ︷︷ ︸+κA(in)ΓA + λA

;k

(
qAk + eAuAk

)
+ λAuA

l;k

(
πAkl + uAk pAl

)
+

+
•̂
λ A

l

( 1
c2 eAuAl + p̂Al

)
+ λA

l;k

( 1
c2 qAkuAl + tAkl

)
+

+
˜•

Λ A
b

1
c2 ΞAb + ΛA

b;kΞAkb −ΛA
b uA

a

(
sAkab

;k +
1
c2

•
s Aab

)
+

+

︷︸︸︷
•
Λ A

ab

( 1
c4 uA[aΞAb] +

︷ ︸︸ ︷
1
c2 sAab

)
+ ΛA

ab;k

( 1
c2 uA[aΞAkb] + sAkab

)
=

= σA + ϕA. (117)

The marked terms cancel each other.
Taking Equations (15)2 and (22)2 into account, we consider

0 = κA
;k NAk︸ ︷︷ ︸− •

κ A$A︸ ︷︷ ︸ = κA
;k

(
NAk − NAk

)
=

= κA
;k

(
JAk + $A f Auk − JAk − $A f Auk

)
= κA

;k

(
JAk − JAk

)
=

= κA
;k JAk − κA

;k

(
JAmhAk

m + wANAk
)

=

= κA
;k

(
JAk − wANAk︸ ︷︷ ︸

JAmhAk
m

)
−
(

κA JAmhAk
m

)
;k
+ κA

(
JAmhAk

m

)
;k

(118)

This zero contains the diffusion flux which does not appear in the entropy identity in Equation
(89) up to here. That means the diffusion is missing in Equation (117), and we do not ignore the
underbraced terms in Equation (118)1, but we insert Equation (118)3 into Equation (117). Consequently,
the entropy identity results in

SAk
;k ≡

(
sAk − λAqAk − λA

l tAkl −ΛA
mΞAkm −ΛA

mnsAkmn − κA JAmhAk
m

)
;k

+κA(ex)ΓA +
(

λAuA
l + λA

l

)
kAl +

(
ΛA

b uA
a + ΛA

ab

) 1
c2 mAab +

+κA
;k JAmhAk

m + κA
[
(in)ΓA +

(
JAmhAk

m

)
;k

]
+

+λA
;kqAk + λAuA

l;k

(
πAkl + uAk pAl

)
+

+ λA
l;k

( 1
c2 eAuAkuAl +

1
c2 qAkuAl + tAkl

)
+

+ΛA
b;kΞAkb −ΛA

b uA
a

(
sAkab

;k +
1
c2

•
s Aab

)
+

+
•
Λ A

ab
1
c4 uA[aΞAb] + ΛA

ab;k

( 1
c2 uA[aΞAkb] + sAkab

)
=

= σA + ϕA. (119)

We now specify the entropy flux density sAk and the entropy supply ϕA in the next section.
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6.2.2. Entropy Flux, -Supply and -Production

According to the first row of Equation (119), we define the entropy flux density

Setting V:

sAk •
= λAqAk + λA

l tAkl + ΛA
mΞAkm + ΛA

mnsAkmn + κA JAmhAk
m . (120)

We now split the entropy identity in Equation (119) into the entropy production and the entropy
supply. For this end, we need a criterion to distinguish between entropy production and supply. Such
a criterion is clear for discrete systems: a local isolation suppresses the entropy supply but not the
entropy production. Isolation means: the second row in Equation (119) vanishes, if the A-component is
isolated from the exterior of the mixture. Consequently, we define the entropy supply as follows

Setting VI:

ϕA •
= κA(ex)ΓA +

(
λAuA

l + λA
l

)
kAl +

(
ΛA

b uA
a + ΛA

ab

) 1
c2 mAab, (121)

with the result that the entropy identity in Equation (119) transfers into the entropy production density
by taking Equations (120) and (121) into account

σA = +κA
;k JAmhAk

m + κA
[
(in)ΓA +

(
JAmhAk

m

)
;k

]
+

+λA
;kqAk + λAuA

l;k

(
πAkl + uAk pAl

)
+

+ λA
l;k

( 1
c2 eAuAkuAl +

1
c2 qAkuAl + tAkl

)
+

+ΛA
b;kΞAkb −ΛA

b uA
a

(
sAkab

;k +
1
c2

•
s Aab

)
+

+
•
Λ A

ab
1
c4 uA[aΞAb] + ΛA

ab;k

( 1
c2 uA[aΞAkb] + sAkab

)
. (122)

As expected, the entropy production is composed of terms which are a product of “forces” and
“fluxes” as in the non-relativistic case (the mass production (in)ΓA due to chemical reactions can be
expressed by the time rate of the reaction velocity; see Equation (A19) in Section A.3). The expressions
sA, sAk, ϕA and σA contain Lagrange multipliers, which are introduced for formulating the entropy
identity in Equation (89) playing up to here the role of place-holders. Their physical meaning is
discussed in the next section.

6.3. Fields of Lagrange Multipliers

From non-relativistic physics, we know the physical dimensions of the entropy density and the
entropy flux density by taking Equations (36) and (38) into account

[sA] = [eA]
1
K

=
Nm
m3

1
K

, [sAk] = [qAk]
1
K

=
Nm
m3

m
s

1
K

. (123)

According to Equation (111), we have the following equation of physical dimensions

[sA] = [λA][eA]. (124)

Taking Equations (123)1 and (36) into account, we obtain

N
m2

1
K

= [λA]
N
m2 −→ [λA] =

1
K

, (125)
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which means λA is a reciprocal temperature belonging to the A-component. Therefore, we accept the
following

Setting VII:

λA •
=

νA

ΘA , (126)

with the partial temperature ΘA of the A-component (this temperature is a non-equilibrium one,
the contact temperature [22–24] which should not be confused with the thermostatic equilibrium
temperature ΘA

eq = T, ∀A) and a scalar νA, which is suitably chosen below.
According to Equation (120), we have the following equation of physical dimensions

[sAk] = [κA][JAm][hAk
m ]. (127)

Taking Equations (123)2, (15)2 and (35)1 into account, we obtain

N
ms

1
K

= [κA]
kg
m3

m
s

1 −→ [κA] =
m2

s2
1
K

. (128)

We know from the non-relativistic Gibbs equation that the chemical potentials µA have the
physical dimension of the specific energy eA/$A

[µA] =
[eA]

[$A]
=

N
m2

m3

kg
=

kg m
s2

m
kg

=
m2

s2 = K[κA]. (129)

Consequently, we choose by taking Equation (129) into consideration

Setting VIII:

κA •
=

µA

ΘA . (130)

According to the second term of Equation (121), we have the following equation of physical
dimensions

[λAk] = [λuAk] =
1
K

m
s

, (131)

which means λAk is proportional to a velocity and simultaneous perpendicular to uAk according
to Equation (89)1. Consequently, only the velocity um of the mixture remains for defining λAk in
accordance with Equation (89)1

Setting IX:

λAk •
=

1
ΘA umhAk

m . (132)

We know from the non-relativistic continuum theory and Equations (25)1 and (36) the following
connection of the physical dimensions (angular momentum = spin density per time)

[kA
l ]m =

N
m3 m = [mab] =

1
s
[sab] =

N
m2 . (133)

From the last term of Equation (74) follows by taking Equation (133) into account

[SAkab] =
s
m
[sAab] =

s2

m3 N. (134)
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From the first term of the third row of Equation (91) follows by use of Equations (86)1 and (123)4

[SAk] = [ΛA
a ]

m
s
[SAkab] = [ΛA

ab][S
Akab] =

Nm
m3

m
s

1
K

, (135)

and taking Equation (134) into account, we obtain

[ΛA
a ] =

1
K

m
s2 , [ΛA

ab] =
1
K

m
s2

m
s

. (136)

In accordance with Equation (89)2,3 and analogously to Equation (132), the relations in Equation
(136) allow the following

Setting X:

ΛA
a

•
=

•
u A

a
ΘA , ΛA

ab
•
=

1
ΘA

•
u A
[mun]h

Am
a hAn

b =
1

2ΘA (
•
u A

mun−
•
u A

n um)hAm
a hAn

b . (137)

Inserting the Lagrange multipliers into the expression of entropy density in Equation (111), of
entropy flux density in Equation (120) and of entropy supply in Equation (121), we obtain by use of
Equation (72)

sA =
1

ΘA

(
µA$A + νA(eA + pA) + um pAm+

•
u A

m
1
c2 ΞAm+

•
u A
[aub]

1
c2 sAab

)
, (138)

sAk =
1

ΘA

(
νAqAk + umtAkm + µA JAmhAk

m +
•
u A

mΞAkm+
•
u A
[aub]s

Akab
)

