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Abstract: In addition to the standard scaling rules relating critical exponents at second order
transitions, hyperscaling rules involve the dimension of the model. It is well known that in canonical
Ising models hyperscaling rules are modified above the upper critical dimension. It was shown by M.
Schwartz in 1991 that hyperscaling can also break down in Ising systems with quenched random
interactions; Random Field Ising models, which are in this class, have been intensively studied. Here,
numerical Ising Spin Glass data relating the scaling of the normalized Binder cumulant to that of
the reduced correlation length are presented for dimensions 3, 4, 5, and 7. Hyperscaling is clearly
violated in dimensions 3 and 4, as well as above the upper critical dimension D = 6. Estimates are
obtained for the “violation of hyperscaling exponent” values in the various models.
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1. Introduction

It has been tacitly or explicitly assumed that Edwards–Anderson Ising Spin Glasses (ISGs), where
the quenched interactions are random, follow the same basic scaling and Universality rules as in the
canonical Ising models, whose properties are understood in great detail through Renormalization
Group Theory (RGT). Here we will present numerical evidence for hyperscaling violation in ISGs.
A textbook definition of hyperscaling is: “Identities obtained from the generalised homogeneity
assumption involving the space dimension D are known as hyperscaling relations.” [1]. The
hyperscaling relations valid in canonical Ising models below the upper critical dimension are:
2− α = Dν, and 2∆ = Dν + γ, where ∆ = γ + β is the “gap” exponent associated with the critical
behavior of the higher field derivatives of the free energy [2,3]. The two hyperscaling relations are
linked through the Essam–Fisher relation α + Dν− 2∆ = 2.

Hyperscaling “collapses” in Ising models in dimensions above the upper critical dimension
D = 4, where the critical exponents take their mean-field values: γ = 1, ν = 1/2, α = 0, and ∆ = 3/2.
Hyperscaling was predicted by Schwartz to break down also in quenched systems with random
interactions [4]. The breakdown of hyperscaling in the 3D Random Field Ising model (RFIM) has been
extensively studied [5–8]. The first hyperscaling relation in this model is re-written 2− α = (D− θ)ν

where θ is the “violation of hyperscaling exponent” [5] with θ ∼ 1.47 in the 3D RFIM [9,10]. Logically,
the second hyperscaling relation should simultaneously become 2∆ = (D− θ)ν + γ.

Though not conventionally written this way, in the standard Ising models above D = 4 equivalent
modified hyperscaling relations 2− α = (D − θ)ν = 2 and 2∆ = (D − θ)ν + γ = 3 can be seen by
inspection to be consistent with the mean field exponents plus a violation exponent θ = D− 4.

Ising spin glasses (ISGs) are also systems with quenched randomness in which hyperscaling
might be expected to break down, from a generalization of Schwartz’s argument. The exponent α in
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ISGs is always strongly negative and so is very hard to estimate directly; we will be concerned only
with the second hyperscaling relation. We are not aware of any tests of hyperscaling in ISGs.

2. Scaling

As usual the Hamiltonian isH = −∑ij JijSiSj. The sum is taken over all nearest-neighbour spins
and the Jij are the interaction strengths. For Ising models we let Jij = 1 but for ISGs the Jij are drawn
from a symmetric distribution (〈Jij〉 = 0) normalized to 〈J2

ij〉 = 1. Also, while the inverse temperature

is β = 1/T for the Ising case one should keep in mind that for ISGs it is β = (〈J2
ij〉/T2)1/2, which is

consistent with the Ising case.
The magnetisation m = L−d ∑i Si has the role of order parameter for Ising models but for ISGs

we use the spin overlap parameter

q =
1
Ld ∑

i
SA

i SB
i (1)

where A and B indicate two spin systems on the same interaction realizations (samples). The
susceptibility is then χ = Ld〈m2〉 for Ising models while for ISGs we use χ = Ld[〈q2〉], where [· · · ]
denotes the sample average.

The Binder cumulant [11], a normalized form of the kurtosis, is defined as

g =
1
2

(
3− 〈m

4〉
〈m2〉2

)
(2)

for Ising models and as

g =
1
2

(
3− [〈q4〉]

[〈q2〉]2

)
(3)

for spin glasses. Finally, the standard finite-L definition for the second-moment correlation length
ξ(β, L) through the Fourier transformation of the correlation function is used, see Ref. [12] Equation (8),

ξ =

√
χ/F− 1

2 sin(π/L)
(4)

and

Fk =
1
Ld

〈(
∑
x

qx exp(2πixk/L)

)2〉
(5)

where qx = SA
x SB

x for ISGs and just Sx for Ising models. Here, xk is the kth spin coordinate so we let
F = (F1 + · · ·+ FD)/D be the average over the D directions. For ISGs we then also take the sample
average of F in Equation (4). The ISG data were gathered using exchange Monte Carlo [13] and the
Ising data with the Wolff-cluster technique.

