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Abstract: Complex network analysis applied to the resting brain has shown that sets of highly
interconnected networks with coherent activity may support a default mode of brain function within
a global workspace. Perceptual processing of environmental stimuli induces architectural changes in
network topology with higher specialized modules. Evidence shows that, during cognitive tasks,
network topology is reconfigured and information is broadcast from modular processors to a
connective core, promoting efficient information integration. In this study, we explored how the brain
adapts its effective connectivity within the connective core and across behavioral states. We used
complex network metrics to identify hubs and proposed a method of classification based on the
effective connectivity patterns of information flow. Finally, we interpreted the role of the connective
core and each type of hub on the network effectiveness. We also calculated the complexity of
electroencephalography microstate sequences across different tasks. We observed that divergent
hubs contribute significantly to the network effectiveness and that part of this contribution persists
across behavioral states, forming an invariant structure. Moreover, we found that a large quantity of
multiple types of hubs may be associated with transitions of functional networks.

Keywords: brain connectivity; complex networks; connective core

1. Introduction

Complex network analysis applied to neuroscience research has shed light on how the human
brain efficiently transfers information using limited physical connections [1,2]. Modular processing of
information occurs through segregated, specialized, and functionally modularized brain networks, and
this highly efficient clustering can be observed in the visual system. For example, even though color
and motion are temporally asymmetrical and autonomous modules, such that color is processed before
motion [3], during the perceptual processing of a scene, information from both sensory modalities
is employed simultaneously through the integration of specialized processors. Thus, cross-modal
activations of specialized processors may play a role in broadcasting information to a cognitive network
endorsed by hubs [4] (a set of mainly central nodes engaged in information flow and also known as
the connective core).

The existence of a cognitive network that integrates information during high-level cognitive
processing is predicted by the global workspace theory [5]. This theory postulates that the information
processed in primary sensory areas is transmitted to a global neuronal workspace [6] that mobilizes
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excitatory neurons with long-range axons capable of interconnecting sensory-level and high-level
processing areas [7]. The cognitive network is a locus within this global workspace and consists of
interconnected brain sites [6,7]. Therefore, the global workspace establishes a framework for network
cooperation, competition and state transitions for processing segregated information during effortful
cognitive tasks [8]. For that reason, the cognitive network topology is posited as a dynamic state with
decreased segregation of specialized sub-networks in exchange for increased brain connectivity.

The transition between segregated modular processing of specialized sub-networks to integrative
processing of the cognitive networks creates a temporary metastable state of global activity [5]. Thus,
determining dynamic changes in the topology of neuronal networks induced by different cognitive
states enables the estimation of task effects on speed and specialization of information processing [8].
A previous study investigated the reconfiguration of network topology during the transition from
resting-state to a visually-cued finger-tapping task [8]. One of the major findings of this study was
that network parameters of the global topology were conserved in both states. This result suggests
that, within a small-world topology, functional networks are able to support different, task-specific
connectivity patterns without drastic changes in global topology. Another important finding was that
motor tasks, compared to a resting-state, gave rise to higher frequency bands connecting pivotal nodes
on the parietal and frontal regions. These frequencies also presented the lowest level of synchronicity
of coupled oscillators in the limit between ordered and disordered behavior. The authors suggest that
higher frequency networks support rapid and adaptive reconfiguration in changing environments [8].

Characterizing the effective connectivity between nodes in the cognitive network may offer insight
on the gating dynamics of functional networks and workspaces. For example, nodes that are not
task-specific could mark functional areas engaged in cooperative dynamics. Indeed, if information is
transmitted to pivotal hubs, the networks they make up become potential components of the cognitive
network. That is, the engagement of pivotal hubs could indicate that information is being integrated in
a cognitive network.

2. Results

To study the effective connectivity of the brain using multivariate electroencephalography (EEG)
data, we applied a measure called normalized transfer entropy (NTE, described in Section 4.2).
In our analysis, we also proposed a betweenness-centrality-based method to classify hubs into
three types (see Sections 4.4 and 4.5): divergent hubs (HD), which have more efferent than afferent
connections; convergent hubs (HC), which have more afferent than efferent connections; and neutral
hubs (HN), for which the amount of afferent and efferent connections are not significantly different
from each other. However, for some subjects, not all hub types were present across all tasks. Thus,
our analysis was conditional to the presence of the specific type of hub. Moreover, when a given type
of hub was not present, we applied the Kruskal–Wallis multicomparison test, which can be used for
unpaired samples, and for the other cases we used the Friedman multicomparison paired test. Finally,
we proposed measures such as net entropy, homogeneity, and heterogeneity to better understand and
characterize their contribution and role in network dynamics.