, (139)

ϕA =
1

ΘA

{
µA(ex)ΓA +

(
νAuA

l + umhAm
l

)
kAl +

+
( •

u A
b uA

a +
•
u A
[mun]h

Am
a hAn

b

) 1
c2 mAab

}
, (140)

The entropy production density in Equation (118) results by inserting the Lagrange multipliers in
Equations (126), (130), (132) and (137)

σA =
( µA

ΘA

)
;k

JAmhAk
m +

µA

ΘA

[
(in)ΓA +

(
JAmhAk

m

)
;k

]
+

+
( νA

ΘA

)
;k

qAk +
νA

ΘA uA
l;k

(
πAkl + uAk pAl

)
+

+
( 1

ΘA umhA
ml

)
;k

( 1
c2 eAuAkuAl +

1
c2 qAkuAl + tAkl

)
+

+
( •u A

b
ΘA

)
;k

ΞAkb −
•
u A

b
ΘA uA

a︸ ︷︷ ︸
(

sAkab
;k +

1
c2

•
s Aab︸ ︷︷ ︸

)
+

+
( 1

ΘA

•
u A
[mun]h

Am
a hAn

b

)
• 1

c4 uA[aΞAb] +

+
( 1

ΘA

•
u A
[mun]h

Am
a hAn

b

)
;k

( 1
c2 uA[aΞAkb] + sAkab

)
. (141)

The underbraced terms result in

•
u A

b uA
a
•
s Aab =

•
u A

b (u
A
a sAab︸ ︷︷ ︸
=0

)
•−

•
u A
[b
•
u A

a]s
Aab = 0, (142)

which means the spin density does not appear in the entropy production.
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The first four terms of the entropy production describe the four classical reasons of irreversibility:
diffusion, chemical reactions, heat conduction and internal friction with, by the momentum flux,
density modified non-equilibrium viscous tensor. The fifth term of Equation (141) (which vanishes
in equilibrium and for free 1-component systems, as we show below) is typical for an interacting
A-component as a part of the mixture because it contains the 4-velocity of the mixture um. The same is
true for the last two spin terms which vanish for 1-component systems. In any case, all spin terms of
the fields in Equations (138)–(141) related to entropy vanish with the 4-acceleration.

Up to now, a further phenomenon of irreversibility was not taken into consideration: the
multi-temperature relaxation which is discussed in the next section.

6.4. Multi-Temperature Relaxation and the Partial Temperatures

Because the different components of the mixture have different partial (reciprocal) temperatures
λA, A = 1, 2, ..., Z, a multi-temperature relaxation (do not take the multi-temperature relaxation for
the heat conduction which is caused by a temperature gradient in contrast to the multi-temperature
relaxation) takes place, which is an irreversible phenomenon. Consequently, the multi-temperature
relaxation has to be taken into account by adding a suitable zero to the entropy identity as done in
Equation (89).

A heat transfer HAB between two components of the mixture—A and B—takes place by
multi-temperature relaxation, if the corresponding temperatures of the components are different
from each other. Consequently, the entropy exchange between these two components is

Setting XI:

GAB := HAB
( 1

ΘA −
1

ΘB

)
, HAB = −HBA,

•
H AB = 0, . (143)

Here, HAB is an energy density and GAB an entropy density according to Equation (124)

[HAB] = [eA], [GAB] = [eA]
1
K

= [sA]. (144)

For the A-component, this results according to Equation (143)2 in

HA := ∑
B

HAB, ∑
AB

HAB = 0, ∑
A

HA = 0, (145)

GA := ∑
B

HAB
( 1

ΘA −
1

ΘB

)
, (146)

∑
A

GA = ∑
AB

HAB
( 1

ΘA −
1

ΘB

)
6= 0, if ΘA 6= ΘB. (147)

The entropy exchange of the A-component according to the multi-temperature exchange in
Equations (146)1 and (143)3 has now to be introduced into the entropy identity in Equation (110).
Because GA has the same physical dimension as sA, according to Equation (144)2, it fits into the first
row of Equation (110). Therefore, we add the zero

0 = −
[
uAkGA

]
;k
+ ∑

B

[
uAk HAB

( 1
ΘA −

1
ΘB

)]
;k

(148)

to Equation (110). Taking Equation (143)3 into account and inserting

∑
B

[
uAk HAB

( 1
ΘA −

1
ΘB

)]
;k

= uAk
;kGA + ∑

B
HAB

( 1
ΘA −

1
ΘB

)•
, (149)
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into Equation (148)

0 = −
[
uAkGA

]
;k
+ uAk

;kGA + ∑
B

HAB
( 1

ΘA −
1

ΘB

)•
, (150)

we obtain three additional terms which can be directly introduced into the entropy identity without
defining an additional Lagrange multiplier. According to Equation (110), the three terms of Equation
(150) are attached as follows

−GA −→ entropy density (151)

uAk
;kGA −→ entropy supply, (152)

∑
B

HAB
( 1

ΘA −
1

ΘB

)•
−→ entropy production density, (153)

Introducing these terms as demonstrated in Section 6.1 into the entropy identity in Equation (119),
the entropy density in Equation (138) becomes

sA =
1

ΘA

(
µA$A + νA(eA + pA) + um pAm+

•
u A

m
1
c2 ΞAm+

•
u A
[aub]

1
c2 sAab

)
+ GA, (154)

and the state space in Equation (113) is extended by GA/$

zA =
(

cA,
1
$

,
eA

$
,

pAl

$
,

ΞAm

$
,

sAmn

$
,

GA

$

)
, cA :=

$A

$
, (155)

and consequently the Gibbs equation (114) by (GA/$)
•
. The Gibbs–Duhem equation (Equation (115))

is untouched by including the multi-temperature relaxation.
According to Equation (152), the entropy supply in Equation (140) results in

ϕA =
1

ΘA

{
µA(ex)ΓA +

(
νAuA

l + umhAm
l

)
kAl +

+
( •

u A
b uA

a +
•
u A
[mun]h

Am
a hAn

b

) 1
c2 mAab

}
+ uAk

;kGA, (156)

and the entropy production density in Equation (141) becomes by Equation (153)

σA =
( µA

ΘA

)
;k

JAmhAk
m +

µA

ΘA

[
(in)ΓA +

(
JAmhAk

m

)
;k

]
+

+
( νA

ΘA

)
;k

qAk +
νA

ΘA uA
l;k

(
πAkl + uAk pAl

)
+

+
( 1

ΘA umhA
ml

)
;k

( 1
c2 eAuAkuAl +

1
c2 qAkuAl + tAkl

)
+

+∑
B

HAB
( 1

ΘA −
1

ΘB

)•
+

+
( •u A

b
ΘA

)
;k

ΞAkb −
•
u A

b
ΘA uA

a sAkab
;k +

+
( 1

ΘA

•
u A
[mun]h

Am
a hAn

b

)
• 1

c4 uA[aΞAb] +

+
( 1

ΘA

•
u A
[mun]h

Am
a hAn

b

)
;k

( 1
c2 uA[aΞAkb] + sAkab

)
. (157)

The ten terms of the entropy production density in Equation (157) have—as already discussed
after Equation (141)—the following meaning:
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• diffusion: (µA/ΘA);k JAmhAkm ;

• by diffusion modified chemical reaction: (µA/ΘA)
(
(in)ΓA + (JAmhAk

m );k

)
;

• heat conduction: (νA/ΘA);kqAk;

• multi-component modified internal friction: (νA/ΘA)uA
l,k

(
πAkl + uAk pAl

)
;

• multi-component interaction (this term vanishes in equilibrium and for 1-component systems: see

Section 7): (umhA
ml/ΘA);k

(
1
c2 eAuAkuAl + 1

c2 qAkuAl + tAkl
)

;

• multi-temperature relaxation: ∑B HAB
(
(1/ΘA)− (1/ΘB)

)•
; and

• four terms describing entropy production by the spin SAkab.

6.5. The 4-Entropy

We need the 4-entropy of the A-component for describing thermodynamics of a mixture. Starting
with Equations (86)1, (154) and (139), we obtain

SAk =
{ 1

ΘA

(
µA$A + νA(eA + pA) + um pAm+

•
u A

m
1
c2 ΞAm+

•
u A
[aub]

1
c2 sAab

)
+ GA

}
uAk +

+
1

ΘA

(
νAqAk + umtAkm + µA JAmhAk

m +
•
u A

mΞAkm+
•
u A
[aub]s

Akab
)

. (158)

Rearranging results in

SAk =
µA

ΘA

(
NAk + JAmhAk

m

)
+

+
1

ΘA

{
νA
(
(eA + pA)uAk + qAk

)
+ um

(
uAk pAm + tAkm

)}
+

+
1

ΘA

•
u A

m

( 1
c2 ΞAmuAk + ΞAkm

)
+

1
ΘA

•
u A
[aub]

( 1
c2 sAabuAk + sAkab

)
+ GAuAk. (159)

The transition from the interacting A-component to the free 1-component system is considered in
Section 7 and that to the mixture in Section 8. All quantities introduced up to here are non-equilibrium
ones, because we do not consider equilibrium conditions up to now. This is done in the next section.