The conventional RGT-based approach to analyses of numerical simulation data is to use the
reduced temperature t = (T − Tc)/Tc as the thermal scaling variable, together with the principal
observables χ(t, L), ξ(t, L) and g(t, L). This approach is then tailored to the critical region. However,
at high temperatures the scaling variable t diverges and ξ(t, L) tends to zero, so analyses of the entire
paramagnetic regime is not possible without introducing diverging correction terms. In addition,
in symmetric-interaction ISGs the relevant interaction-strength parameter is 〈J2

ij〉 so the ISG thermal
scaling variable should depend on the square of the temperature; this basic point was made some
thirty years ago [14,15] but has been ignored since in most ISG simulation data analyses.

A rational scaling approach which takes in the entire paramagnetic region, thus including both the
finite-size scaling regime (FSS, L� ξ(β, ∞)) and the thermodynamic limit regime (ThL, L� ξ(β, ∞)),
can be based on the Wegner scaling expression for the bulk Ising susceptibility [16]

χ(τ) = Cχτ−γ (1 + aχτνω + bχτ + · · · ) (6)
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where τ = 1− β/βc in Ising models with β the inverse temperature [17]. (The Wegner expression is
often mis-quoted with t replacing τ). The terms inside (· · · ) are scaling corrections, where νω is the
leading thermal correction exponent, which is identical for all observables within a universality class.

At infinite temperature τ = 1, and for all spin-1/2 models, χ(τ) tends to 1; hence, for the
susceptibility the whole paramagnetic region can generally be covered to good precision when a
few mild Wegner correction terms are included. (To obtain infinite precision an infinite number of
correction terms are of course needed, just as in standard FSS analyses where perfect precision in
principle requires an infinite number of size dependent correction terms [18]).

For ISG models with symmetric interaction distributions an appropriate thermal scaling variable
is τ = 1− (β/βc)2, which then can be used in the Wegner expression [14,15,19,20]. In the ThL regime
L� ξ(β) the properties of a finite-size sample, if normalized correctly, are independent of L and so
are the same as those of the infinite-L model. A standard rule of thumb for the approximate onset of
the ThL regime is L & 7ξ(β, L) and this is easily identified in the simulation data. A huge benefit with
this approach is that the ThL numerical data can be readily dovetailed into High Temperature Series
Expansion (HTSE) values obtained from exact series terms (in practice limited to a finite number of
terms). This is lost when the conventional FSS thermal scaling variable t is used.

To apply the Wegner formalism to other observables Q than χ in spin-1/2 models, it is convenient
to impose the rule that each observable should be normalized in such a way that that the infinite
temperature limit is Qn(τ = 1) ≡ 1, without the critical limit exponent being modified. For the
spin-1/2 [reduced] susceptibility no normalization is required as this condition is automatically
fulfilled, with a temperature dependent effective exponent γ(τ) = ∂ ln[χ(τ, L)]/∂ ln τ both in Ising
models, and in ISGs with the appropriate τ.

The reduced second-moment correlation length is defined as ξ(τ, L)/β1/2 in Ising models and
as ξ(τ, L)/β in ISG models [20]. Note that the critical-limit ThL exponent ν is unaltered by this
normalization (models with zero-temperature critical points are a special case [21]). From exact and
general HTSE for either model this reduced correlation length tends to 1 at infinite temperature [2,19].

The temperature-dependent effective exponent is then defined as ν(τ) = ∂ ln[ξ(τ, L)/β1/2]/∂ ln τ

in Ising models and ν(τ) = ∂ ln[ξ(τ, L)/β]/∂ ln τ in ISG models. A Wegner-like relation again applies
with appropriate correction terms. With this definition the temperature-dependent effective ν(τ)

usually turns out to remain close to the critical value, except at high temperatures where it may be
significantly modified by the corrections.