2.1. Net Entropy Individual Contribution

After measuring the effective brain connectivity matrices through the normalized transfer entropy,
we applied the net entropy concept (K, described in Section 4.4) to evaluate the individual contribution
of each type of hub during each behavioral state. In Table 1, we observe that the K does not differ
across behavioral states for any hub type.

During cognitive tasks (ST and 2B), convergent hubs have a decreased contribution compared
to their contribution during RS. Divergent hubs remain stable and maintain a large individual
contribution to the effective connectivity across all behavioral states.
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Table 1. Mean net entropy (K) of each behavioral state. Mean entropies represent the average
contribution from individual hubs. Divergent hubs are more stable across the behavioral states.
In addition, in Stroop and 2-back tasks, divergent hubs also have a more representative contribution
when compared to that of convergent hubs. During resting-state, however, the contribution of
convergent hubs is more representative. %∆KST/KRS and %∆K2B/KRS indicate the percent variation
of K (with resting-state as reference) in Stroop and 2-back tasks, respectively.

Hub Classification Resting-State Stroop 2-Back %∆KST /KRS %∆K2B/KRS

HD 0.2986 0.3490 0.3160 16.8788% 5.8272%
HC −0.7293 −0.2440 −0.2390 66.5433% 67.2288%
HN 0.0171 0.0210 0.0170 22.8070% −0.5848%

2.2. Divergent Hubs Play a Role in the Brain Network

In this study, we analyzed the impact of each hub type on the network resilience (resilience,
a system’s ability to adjust its activity to retain its basic functionality when errors, failures and
environmental changes occur, is a defining property of many complex systems [9,10]). As shown
in Figure 1, this impact is represented by the percent variation of the characteristic path length (see
Section 4.3), considering the complete network as benchmark. We observed that the withdrawal of
hubs that perform a divergent role causes a greater negative impact in the characteristic path length
when compared to the removal of convergent or neutral hubs. Moreover, we also noticed that these
patterns are independent of behavioral state, suggesting that divergent hubs make an important
contribution to the general state of connectivity.

When we compared the impact of the removal of the complete connective core or that of each hub
type (see Table 2), we can see that the impact of withdrawing the connective core is approximately
equal to withdrawal of all three different hub types summed together. The impact of the removal of
the connective core that is associated with the removal of divergent hubs is approximately 66%.
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Figure 1. Graphical representation of Table 2. Average percent impact on characteristic path length (`)

when each type of hub was removed. The blue bars represent the divergent hubs’ impact, the gray
bars represent the convergent hubs’ impact and the black bars represent the neutral hubs’ impact. Each
graph shows the impact of three different hub types during resting-state (RS), Stroop (ST) and 2-back
(2B), respectively. We found differences in impact between the removal of divergent hubs compared to
that of the two other types in the RS (K = 18.13; pK = 1.1586× 10−4), ST (K = 12.16; pK = 0.0023) and
2B (K = 17.88; pK = 1.3130× 10−4) paradigms. We applied the Kruskal–Wallis test with a significance
level of 5%.
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Table 2. Average percent impact on characteristic path length when the connective core or each hub
type was removed.

Hub Classification Resting-State Stroop 2-Back

Network minus core 39.65% 40.18% 39.36%
Network minus HD 27.13% 23.86% 27.15%
Network minus HC 4.53% 5.97% 6.07%
Network minus HN 6.04% 9.60% 4.21%

2.3. The Connective Core Is Predominantly Formed by Divergent Hubs

After analyzing the contribution of each hub type, considering the characteristic path length metric,
we studied the connective core composition. We also assessed the connective core’s invariance across
different behavioral states. These results, displayed in Table 3, show a core structure predominantly
composed of divergent hubs, regardless of the behavioral state, as shown in Figure 2.

It is important to note that the results described in Table 2 are not caused by a greater contribution
of divergent hubs in connective core composition. The average percent variation in the characteristic
path length when a single divergent hub was removed from the network is 34% greater than when
a single neutral hub was removed in RS. For ST and 2B, these proportion were 22% and 36%,
respectively. Considering the convergent hubs as benchmark, we observed the same effect for RS (38%)
and 2B (14%). There was no difference between divergent and convergent average percent variation in
the characteristic path length during the Stroop paradigm.