6.6. Equilibrium

6.6.1. Equilibrium Conditions

Equilibrium is defined by equilibrium conditions which are divided into basic and supplementary
ones [11,12]. The basic equilibrium conditions are given by vanishing entropy production, vanishing
entropy flux density and vanishing entropy supply (the sign .

= stands for a setting which implements
an equilibrium condition):

σA
eq

.
= 0 ∧ sAk

eq
.
= 0 ∧ ϕA

eq
.
= 0. (160)

A first supplementary equilibrium condition is the vanishing of all diffusion flux densities.
According to Equation (15)1, we obtain

JAeq
k

.
= 0 −→ uAeq

k = f A
equeq

k −→ c2 = f A
equeq

k uAk
eq . (161)

Taking Equation (9)1 into account, Equation (161)3 results in

( f A
eq)

2 = 1 −→ f A
eq = ±1. (162)
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Consequently, we have to demand beyond Equation (161)1 the supplementary equilibrium
condition that the mass densities are additive in equilibrium. We obtain according to Equations (9)2

and (17)2

$eq
.
= ∑

A
$A

eq −→ f A
eq = 1 −→ wA

eq = 0. (163)

Taking Equations (161)2, (132) and (137)2 into account, Equation (163)2 yields

uAeq
k = ueq

k −→ λAk
eq = 0 ∧ gAm

eq = 0 ∧ ΛAeq
ab = 0. (164)

Further supplementary equilibrium conditions are given by vanishing covariant time derivatives,
except that of the four-velocity:

�•eq
.
= 0, � 6= ul , (165)

that means
•
u l

eq is in general not zero in equilibrium. Consequently, the time derivatives of all
expressions which contain the 4-velocity must be calculated separately, as we show below.

According to Equation (165)1, we obtain

•
$ A

eq = 0,
( νA

ΘA

)•
eq

= 0, (166)

and the (3+1)-components of the energy–momentum tensor, Equations (29) and (30), satisfy

•
e A

eq = 0,
•
p Al

eq = 0,
•
q Ak

eq = 0,
•
p A

eq = 0,
•
π Akl

eq = 0. (167)

Starting with Equation (9)1, we have

•
f A

eq =
1
c2

( •
u Aeq

m um
eq + uAeq

m
•
u m

eq

)
. (168)

Taking Equation (164)1 into account, this results in

•
f A

eq = 0 −→
•
w A

eq = 0. (169)

In equilibrium, we have according to Equations (164)1 and (19)

hAm
leq = hm

leq, (170)

and according to Equation (132) resulting in

λAeq
l;k =

( 1
ΘA umhAm

l

)eq

;k
= 0. (171)

Despite ΛAeq
a 6= 0 according to Equations (137)1 and (165)2, the time derivatives of the

Lagrange multipliers vanish in equilibrium, and, according to Equations (114) and (115), Gibbs
and Gibbs–Duhem equations are identically satisfied in equilibrium, if the “shift of the time derivative”
is performed on the fifth term of Equation (115)

•
Λ A

m
ΞAm

$
=
[ •u A

m
ΘA

ΞAm

$

]•
−ΛA

m

(ΞAm

$

)•
=

=
[( uA

m
ΘA

ΞAm

$︸ ︷︷ ︸
=0

)•
− uA

m

(ΞAm

ΘA$

)•]•
−ΛA

m

(ΞAm

$

)•
eq−→ 0. (172)
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Another supplementary equilibrium condition is the vanishing of the mass production terms in
Equation (13)3,4

(ex)ΓA
eq

.
= 0 ∧ (in)ΓA

eq
.
= 0 −→ ΓA

eq = 0 (173)

Thus, we obtain from Equations (1)2, (166)1 and (173)3

$A
;kuAk + $AuAk

;k = ΓA −→ uAk
eq ;k = 0. (174)

The equilibrium temperature is characterized by vanishing multi-temperature relaxation

ΘA
eq

.
= ΘB

eq
.
= ΘC

eq
.
= ... =: Θeq −→ GA = 0, ∀A. (175)

Often one can find in the literature [25] the case of equilibrium of multi-temperature relaxation:
although out of equilibrium, only one temperature is considered in multi-component systems. This
case is realistic, if the relaxation of multi-temperature relaxation to equilibrium is remarkably faster
than that of the other non-equilibrium variables [26].

Taking Equations (164)1, (29)2 and (175) into account, the entropy density in Equation (154)
becomes in equilibrium using the shift of the time derivative

sA
eq =

1
ΘA

eq

(
µA

eq$A
eq + νA

eq(e
A
eq + pA

eq)
)

. (176)

Beyond the usual expression of the entropy density in thermostatics (below, we show that νA
eq = 1),

it includes an acceleration dependent spin term. The energy density and the pressure are here defined
by the (3+1)-decomposition in Equation (28) of the energy–momentum tensor. The chemical potential
is as well as the temperature introduced as a Lagrange multiplier.

Taking Equations (164)1, (161)1 and (175) into account, the entropy flux density in Equation (139)
vanishes in equilibrium, resulting in

0 = νAqAk
eq +

•
u Aeq

m ΞAkm
eq −→ qAk

eq = 0, (177)

using the shift of the time derivative according to Equations (172) and (165).
Finally, the entropy supply in Equation (156) results in

0 = νA
equAeq

l kAl
eq +

•
u Aeq

b uAeq
a

1
c2 mAab

eq , (178)

which means the power exchange caused by the force density and by the angular momentum density
vanishes in equilibrium.

The entropy production in Equation (157) has to vanish in equilibrium according to the basic
equilibrium condition in Equation (160)1. Taking Equations (173)2, (161)1, (177), (167)2, (164)1 and (175)
into account and using Equations (165) and (157) results in

0 =
νA

eq

ΘA
eq

uAeq
l;kπAkl

eq +
( •u A

b
ΘA

)eq

;k
ΞAkb

eq −
•
u Aeq

b
Θeq

uAeq
a

(
sAkab

;k

)eq
. (179)

The third term of the second row of Equation (157) vanishes by shift of the time derivative. In
equilibrium, spin terms appear in the vanishing power exchange in Equation (178) and in the spin
modified internal friction in Equation (179).

As demonstrated, equilibrium of an A-component in the mixture is described by three basic
equilibrium conditions in Equation (160) and six supplementary ones: Equations (161)1, (163)1, (165),
(173)1,2 and (175). Often, we can find in the literature [27,28] equilibrium conditions which are different
from those postulated here. The reason is that entropy production and supply and the entropy flux as
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starting points for the basic equilibrium conditions differ from the expressions in Equations (138)–(141).
Such different equilibrium conditions and their derivations are considered in the next two sections.

6.6.2. Killing Relation of the 4-Temperature

Starting with Equation (93)1, we now consider the following relations

(λA
;kuA

l + λAuA
l;k)

1
c2 eAuAkuAl =

•
λ

AeA, (180)

(λA
;kuA

l + λAuA
l;k)u

Ak pAl = −λAuA
l

•
p Al , (181)

(λA
;kuA

l + λAuA
l;k)

1
c2 qAkuAl = λA

;kqAk, (182)

−(λA
;kuA

l + λAuA
l;k)pAhAkl = −λA pAuAk

;k, (183)

(λA
;kuA

l + λAuA
l;k)π

Akl = λAuA
l;kπAkl . (184)

Taking Equations (181), (182) and (184) into account, we obtain from Equation (93)1

(λAuA
l );k

(
TAkl − 1

c2 eAuAkuAl + pAhAkl
)

=

= −λAuA
l

•
p Al + λA

;kqAk + λAuA
l;kπAkl . (185)

Replacing the second row of Equation (157) by the LHS of Equation (185) yields the entropy
production of vanishing multi-temperature relaxation and vanishing spin by taking Equation (126)
into account

without spin: σA
0 = (λAµA);k JAmhAk

m + λAµA
(
(in)ΓA − (JAmhAk

m );k

)
+

+(λAuA
l );k

(
TAkl − 1

c2 eAuAkuAl + pAhAkl
)
+

+
( 1

ΘA umhA
ml

)
;k

( 1
c2 eAuAkuAl +

1
c2 qAkuAl + tAkl

)
. (186)

It is evident that
(λAuA

l );k

(
TAkl − 1

c2 eAuAkuAl + pAhAkl
)