The temperature-dependent effective exponents γ(τ) and ν(τ) are well-behaved over the entire
paramagnetic regime, with exact infinite-temperature hypercubic-lattice limits γ(1) = 2Dβc and
ν(1) = Dβc for Ising models. For the ISG models they are γ(1) = 2Dβ2

c and ν(1) = (D − K/3)β2
c ,

where K is the kurtosis of the interaction distribution.

3. Hyperscaling

The second field derivative of the bulk susceptibility χ4(β) (fourth derivative of log Z, also called
the non-linear susceptibility) in a hypercubic lattice is directly related to the ThL Binder cumulant for
finite L through

2g(β, L) =
−χ4

LDχ2 =
3〈m2〉2 − 〈m4〉
〈m2〉2 (7)

see Ref. [22] Equation (10.2). It can be noted that in any spin-1/2 Ising system the infinite-temperature
limit (i.e., independent spins) for the Binder cumulant is g(0, N) ≡ 1/N, where N is the number
of spins; as N = LD for a hypercubic lattice, at infinite temperature LDg(τ, L) ≡ 1. Thus this
normalized Binder cumulant also obeys the high-temperature limit rule for normalized observables
introduced above.
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For Ising models in the ThL (bulk or L � ξ(τ)) regime, assuming hyperscaling the critical
exponent for the second field derivative of the susceptibility χ4(β) is [2]

γ4 = γ + 2∆ = Dν + 2γ (8)

Thus the bulk χ4(β)/(2χ(β)2) or the ThL normalized Binder cumulant LDg(β, L) scales with the
critical exponent (νD + 2γ)− 2γ = νD, together with appropriate Wegner correction terms.

The standard “dimensionless renormalized coupling constant” can be defined as

G4(β) =
χ4(β)

ξ(β)Dχ(β)2 =
LDg(β, L)
2ξ(β, L)D (9)

(other normalizations are also used [2]). It should be noted that even in the case of the canonical 2D
Ising model [23] the infinite-L value of G4(βc) at criticality depends strongly on the order in which the
limits are taken: the ThL limit (L→ ∞, β→ βc) or the FSS limit (β→ βc, L→ ∞). Also, in order for
the infinite-L Ising G4 to become regular analytic to β = 0 the normalized Ising form (βc/β)D/2G4(β)

should be used, see Ref. [2] Equation (42). This modification is strictly equivalent to replacing in
Equation (9) ξ(β, L) by ξ(β, L)/β1/2 which is the reduced correlation length introduced above.

From the hyperscaling rule, the critical exponents for LDg(τ, L) and (ξ(τ, L)/β1/2)D are both Dν.
Figure 1 shows a plot of L3g(τ, L) against (ξ(τ, L)/β1/2)−3 for the 3D simple cubic spin-1/2 Ising
model (see Ref. [24] for details of the simulations). It can be seen that within the statistics the ThL data
are consistent with a limiting critical slope ≡ −1 and an intercept G4β3/2

c /2 ∼ 1.23, with corrections
coming into play at high temperatures, in full agreement with the hyperscaling rule. It should be noted
that in this form of plot neither the critical inverse temperature value βc nor the critical exponent value
ν need to be introduced.
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Figure 1. (Color on line) Dimension 3 simple cubic Ising model. Normalized Binder cumulant L3g(β, L)
against reduced correlation length to the power 3, 1/(ξ(β, L)/β1/2)3. Sample sizes: L = 32, 24, 16, 8, 6
(top to bottom). Blue straight line: slope −1.00. In this and all following figures each line for fixed L
begins to bend over towards horizontal when it leaves the ThL regime L >> ξ(β).

For the 5D Ising model, in an equivalent ThL plot covering the entire paramagnetic temperature
regime the breakdown of standard hyperscaling leads to a critical exponent for the normalized Binder
cumulant which is not Dν = 5/2 but 2 [25], i.e., (D− θ)ν with a hyperscaling violation exponent θ = 1
as discussed above.
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4. Ising Spin Glasses

The normalized Binder cumulant against reduced correlation length to the power D for ISGs can
be displayed in just the same way as for the Ising model data in Figure 1. We show in Figures 2 and 3
data for the standard bimodal and Gaussian interaction ISGs on the 3D simple cubic lattice, and in
Figure 4 for a more exotic model, the Laplacian-interaction ISG on a face-centered cubic lattice.
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1/[ ( ,L)/ ]3