Furthermore, we used measures of homogeneity (Γ) and heterogeneity (Λ), described in
Section 4.5, to quantify the sub-structure of the connective core that is preserved or not. In doing so,
we observed that the connective core is partially preserved between different states, as shown in Table 4.
We can observe that divergent hubs make up approximately 85% of the invariant structure between
any two behavioral states. On the other hand, we also characterized hubs whose classifications change
across behavioral states—highlighting a variant structure in the connective core.

Table 3. Percent average in the connective core composition. Divergent hubs represent the greater part
of central nodes in RS (Q = 14.37; pQ = 7.5708× 10−4), ST (Q = 12.7; pQ = 0.0017) and 2B (Q = 17.71;
pQ = 1.4286× 10−4) paradigms. We applied the paired Friedman test considering a significance level
of 5%. Multiple comparison tests indicated that the divergent hubs make up the greatest portion in the
connective core composition.

Hub Classification Resting-State Stroop 2-Back

HD 64.61% 65.82% 72.91%
HC 13.47% 14.68% 14.40%
HN 21.92% 19.51% 12.69%
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Figure 2. Scalp representation of three hub types across the behavioral states from two different subjects.
The blue nodes illustrate the divergent hubs, the black nodes represent the neutral hubs and the gray
nodes show the convergent hubs.
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Table 4. Percent average variation between hub types in two behavioral states. Divergent hubs are
more preserved and point out to a shared network that remains activated.

Connective Core Hub Change RS ∩ ST RS ∩ 2B ST ∩ 2B

Invariant
structure

HD → HD 32.94% 34.03% 35.64%
HC → HC 01.14% 02.31% 02.27%
HN → HN 05.84% 04.16% 00.96%

Total preserved 39.92% 42.18% 38.87%

Variant
structure

HD → HN 02.61% 01.21% 02.81%
HD → HC 00.00% 01.30% 00.00%
HD → NH 26.01% 25.92% 28.39%
HC → HD 01.30% 03.93% 01.65%
HC → HN 01.14% 00.00% 01.40%
HC → NH 10.57% 06.99% 09.66%
HN → HD 08.82% 10.52% 05.86%
HN → HC 01.40% 03.32% 03.34%
HN → NH 08.24% 06.31% 08.02%

Total 100.00% 100.00% 100.00%

2.4. Microstates & Hubs

We also evaluated the hubs’ dynamic behavior over time. To do so, we segmented the EEG
data in 5-s moving windows with 80% overlap. Following this, we inferred a time series formed by
hubs—one for each type of hub. Finally, we established a threshold parameter defined by the standard
deviation of each series. Using these thresholds, we performed a microstate analysis (described in
Section 4.6) triggered by the local maximum of each type of hub condition. In addition, we measured
the correlation between the occurrence of these local maxima. In doing so, we observed a negative
correlation between the divergent and neutral hubs across behavioral states. When we examined the
correlation between HD and HC, we noticed that, during the cognitive states, when compared with
resting-state, the negative correlation between them increases. In Table 5, we show these results.

Table 5. Averaged values (considering all subjects) of the correlation between the presence of two given
hub types over the time. %∆ST/RS and %∆2B/RS indicate the percent variation of the correlation
(considering the resting-state as reference) in Stroop and 2-back, respectively.

Correlation RS ST 2B %∆ST/RS %∆2B/RS

HN × HD −0.3323 −0.3576 −0.3022 −7.6113% 9.0586%
HN × HC −0.2135 −0.1747 −0.2026 18.1746% 5.1016%
HC × HD −0.0987 −0.1281 −0.2013 −29.7501% −103.8972%

Paired with microstate analysis, we applied the Lempel-Ziv’s complexity measure (also described
in Section 4.6) in the local time window to characterize the occurrence patterns of microstates’ sequence.
We observed that, independently of the behavioral state, windows with peaks of more than one hub
type presented a higher complexity than windows defined by one specific type of hub. The Friedman
test was used to compare medians among the windows marked by convergent, neutral, divergent hubs
and common peaks (at least two different hub types) with a significance level of 5%. For resting-state
(Q = 19.8; pQ = 1.8674× 10−4), the increase in complexity was approximately 17%. For Stroop
(Q = 20.56; pQ = 1.2969× 10−4), the increase in complexity was approximately 28%. For 2-back
(Q = 20.13; pQ = 1.5974× 10−4), the increase in complexity was approximately 13%.