= 0 (187)

is not a sufficient condition for equilibrium because the equilibrium conditions in Equations (173)2,
(161)1 and (164)1 are not necessarily satisfied and the entropy production in Equation (186) does not
vanish. If the energy–momentum tensor is symmetric, Equation (187) results in

TAkl = TAlk :
[
(λAuA

l );k + (λAuA
k );l

](
TAkl − 1

c2 eAuAkuAl + pAhAkl
)

= 0, (188)

an expression which as well as Equation (187) is not sufficient for equilibrium. Consequently, the
Killing relation of the 4-temperature λAuA

l[
(λAuA

l );k + (λAuA
k );l

]
= 0 (189)

is also not sufficient for equilibrium (a fact which is well-known [12]).
If equilibrium is presupposed, the equilibrium conditions in Equations (173)2, (161)1 and (164)1

are satisfied, the entropy production vanishes and

without spin: (λAuA
l )

eq
;k

(
TAkl − 1

c2 eAuAkuAl + pAhAkl
)eq

= 0, (190)

TAkl
eq = TAlk

eq :
[
(λAuA

l );k + (λAuA
k );l

]eq(
TAkl − 1

c2 eAuAkuAl + pAhAkl
)eq

= 0 (191)
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are necessary conditions (but, as discussed, not sufficient conditions) for equilibrium according to
Equation (186), if the spin is ignored. If the spin is taken into account, Equation (190) results by use of
the fifth row of Equation (157) in

(λAuA
l )

eq
;k

(
TAkl − 1

c2 eAuAkuAl + pAhAkl
)eq

=

= −
( •u A

b
ΘA

)eq

;k
ΞAkb

eq +

•
u Aeq

b
Θeq

uAeq
a

(
sAkab

;k

)eq
. (192)

There are different possibilities to satisfy Equations (190) and (191), which are discussed in the
next section.

6.6.3. The Gradient of the 4-Temperature

The necessary condition for equilibrium ignoring spin in Equation (190) can be differently satisfied
generating different types of equilibria. There are three possibilities:

If equilibrium exists, one of the following three conditions is valid:

(λAuA
l )

eq
;k = 0 −→ λ

Aeq
;k uAeq

l + λA
equAeq

l;k = 0, (193)

TAkl
eq =

1
c2 eA

equAk
eq uAl

eq − pA
eqhAkl

eq , (194)

(λAuA
l )

eq
;k 6= 0 ∧

[
TAkl

eq 6= 1
c2 eA

equAk
eq uAl

eq − pA
eqhAkl

eq

]
, and Equation (190) is valid. (195)

Multiplication of Equation (193)2 with uAl
eq results in

λ
Aeq
;k = 0 ∧ uAeq

l;k = 0, (196)

which means Equation (193) represents an intensified equilibrium because, in addition to the usual
equilibrium conditions mentioned in Section 6.6.1, Equation (196) is valid.

If Equation (194) is valid, the equilibrium exists in a perfect material whose entropy production is
zero. If the considered material is not perfect and if the equilibrium is not intensified, Equation (195)
is valid, and the question arises on whether Equation (190) can be valid under these constraints. To
answer this question, we consider Equations (180)– (184) in equilibrium. According to the equilibrium
conditions, we obtain

(λA
;k uA

l + λAuA
l;k)

eq 1
c2 eAuAk

eq uAl
eq = 0, (197)

(λA
;k uA

l + λAuA
l;k)

equAk
eq pAl

eq = 0, (198)

(λA
;k uA

l + λAuA
l;k)

eq 1
c2 qAk

eq uAl
eq = 0, (199)

−(λA
;k uA

l + λAuA
l;k)

eq pAhAkl
eq = 0, (200)

(λA
;k uA

l + λAuA
l;k)

eqπAkl
eq = 0. (201)

Summing up Equations (197)–(201) yields

(λAuA
l )

eq
;k TAkl

eq = 0. (202)

Consequently, Equation (190) is satisfied because each of the three terms vanishes for its own,
thus being compatible with Equation (195). If an A-component of a mixture is in equilibrium, two
types of equilibria can occur: one in an arbitrary material showing the usual equilibrium conditions
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and another one which shows beyond the the usual equilibrium conditions vanishing temperature
gradient and vanishing 4-velocity gradient according to Equation (196).

It is evident that a 1-component system which does not interact with other components is a special
case included in the theory of an A-component in the mixture. This case is discussed in the next section.

7. Special Case: 1-Component System

7.1. Entropy Flux, -Supply and -Density

A 1-component system (that is not a mixture which is a multi-component system by definition)
can be described by setting equal all component indices of a multi-component system

A, B, C, ..., Z −→ 0, (203)

and, for brevity, we omit this common index 0. Then, the basic fields of a 1-component system are
according to Equation (2)

rest mass density and 4-velocity: {$, uk}. (204)

The equations (Equation (5)) of Setting I change into identities. According to Equations (9)1, (15)1,
(17)2, (25) and (84)1, we have

f = 1, Jk = 0, w = 0, Tkl
;k = kl Skab

;k =
1
c2 mab. (205)

The Lagrange multipliers become according to Equations (126), (130), (132) and (137)

λ =
ν

Θ
, κ =

µ

Θ
, λk = 0, Λa =

•
ua

Θ
Λab = 0. (206)

The entropy density in Equation (138) and the state space in Equation (113) are as in equilibrium
of the A-component in Equation (176)

s =
1
Θ

(
µ$ + ν(e + p)+

•
um

1
c2 Ξm

)
, z = ($, e, Ξm). (207)

The entropy flux in Equation (139), the entropy supply in Equation (140) and the entropy
production in Equation (157) are by taking Equation (185) into account (there are no chemical reactions
in 1-component systems)

sk =
1
Θ

(
νqk+

•
um Ξkm

)
, ϕ =

1
Θ

(
µ (ex)Γ + νulkl+

•
ub ua

1
c

mab
)

, (208)

σ =
( ν

Θ
ul

)
;k

(
Tkl − 1

c2 eukul + phkl
)
+
( •u b

Θ

)
;k

Ξkb −
•
u b
Θ

uaskab
;k. (209)

According to Section 3.4, the (3+1)-components of the mixture change into the corresponding
quantities of the 1-component system. The necessary equilibrium conditions of a 1-component system
are equal to those of an A-component in the mixture (in equilibrium: “all cats are grey”).

7.2. Equilibrium and Reversibility

Vanishing entropy production out of equilibrium

σrev = 0,
(

sk 6= 0 ∨ ϕ 6= 0
)

(210)
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belongs to reversible processes and vice versa [29]. According to Equation (209),( ν

Θ
ul

)rev

;k

(
Tkl − 1

c2 eukul + phkl
)rev

=

= −
( •u b

Θ

)rev

;k
Ξkb

rev +
( •u b

Θ
ua

)rev(
skab

;k

)rev
. (211)

is sufficient and necessary for vanishing entropy production in 1-component systems. However,
concerning equilibrium, Equation (211) is, as well as Equation (192), only necessary but not sufficient
for it. Thus, all results of Section 6.6.3 change into those of a 1-component system, if the component
index A is omitted, eq is replaced by rev, equilibrium is not presupposed and the generated expressions
belong to reversible processes and vice versa.

Comparing Equation (211) with Equation (192) and ignoring the spin, the derivative of the
4-temperature and the Killing relation of the 4-temperature

without spin: (λul)
rev
;k = 0, or Tkl = Tlk :

(
(λul);k + (λuk);l

)rev
= 0 (212)

are rather conditions for reversible processes in 1-component systems because the entropy production
is enforced to be zero without existing equilibrium. Independently of the 4-temperature, we obtain the
well-known fact [30] that, according to Equation (209), all processes of perfect materials are reversible
in 1-component systems without spin

Tkl
per :=

1
c2 eukul − phkl −→ σper =

( •u b
Θ

)
;k

Ξkb −
•
u b
Θ

uaskab
;k. (213)

8. Thermodynamics of a Mixture

According to the mixture axiom in Section 2.2, the balance equations of a mixture look like those
of a 1-component system. However, a mixture as a whole behaves differently from the interacting
A-component in the mixture and also differently from a 1-component system, both of which are
discussed in Sections 6 and 7. Because the interaction between the components is still existing in the
mixture, the diffusion fluxes and also the multi-temperature relaxation do not vanish as in 1-component
systems. Because component indices A do not appear in the description of mixtures, they are summed
up in contrast to 1-component systems for which they vanish. Settings I–III enforce the mixture axiom
resulting in

mass balance: NAk
;k = ΓA −→ Nk

;k = Γ, (214)

energy balance: uA
l TAkl

;k = ΩA −→ ulT
kl

;k = Ω, (215)

momentum balance: hAm
l TAkl

;k = ΩAm −→ hm
l T

kl
;k = Ωm, (216)

spin balance: SAkab
;k =

1
c2 mAab −→ Skab

;k =
1
c2 mab. (217)