Figure 2. (Color on line) Dimension 3 simple cubic bimodal ISG model. Normalized Binder cumulant
L3g(β, L) against reduced correlation length to the power 3, 1/(ξ(β, L)/β)3. Sample sizes: L = 32, 24,
16, 12, 8, 6 (top to bottom). Green straight line: slope −1.27.
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Figure 3. (Color on line) Dimension 3 simple cubic Gaussian ISG model. Normalized Binder cumulant
L3g(β, L) against reduced correlation length to the power 3, 1/(ξ(β, L)/β)3. Sample sizes: L = 32, 24,
16, 12, 8, 6 (top to bottom). Green straight line: slope −1.23.
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Figure 4. (Color on line) Dimension 3 face-centered cubic Laplacian ISG model. Normalized Binder
cumulant L3g(β, L) against reduced correlation length to the power 3, 1/(ξ(β, L)/β)3. Sample sizes:
L = 28, 24, 20, 18, 16, 14, 12, 10, 8, 6 (top to bottom). Green straight line: slope −1.27.

In each case the ThL data can be seen to have a critical limit constant slope with corrections coming
into play at high temperatures. The value of the limit slope is in each case distinctly stronger than
the standard hyperscaling value −1, demonstrating that (ξ(β, L)/β)3) and L3g(β, L) have different
critical exponents; there is a violation of hyperscaling. With the same formalism as above, the value of
the slope in each Figure can be taken to be equal to −(D− θ)/D = θ/D− 1 with θ ∼ −0.80, −0.70
and −0.80 respectively for the three 3D ISG models.

Data for the bimodal and Gaussian 4D models, Figures 5 and 6, also show hyperscaling violations
with violation exponents θ ∼ −0.48 and −0.52 respectively, rather weaker than in 3D. For the bimodal
and Gaussian 5D models, Figures 7 and 8, the limiting slopes are close to −1 and any violation of
hyperscaling is too weak to be observed.
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Figure 5. (Color on line) Dimension 4 hypercubic bimodal ISG model. Normalized Binder cumulant
L4g(β, L) against reduced correlation length to the power 4, 1/(ξ(β, L)/β)4. Sample sizes: L = 14, 12,
10, 8, 6, 4 (top to bottom). Green straight line: slope −1.12.
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Figure 6. (Color on line) Dimension 4 hypercubic Gaussian ISG model. Normalized Binder cumulant
L4g(β, L) against reduced correlation length to the power 4, 1/(ξ(β, L)/β)4. Sample sizes: L = 14, 12,
10, 8, 6, 4 (top to bottom). Green straight line: slope −1.13.
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Figure 7. (Color on line) Dimension 5 hypercubic bimodal ISG model. Normalized Binder cumulant
L5g(β, L) against reduced correlation length to the power 5, 1/(ξ(β, L)/β)5. Sample sizes: L = 10, 8, 6,
4 (top to bottom). Green straight line: slope −1.00.
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Figure 8. (Color on line) Dimension 5 hypercubic Gaussian ISG model. Normalized Binder cumulant
L5g(β, L) against reduced correlation length to the power 5, 1/(ξ(β, L)/β)5. Sample sizes: L = 10, 8, 6,
4 (top to bottom). Green straight line: slope −1.00.

Finally, in the bimodal 7D ISG (above the ISG critical dimension D = 6), the equivalent plot,
Figure 9, is much more noisy than for the lower dimensions simply because by this dimension
the number of spins in each individual sample becomes very large leading to practical limitations,
particularly for the Binder cumulant. Nevertheless the slope of the plot can be seen to be lower than
−1 so, as for the 5D Ising model, the violation exponent θ ∼ 1.75 is positive.
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Figure 9. (Color on line) Dimension 7 hypercubic bimodal ISG model. Normalized Binder cumulant
L7g(β, L) against reduced correlation length to the power 7, 1/(ξ(β, L)/β)7. Sample sizes: L = 7, 6, 5,
4, 3 (top to bottom). Green straight line: slope −0.75.

5. Conclusions

For the canonical simple cubic Ising model, from data presented in the form of the normalized
Binder cumulant L3g(τ, L) against the reduced correlation length to power D, [ξ/β1/2]D, the observed
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critical-limit scaling is fully consistent with the expected standard hyperscaling log-log slope of −1
(plus mild corrections at high temperatures). The equivalent data plots for ISG models in various
dimensions show violations of hyperscaling with violation exponents which evolve regularly with
dimension from strongly negative for D = 3 to strongly positive for D = 7, passing though zero near
the upper critical dimension.
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