Settings I–XI are concerned with the balance equations (Equations (214)–(217)), with the
entropy density, the entropy flux density, the entropy supply, the Lagrange multipliers and the
multi-temperature relaxation. Obviously, we need an additional setting concerning the entropy of the
mixture, which is formulated in the next section.
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8.1. Additivity of 4-Entropies

8.1.1. Entropy Density and -Flux

Similar to additivity of the mass flux densities in Equation (5)1, the energy–momentum tensors in
Equation (42)2 and the spin tensors in Equation (78) of the A-components, we demand that also the
4-entropies are additive

Setting XII:

Sk •
= ∑

A
SAk. (218)

Consequently, we obtain from Equation (159) by use of Equations (22)2 and (41)

Sk = ∑
A

{ µA

ΘA

(
(1− wA)NAk + JAk

)
+

1
ΘA

(
νAQAk + umτAkm

)
+

νA

ΘA pAuAk +

+
1

ΘA

•
u A

m

( 1
c2 ΞAmuAk + ΞAkm

)
+

1
ΘA

•
u A
[aub]

( 1
c2 sAabuAk + sAkab

)
+ GAuAk

}
. (219)

According to Equation (87), we obtain the entropy density and the entropy flux density of the
mixture by use of Equations (16), (9)1, (20) and (45)1

Skuk = c2s = ∑
A

{ µA

ΘA

(
1− wA

)
$Ac2 f A +

1
ΘA

(
νAQAk + upτAkp

)
uk+,

+
( νA

ΘA pA + GA
)

c2 f A +
1

ΘA

•
u A

m

(
ΞAm f A + ΞAkmuk

)
+

+
1

ΘA

•
u A
[aub]

(
sAab f A + sAkabuk

)}
, (220)

Skhm
k = sm = ∑

A

{ µA

ΘA JAm +
1

ΘA

(
νAQAk + upτAkp

)
hm

k

+
( νA

ΘA pA + GA
)

c2gAm +
1

ΘA

•
u A

p

(
ΞApgAm + ΞAkphm

k

)
+

+
1

ΘA

•
u A
[aub]

( 1
c2 sAabgAm + sAkabhm

k

)}
. (221)

Taking Equation (43) into consideration, we introduce by comparing with Equations (220)
and (221)

Setting XIII:

νA •
= f A. (222)

With this setting, the expressions of the entropy density and the entropy flux of the mixture
correspond to those which are generated by the additivity of the energy–momentum tensors: Equations
(48)–(55).
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Finally, we obtain the entropy and entropy flux densities of the mixture

s = ∑
A

{ µA

ΘA

(
1− wA

)
$A f A +

1
c2

1
ΘA

(
f AQAk + upτAkp

)
uk +

+
( f A

ΘA pA + GA
)

f A +
1

ΘA

•
u A

m
1
c2

(
ΞAm f A + ΞAkmuk

)
+

+
1

ΘA

•
u A
[aub]

1
c2

(
sAab f A + sAkabuk

)}
, (223)

sm = ∑
A

{ µA

ΘA JAm +
1

ΘA

(
f AQAk + upτAkp

)
hm

k

+
( f A

ΘA pA + GA
)

c2gAm +
1

ΘA

•
u A

p

(
ΞApgAm + ΞAkphm

k

)
+

+
1

ΘA

•
u A
[aub]

( 1
c2 sAabgAm + sAkabhm

k

)}
. (224)

These expressions of the entropy and entropy flux densities of the mixture are direct results of
Setting XII in Equation (218). They are considered in Section 8.2.

8.1.2. Entropy Supply and Production Density

From Equations (218) and (86)2 follows the entropy balance equation of the mixture

Sk
;k = ∑

A
SAk

;k = ∑
A

(
σA + ϕA

)
= �σ +�ϕ, (225)

satisfying the mixture axiom. Accepting the additivity of the entropy supplies of the A-components
(supplies are caused by external influences, productions by internal ones, which is why they do not
mix up)

Setting XIV:
�ϕ

•
= ∑

A
ϕA, (226)

we obtain from Equation (225) the additivity of the entropy productions of the A-components

�σ = ∑
A

σA. (227)

The entropy supply of the mixture follows from Equations (156), (226) and (222)

�ϕ = ∑
A

{ 1
ΘA

[
µA(ex)ΓA +

(
f AuA

l + umhAm
l

)
kAl +

+
( •

u A
b uA

a +
•
u A
[mun]h

Am
a hAn

b

) 1
c2 mAab

]
+ uAk

;kGA
}

. (228)
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The entropy production of the mixture follows from Equations (157), (227) and (222)

�σ = ∑
A

{( µA

ΘA

)
;k

JAmhAk
m +

µA

ΘA

[
(in)ΓA +

(
JAmhAk

m

)
;k

]
+

+
( f A

ΘA

)
;k

qAk +
f A

ΘA uA
l;k

(
πAkl + uAk pAl

)
+

+
( 1

ΘA umhA
ml

)
;k

( 1
c2 eAuAkuAl +

1
c2 qAkuAl + tAkl

)
+

+∑
B

HAB
( 1

ΘA −
1

ΘB

)•
+

+
( •u A

b
ΘA

)
;k

ΞAkb −
•
u A

b
ΘA uA

a sAkab
;k +

+
( 1

ΘA

•
u A
[mun]h

Am
a hAn

b

)
• 1

c4 uA[aΞAb] +

+
( 1

ΘA

•
u A
[mun]h

Am
a hAn

b

)
;k

( 1
c2 uA[aΞAkb] + sAkab

)}
. (229)

8.2. Partial and Mixture Temperatures

We now consider the positive term in the second row of the entropy density in Equation (223)

∑
A

1
ΘA ( f A)2 pA =

1
�Θ ∑

A
( f A)2 pA > 0 (230)

by which a mixture temperature �Θ can be defined. This mixture temperature is only a formal quantity
because it is not evident that a thermometer exists which measures �Θ: the partial temperatures are
internal contact variables [31] measured by thermometers, which are selective for the temperature ΘA

of the corresponding A-component. It is evident that the measured mixture temperature is a certain
mean value of the partial temperatures of the components of the mixture [32–34], but this measured
mean value may depend on the individual thermometer and may be different from �Θ, which means
the measured temperature is not unequivocal. Different definitions of the mixture temperature can
be found in literature [35]. However, a unique mixture temperature—independent of thermometer
selectivities or arbitrary definitions—is given in the case of multi-temperature relaxation equilibrium in
Equation (175). This case is often silently presupposed in the literature, if only one temperature is used
in multi-component non-equilibrium systems. Only this sure case is considered in the sequel.

We now introduce the mixture quantities e and qm to the entropy density s and the entropy flux
density sm. According to Equations (48) and (50), we obtain

1
c2 ∑

A

1
�Θ

(
QAk f A + upτAkp

)
uk =

e
�Θ

, ∑
A

1
�Θ

(
QAk f A + upτAkp

)
hm

k =
qm

�Θ
. (231)
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Taking Equations (230) and (231) into account, Equations (223) and (224) result in

s =
e
�Θ

+ ∑
A

{ µA

ΘA

(
1− wA

)
$A f A +

1
c2

( 1
ΘA −

1
�Θ

)(
f AQAk + upτAkp

)
uk +

+
( f A

�Θ
pA + GA

)
f A +

1
ΘA

•
u A

m
1
c2

(
ΞAm f A + ΞAkmuk

)
+

+
1

ΘA

•
u A
[aub]

1
c2

(
sAab f A + sAkabuk

)}
, (232)

sm =
qm

�Θ
+ ∑

A

{ µA

ΘA JAm +
( 1

ΘA −
1
�Θ

)(
f AQAk + upτAkp

)
hm

k +

+
( f A

ΘA pA + GA
)

c2gAm +
1

ΘA

•
u A

p

(
ΞApgAm + ΞAkphm

k

)
+

+
1

ΘA

•
u A
[aub]

( 1
c2 sAabgAm + sAkabhm

k

)}
. (233)

It is evident that partial temperatures of the components appear in all four quantities referring to
mixture entropy: entropy density in Equation (232), entropy flux density in Equation (233), entropy
supply in Equation (228) and entropy production density in Equation (229). These expressions are of a
more simple shape, if the mixture is in a multi-temperature equilibrium which is considered in the
next section.

8.3. Multi-Temperature Relaxation Equilibrium

8.3.1. Entropy and Entropy Flux Densities

Presupposing multi-temperature relaxation equilibrium in Equation (175), the entropy density in
Equation (232) and the entropy flux density in Equation (233) become

s =
e
�Θ

+
1
�Θ ∑

A

{
µA
(

1− wA
)

$A f A + ( f A)2 pA +

+
•
u A

m
1
c2

(
ΞAm f A + ΞAkmuk

)
+
•
u A
[aub]

1
c2

(
sAab f A + sAkabuk

)}
, (234)

sm =
qm

�Θ
+

1
�Θ ∑

A

{
µA JAm + f A pAc2gAm +

+
•
u A

p

(
ΞApgAm + ΞAkphm

k

)
+
•
u A
[aub]

( 1
c2 sAabgAm + sAkabhm

k

)}
. (235)

The first term in the sum of Equation (234) can be exploited by use of the mean value theorem
according to Equations (18) and (9)1,2

∑
A

µA(1− wA)$A f A = �µ ∑
A
(1− wA) f A$A = �µ ∑

A
( f A)3$A (236)

Consequently, the chemical potential of the mixture is

�µ := ∑
A

µA (1− wA)$A f A

∑B(1− wB)$B f B , (237)



Entropy 2019, 21, 1034 33 of 43

and the entropy density of the mixture in Equation (234) yields

s =
1
�Θ

e+
1
�Θ
�µ ∑

A
( f A)3$A +

1
�Θ ∑

A
pA( f A)2 +

+∑
A

{ •
u A

m
1
c2

(
ΞAm f A + ΞAkmuk

)
+
•
u A
[aub]

1
c2

(
sAab f A + sAkabuk

)}
. (238)

The entropy density in Equation (238) of the mixture in multi-temperature equilibrium is similarly
constructed, but different from the expression in Equation (207) of a 1-component system: there are the
energy, mass, pressure and spin terms.

8.3.2. Entropy Production and -Supply

The entropy supply in Equation (228) results in

�ϕ =
1
�Θ ∑

A

{
µA(ex)ΓA +

(
f AuA

l + umhAm
l

)
kAl +

+
( •

u A
b uA

a +
•
u A
[mun]h

Am
a hAn

b

) 1
c2 mAab

}
. (239)

The entropy production density in Equation (229) becomes

�σ = ∑
A

{(µA

�Θ

)
;k

JAmhAk
m +

µA

�Θ

[
(in)ΓA +

(
JAmhAk

m

)
;k

]
+

+
( f A

�Θ

)
;k

qAk +
f A

�Θ
uA

l;k

(
πAkl + uAk pAl

)
+

+
( 1
�Θ

umhA
ml

)
;k

( 1
c2 eAuAkuAl +

1
c2 qAkuAl + tAkl

)
+

+
( •u A

b
�Θ

)
;k

ΞAkb −
•
u A

b
�Θ

uA
a sAkab

;k +

+
( 1
�Θ

•
u A
[mun]h

Am
a hAn

b

)
• 1

c4 uA[aΞAb] +

+
( 1
�Θ

•
u A
[mun]h

Am
a hAn

b

)
;k

( 1
c2 uA[aΞAkb] + sAkab

)}
. (240)

The meaning of each individual term of Equation (240) is discussed above with regard to the
A-component according to Equation (157).

Entropy density in Equation (238), entropy flux density in Equation (235), entropy supply in
Equation (239), entropy production density in Equation (240) and chemical potential in Equation
(237) of the mixture are represented by sums of quantities of the A-components. As expected, the
(3+1)-components of the energy–momentum tensor cannot represent the mentioned thermodynamical
quantities because diffusion fluxes, chemical potentials and temperature are not included in the
energy–momentum tensor. From them, only the energy density e and the energy flux density qm of the
mixture appear in entropy and entropy flux densities.

A temperature �Θ of the mixture can be defined independently of multi-temperature equilibrium.
According to Equation (230), 1/�Θ is a weighted mean value of the reciprocal partial temperatures
of the components arranged with the partial pressures, a construction which seems very special.
As mentioned in Section 8.2, a mixture temperature is not well defined because it depends on the
component sensitivity of a thermometer.
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8.4. Total Equilibrium

It is evident that the equilibrium conditions of a mixture follow from those of the A-components
which we considered in Section 6.6.1. Consequently, a demand of additional equilibrium conditions
for mixtures is not necessary. Presupposing the equilibrium conditions of an A-component (discussed
in Section 6.6.1) and multi-temperature equilibrium, we start with the repetition

f A
eq = 1, wA

eq = 0, uAeq
k = ueq

k , gAm
eq = 0, (ex)ΓA

eq = (in)ΓA
eq = 0, (241)

eeq = ∑
A

eA
eq, qm

eq = 0, pm
eq = ∑

A
pAm

eq , t
jm
eq = ∑

A
tAjm
eq . (242)

Taking Equations (241) and (242) into account, the entropy density in Equation (238) of the mixture
in equilibrium and the entropy flux density in Equation (235) result in

seq =
1
�Θ

eeq +
1
�Θ
�µ$ +

1
�Θ ∑

A
pA

eq + 0, sm
eq = 0, (243)

if the the shifting of the time derivative in Equations (172), (165), (72) and (73) is applied. Interestingly,
the spin terms cancel in equilibrium.

The entropy supply in Equation (239) results in equilibrium

�ϕeq =
1
�Θ ∑

A

{
uAeq

l kAl
eq +

•
u Aeq

b uAeq
a

1
c2 mAab

eq

}
= 0 (244)

according to Equation (178).
The entropy production density in Equation (240) results in equilibrium

�σeq =
1
�Θ ∑

A

{
uAeq

l;kπAkl
eq −

•
u Aeq

b uAeq
a

(
sAkab

;k

)eq}
+ ∑

A

( •u A
b
�Θ

)
;k

ΞAkb = 0, (245)

according to Equation (179).
The vanishing entropy supply of the mixture in Equation (244) is satisfied by the equilibrium

conditions in Equations (173)1, (178) and (170). The vanishing entropy production of the mixture in
Equation (245) is satisfied by the equilibrium conditions in Equations (173)2, (161)1, (177), (179), (165)
and (170).

From Equation (4) follows in equilibrium analogously to Equation (174)

uk
eq ;k = 0. (246)

8.5. (3+1)-Entropy-Components and Spin

If the spin is taken into consideration (that is absolutely necessary in General Relativity Theory,
see Section 10), acceleration terms appear in the entropy density and production, Equations (238) and
(240), and in the entropy flux density and supply, Equations (235) and (239). The four components in
Equations (72) and (73) of the spin are differently distributed over the (3+1)-components of the entropy:

• The entropy density in Equation (154) of an A-component depends on the spin density sAab and
on the spin density vector ΞAm, whereas the entropy density of the mixture in Equation (223)
depends on the four spin quantities in Equations (72) and (73). In 1-component systems, the
entropy density in Equation (207)1 depends only on the spin vector Ξm. In equilibrium, the
entropy density is for all cases independent of the spin, Equations (176) and (243)1.

• The entropy flux density in Equation (139) of an A-component depends on the couple stress sAkab

and on the spin stress ΞAkm, whereas the entropy flux density of the mixture in Equation (235)
depends on the four spin quantities in Equations (72) and (73). In 1-component systems, the
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entropy flux density in Equation (208)1 depends only on the spin vector Ξm. In equilibrium, the
entropy flux density in Equations (176) and (243)2 vanishes and induces qAk

eq = 0.
• The entropy supply of an A-component in Equation (156) is as well independent of the spin as for

the mixture in Equation (239) and for a 1-component system in Equation (208)2. The entropy
supply vanishes in equilibrium, and a connection between the force density kAl

eq and the angular
momentum density mAab

eq is established, Equations (178) and (244).
• The entropy production density in Equations (157) and (240) does not depend on the spin

density sAab for an A-component and for the mixture, but a dependence upon the three other
(3+1)-spin-components exists. In 1-component systems, the entropy production density in
Equation (209) depends on the spin stress Ξkb and on the couple stress skab. The entropy production
density vanishes in equilibrium, and a connection between the viscosity tensor πAkl

eq and the spin
stress and the couple stress is established, Equations (179) and (245).

9. Balances, Constitutive Equations and the 2nd Law

Up to here, a special material was not taken into account: all considered relations are valid
independently of the material which is described by constitutive equations supplementing the balance
equations. Especially, the entropy productions in Equation (157) of the A-component and Equation
(240) of the mixture are not specified for particular materials. There are different possibilities for
introducing constitutive equations (as an ansatz, or better by construction procedures [36,37]). Because
constitutive equations are not in the center of our considerations, we restrict ourselves on the easiest
ansatz, which only serves for elucidation of the problem: Balance equations are generally valid for
all materials, which means they cannot be solved without choosing a special material characterized
by constitutive equations which inserted into the balance equations transform these into a system of
solvable differential equations for the wanted fields.

The entropy production of the A-component in Equation (157) is a sum of two-piece products
whose factors are so-called “fluxes” and “forces”. According to Equation (157), the ten fluxes are

YA =
{

JAmhAk
m ,

[
(in)ΓA −

(
JAmhAk

m

)
;k

]
, qAk,

(
πAkl + uAk pAl

)
,( 1

c2 eAuAkuAl +
1
c2 qAkuAl + tAkl

)
, HAB, ΞAkb, sAkab,

1
c4 uA[aΞAb],

( 1
c2 uA[aΞAkb] + sAkab

)}
, (247)

and the corresponding ten forces are

X A =
{ ( µA

ΘA

)
;k

,
µA

ΘA ,
( f A

ΘA

)
;k

,
f A

ΘA uA
l,k,

( 1
ΘA umhA

ml

)
;k

,
( 1

ΘA −
1

ΘB

)•
,
( •u A

b
ΘA

)
;k

,
•
u A

b
ΘA uA

a;k,( 1
ΘA

•
u A
[mun]h

Am
a hAn

b

)
•,
( 1

ΘA

•
u A
[mun]h

Am
a hAn

b

)
;k

}
. (248)

The entropy production density in Equation (157) of an A-component can be written as a scalar
product of forces and fluxes

σA = YA · X A, (249)

a relation which is valid independently of the material in consideration. The material is described by
the dependence of the fluxes on the forces, by the constitutive equations

YA = FA(X A) (250)
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which have to be introduced into the expression of the partial entropy production density in Equation
(249) resulting in the entropy production density of the mixture by Equation (227)

σA = FA(X A) · X A −→ �σ = ∑
A

FA(X A) · X A ≥ 0. (251)

The inequality is caused by the Second Law, which states that the entropy production of the
mixture is not negative after having inserted the constitutive equationsinto the general expression in
Equation (229). Consequently, the Second Law represents a constraint for the constitutive equations
(Equation (250)) [38], and it makes no sense to take the Second Law into consideration before the
constitutive equations are inserted. The entropy production of sub-systems—here the A-components in
Equation (251)1— is not necessarily positive semi-definite. There are different methods for exploiting
the dissipation inequality in Equation (251)2 [38,39], which are beyond this paper because special
materials are here out of scope.

10. Special Case: General Relativity Theory

10.1. Extended Belinfante/Rosenfeld Procedure

The basic equations of General-Covariant Continuum Thermodynamics (GCCT) of a mixture
(Section 8) (Equations (214)–(217) and (225))

Nk
;k = Γ, Tkl

;k = kl , Skab
;k =

1
c2 mab, Sk

;k = �σ +� ϕ (252)

contain covariant derivatives depending on the geometry of the space-time in which the physical
processes occur. Here, the pseudo-Riemannian space of General Relativity Theory (GRT) is chosen as a
special case.

In GRT, as a consequence of Einstein’s equations

Rab − 1
2

gabR = κΘab =⇒ Θab = Θba, Θab
;b = 0, (253)

the gravitation generating energy–momentum tensor Θab has to be symmetric and divergence-free
(Rab is the Ricci tensor, gab the metric, and R = Rm

m). According to Equations (42) and (28), the
energy–momentum tensor of the mixture Tkl may be neither symmetric nor divergence-free. The same
is true for spin divergence Skab

;k. Consequently, both tensors cannot serve as gravitation generating
tensors in Einstein’s equations, and the question arises: How can the balance equations (Equations
(252)2,3) be incorporated into the general-covariant framework of GRT? The answer to that question
has been proved by the following extended Belinfante/Rosenfeld procedure whose special relativistic
version is well known since a long time [40–42]. The general relativistic version is as follows:

� Proposition [43]: The general-covariant Belinfante/Rosenfeld procedure generates a symmetric and
divergence-free tensor

†Θab := Tab − 1
2

[
Skab + Sabk + Sbak

]
;k

, (254)

if the GCCT balances (B) in Equation (252)2,3 and the Mathisson–Papapetrou equations (MP) in
Equations (255)2 and (256)2

1
c2 mab B= Skab

;k
MP= 2T[ab], (255)

kb B= Tab
;a

MP=
1
2

[
Skab + Sabk + Sbak

]
;k;a

= −1
2

Rb
klmS

klm (256)
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(Rb
klm is the curvature tensor) are valid as necessary constraints for the force density and the

angular momentum. �
The Mathisson–Papapetrou equations are general-covariant including the special-relativistic case,

which is characterized by replacing the covariant derivatives by commuting partial ones and by
Rb

klm ≡ 0.
Inserting Equation (255) into Equation (254) results in

†Θab = T(ab) − 1
2

[
Sabc + Sbac

]
;c

= T(ab) − S(ab)c
;c, (257)

a tensor which is symmetric and divergence-free according to Equations (254) and (256)2.
The general-covariant Belinfante/Rosenfeld procedure transforms by use of the symmetric spin

divergence S(ab)c
;c the not necessary divergence-free symmetric part of the energy–momentum tensor

T(ab) into a symmetric and divergence-free tensor †Θab. In other words, the energy–momentum tensor
Tab (not necessary symmetric and divergence-free) is transformed into the mutant †Θab (symmetric
and divergence-free) (this name was coined by H.-H. von Borzeszkowski).

The decisive step for connecting GRT and GCCT is the following usually used

Setting XV:

Θab •
= †Θab. (258)

The mutant which is created by the Belinfante/Rosenfeld procedure is the gravitation generating
energy–momentum tensor of Einstein’s equation (Equation (253)). According to Equation (252), the
mixture (and not single components) determines the geometry.

10.2. Example: 2-Component Plain-Ghost Mixture

10.2.1. The Plain Component

The balance equations defining the plain component (P) are according to Equations (1), (25)
and (84)1

NP
k = $PuP

k , NPk
;k

B= 0, (259)

T[ab]
P = 0, T(ab)

P ;a = 0 B= kb
P, (260)

Sabc
P = 0, Skab

P ;k = 0 B=
1
c2 mab

P . (261)

By definition, the plain component is characterized by a symmetric and divergence-free
energy–momentum tensor and vanishing spin. According to Equations (255) and (256), the
Mathisson–Papapetrou equations are satisfied by Equations (259)–(261), so that the plain component
of cause fits into GRT. If the plain component is regarded as a 1-component system (and not as a
mixture component), the gravitation generating energy–momentum tensor is as expected according to
Equations (257)2 and (258)

Θab
P = T(ab)

P . (262)

The situation changes, if the plain component is regarded as a mixture component of a
2-component mixture whose second component is introduced in the next section.



Entropy 2019, 21, 1034 38 of 43

10.2.2. The Ghost Component

The balance equations defining the ghost component (G) are

NG
k = $GuG

k = 0, (263)

T(ab)
G = 0, T[ab]

G ;a
B= kb

G, (264)

Skab
G ;k

B=
1
c2 mab

G , S(ab)k
G ;k;a = 0. (265)

By definition, the ghost component is characterized by vanishing mass density (no “normal”
material ($G = 0), therefore the name “ghost”). The Mathisson–Papapetrou equations demand

1
c2 mab

G ;a = 2kb
G, (266)

a dependence between force and angular momentum densities. If the ghost component is regarded as
a 1-component system, the gravitation generating energy–momentum tensor is according to Equations
(257)2 and (258)

Θab
G = −S(ab)k

G ;k. (267)

Surprisingly, a “non-material” system such as the ghost component has a gravitational effect.
Plain and ghost components form a 2-component mixture, which is discussed in the next section.

10.2.3. The Plain-Ghost Mixture

According to the settings in Equations (5), (42) and (78), we obtain for the mixture by taking
Equations (259), (263), (260)1, (264)1, and (261)2 into account

Nk = NP
k + NG

k = $PuP
k , (268)

Tab = T(ab)
P + T[ab]

G −→ T(ab) = T(ab)
P , T[ab] = T[ab]

G , (269)

−→ Tab
;a = T[ab]

G ;a, (270)

Sabc = Sabc
P + Sabc

G −→ S(ab)c
;c = S(ab)c

G ;c, (271)

−→ Skab
;k = Skab

P ;k + Skab
G ;k =

1
c2 mab

G . (272)

For fitting the GCCT plain-ghost mixture into the GRT, the Mathisson–Papapetrou equations
(Equations (255) and (256)) have to be satisfied for the mixture. Taking Equations (261)1, (270) and
(272) into account, Equation (255) results in

1
c2 mab

G = 2T[ab]
G . (273)

According to Equations (260)2 and (270)2, Equation (256) yields Equation (266).
The gravitation generating energy–momentum tensor of the plain-ghost mixture is according to

Equations (257), (269)2 and (271)2

Θab = T(ab) − S(ab)c
;c = T(ab)

P − S(ab)c
G ;c = Θab

P + Θab
G (274)

which is different from Equations (262) and (267).

10.3. “Dark Matter” as a Ghost Component?

The previous statements allow discussing the following (strange) situation: An observer takes
the plain-ghost mixture for a 1-component plain mixture because the ghost component is “dark”:
no additional mass density and no spin can be detected from the point of view of the plain component.
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Erroneously, this observer supposes that Equations (259)–(261) are valid, but, in fact, Equations
(268)–(272) are true. Observations of gravitational effects yield that the gravitation generating
energy–momentum tensor Θab

P in Equation (262) does not describe the observed gravitation because
the ghost component of the plain-ghost mixture is invisible for the observer according to Equation
(263). This situation remembers lively the search for “dark matter”, which should correct the
energy–momentum tensor of the “visible matter”. If the observer speculates that the “dark matter” is
a matter-free and spin-equipped object according to Equations (263)–(265), the gravitation generating
energy–momentum tensor Θab describes the gravitation correctly in contrast to Θab

P .
One question arises: Does a ghost component exist in nature and what is its physical essence?

It is evident according to Equation (263) that the dark matter candidate “superheavy gravitino” [44]
even though its mass may fit the plain-ghost mixture because of $G ≈ 0, but the coupling in Equation
(266) of the external quantities force and momentum densities remains mysterious.

11. Summary

A multi-component system is formed by its components, which are characterized by own
individual quantities, such as velocity, density, chemical potential, stress tensor, temperature, heat
flux, entropy flux densities, entropy production, supply and further items. All these individual
quantities determine those of the multi-component system, which is described as a mixture. Individual
temperatures of the components result in multi-temperature relaxation towards the corresponding
equilibrium generating a common temperature of all components and of the mixture. A temperature
of the mixture in multi-temperature relaxation non-equilibrium depends on the used thermometer
and cannot be defined unequivocally.

Starting out with the rest mass densities of the components of the multi-component system,
the mass flux densities of the components are defined by introducing their different 4-velocities.
The mixture of the components is characterized by several settings. The first one is the additivity of
the component’s mass flux densities to the mass flux density of the mixture. In combination with
the mixture axiom, this setting allows defining mass density and 4-velocity of the mixture and the
diffusion fluxes of the components. The non-symmetric energy–momentum tensor of one component
interacting with the mixture is introduced, and its (3+1)-split together with the component’s mass and
diffusion flux densities are generating the entropy identity [11], which restricts possible arbitrariness
of defining.

The exploitation of the entropy identity requires additional settings, which result in physical
interpretations of entropy density, flux and supply inducing the entropy production from the
entropy identity. By use of the entropy identity, Lagrange multipliers are introduced concerning
the constraints taken into account. These Lagrange multipliers are temperature, chemical potential
and an additional non-equilibrium variable which characterizes the considered component to be a
part of the mixture. Beside the classical irreversible processes—diffusion, chemical reactions, heat
conduction and friction—an additional irreversible process—multi-temperature relaxation—appears
due to the embedding of the considered component into the mixture. Different from the classical
case, the mass production term, the heat flux density and the viscous tensor are modified by so-called
effective quantities.

Equilibrium is defined by equilibrium conditions, which are divided into necessary and
supplementary ones [11,12,45]. The necessary equilibrium conditions are given by vanishing entropy
production, vanishing entropy flux density and vanishing entropy supply. Supplementary equilibrium
conditions are: vanishing diffusion flux densities, vanishing component time derivatives (except that of
the 4-velocity) and vanishing of the mass production terms. Presupposing these equilibrium conditions,
we obtain: all components have the same 4-velocity, all heat flux densities are zero, the power as well
as the divergence of the 4-velocity of each component vanish, and the viscous tensor is perpendicular
to the velocity gradient.
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The corresponding free component is defined by undistinguishable component indices (that
is not the mixture which is a multi-component system). This 1-component system represents the
easiest classical case, serving as a test of whether the interacting component in the mixture is correctly
described. The vanishing of the entropy production in equilibrium is shortly investigated: the so-called
Killing relation of the vector of 4-temperature is neither a necessary nor a sufficient condition for
equilibrium. In addition, the statement that materials are perfect in equilibrium cannot be confirmed.

Finally, a special 2-component mixture is considered in the framework of General Relativity
resulting in: a matter-free spin component influences the gravitation of the matter component.
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Appendix A. Appendices

Appendix A.1. Rest Mass Densities

Consider two frames, BA and BB. BA is the rest frame of the A-component and BB that of the
B-component. The corresponding rest mass densities are

rest mass/rest volume: $A :=
mA

0

VA
0

, $B :=
mB

0

VB
0

. (A1)

It is not necessary, but for comparing the rest mass densities, we should choose the rest volumes
to be equal

VA
0

.
= VB

0
.
= ...... =: V0. (A2)

By definition, the rest mass densities do not depend on the frame, which means the rest
mass densities are relativistic invariants and should not be confused with the measured densities
in non-resting frames

BB : $A
B =

$A

1− v2
AB/c2

, BA : $B
A =

$B

1− v2
BA/c2

, vAB = −vBA. (A3)

Here, $A
B is the density of the A-component in the rest frame of the B-component, and vAB is the

translational 3-velocity of BA in the frame BB. These densities are out of scope in this paper.
We now consider Equation (9)1 in the rest frame BO of the mixture, which is defined by uk

O =

(0, 0, 0, c). Consequently, we obtain

f A
O =

1
c2 uA

4Oc =
1
c

c√
1− v2

AO/c2
. (A4)

Inserting Equation (A4) into Equation (9)2 results in the mass density of the mixture in its
rest frame

BO : $O = ∑
A

f A
O $A

O = ∑
A

1√
1− v2

AO/c2

$A

1− v2
AO/c2

= ∑
A

$A

(1− v2
AO/c2)3/2

. (A5)

The same result is obtained, if Equation (5)3 is written down for the rest system of the mixture.
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Appendix A.2. Example: Uniform Component Velocities

If there exists a common rest frame B0 for all A-components

uA
k

.
= u0

k , ∀A. (A6)

According to Equation (5)3, we obtain

$uk = u0
k ∑

A
$A −→ $c2 = uku0

k ∑
A

$A ∧ $uku0k = c2 ∑
A

$A, (A7)

and with Equation (9)1 follows

$c2 = c2 f 0 ∑
A

$A ∧ $c2 f 0 = c2 ∑
A

$A −→ ( f 0)2 = 1, (A8)

resulting in
f 0 = ±1. (A9)

We obtain from Equation (9)2

$ = f 0 ∑
a

$A = ±∑
a

$A −→ f 0 = +1, (A10)

and taking Equation (A7)1 into account
uk = u0

k . (A11)

As expected, the 4-velocity of the mixture is identical with the uniform component velocities.

Appendix A.3. Stoichiometric Equations

The system of the relativistic stoichiometric equations runs as follows

∑
A

νA
α MA

0 = 0, (A12)

component index: A = 1, 2, ..., Z, reaction index: α = 1, 2, ..., Ω.

The stoichiometric coefficients νA
α are scalars, and the partial rest mole mass MA

0 is defined using
the scalar mole number nA and the mole concentration ζA of the A-component

MA
0 :=

mA
0

nA =
V0

nA $A =
$A

ζA , ζA :=
nA

V0
(A13)

according to Equations (A1) and (A2). The stoichiometric coefficients νA
α are determined by the partial

rest mole masses MA
0 , A = 1, 2, ..., Z, before and after the αth reaction.

The time derivative of the mole number is determined by the reaction velocities
•
ξα

•
n A = ∑

α

νA
α

•
ξα . (A14)

Multiplication with MA
0 results by use of Equation (A12) in

MA
0
•
n A = ∑

α

νA
α MA

0

•
ξα −→ ∑

A
MA

0
•
n A = 0. (A15)
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Starting with the physical dimensions

[νA
α ] = mol, [n] = mol, [MA

0 ] =
kg

mol
, [ζA] =

mol
m3 , [

•
ξα] =

1
s

, (A16)

that of the mass production term in the first row of Equation (141) is evidently

[(in)ΓA] =
kg

m3s
. (A17)

A comparison with

[MA
0
•
n A] =

kg
s

(A18)

shows that (in)ΓA is the density which belongs to the mass production in Equation (A15). Because,
according to Equation (A2), all rest mass densities are referred to the relativistic invariant V0, we obtain
from Equations (A18) and (A17) with Equation (A15)

(in)ΓA =
1

V0
∑
α

νA
α MA

0

•
ξα −→ ∑

A

(in)ΓA = 0. (A19)
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