3. Discussion

In the present study, we analyzed the connective core [4] of eleven subjects during effective
attention [11] and working memory [12] tasks, as well as during resting-state [13]. The connective core,
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also called rich-club, is a substructure composed by neural hub regions that are densely interconnected
and promote efficient communication and functional integration. van den Heuvel & Sporns [4] also
reported a structural imbalance between incoming and outgoing projections of some brain areas,
calling these regions “net receivers” and “net emitters”. This property can also affect the effective
connectivity aspects, suggesting that these hubs with different behaviors can play a potential role in
information flow as neural communication “sources” and “sinks”.

We proposed a similar quantified classification into three hub types: divergent hubs, convergent
hubs, and neutral hubs. However, in addition to considering an imbalance to define sources
(divergent hubs) and sinks (convergent hubs) nodes, we also introduced a range in which the incoming
pathways are not representatively greater than the outgoing pathways or vice versa (neutral hubs).
Furthermore, we evaluated the hubs’ contributions, dynamic behaviors and roles in the network.
Our data reveal that divergent hubs are more effective in characterizing the network; when they are
removed, there is a significant loss of effective connectivity of the whole network (see Figure 1 and
Table 2). We observed that the average percent variation in the characteristic path length when a
single divergent hub is removed from the network is generally greater than when any other hub type
is removed, across behavioral paradigms. This effect was observed across all behavioral paradigms
and supports a previous study by Kaiser et al. [14], who evaluated the robustness of brain networks
when removing their nodes and edges randomly or selectively. Similar to what our data reveal,
the researchers concluded that, if structures with many connections (e.g., an isolated hub) or the
connective core are removed, the functional effects on the brain network should be substantial.

After understanding the contribution of the connective core and the different hubs to the network
effectiveness, we analyzed the connective core’s composition. In doing so, we observed that the
connective core is composed mostly of divergent hubs (see Table 3). Furthermore, we performed
a tracking of the connective core across behavioral states. We observed that the connective core
is composed of an invariant substructure, which is preserved between behavioral states, as well
as a variant substructure that is characteristic of each paradigm (see Table 4). In addition to the
divergent hubs making up most of the connective core, they also account for most of the substructure
preserved between behavioral states. When looking at the variant substructure during the transition
between different paradigms, certain patterns are easily noticeable: (a) half of the divergent hubs
remain divergent, while the rest cease to be hubs, suggesting that divergent hubs play an integrative
role; (b) neutral hubs become divergent or cease to be hubs; and (c) most convergent hubs cease
to be hubs, implicating that they may be paradigm-specific hubs. These effects were described by
Sporns [15], who defined central nodes as a mechanism of convergence and divergence of information
flow, ensuring integrated processing. In another study, Meyer & Damasio [16] described a structural
convergence zone that is responsible for the specialized process of sensory input and a structural
divergence zone that integrates segregated information to build a response to sensory stimuli.

We also investigated whether the increased contribution by divergent hubs to the connective
core, described above, was caused by their greater volume relative to other hubs. To accomplish that,
we assessed the individual net entropies of each hub type, as described in Section 2.1. Importantly,
we observed that divergent hubs contribute significantly to the effective connectivity of the global
network across all behavioral states—an effect that was independent of their volume and is described in
Table 1. Moreover, we observed that convergent hubs have a greater contribution during resting-state
than in cognitive tasks. However, despite this larger contribution by convergent hubs, we also see
that the contribution from divergent hubs is still representative during resting-state. This result can
be associated to an electrophysiological signature of the default mode network (DMN); van den
Heuvel & Pol [17] described the DMN as a spontaneous functional activation of anatomically distant
brain regions during resting-state while the brain is waiting for a stimulus. It is well-established
that the brain networks work with a balance between functional integration and segregation [18];
thus, these results suggest that the large contribution of convergent hubs would be associated with
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convergence zones of these anatomically distant processing modules, and that the contribution of
divergent hubs characterizes this balance between functional segregation and integration.

When we investigated the dynamic behavior of different hub types, some patterns were present.
We observed a “swap” relationship between neutral and divergent hubs across all paradigms, as shown
in Table 5. This finding would be a consolidation of the tracking of the variant substructure over
time described above, where we noted that neutral hubs have a preference to turn into divergent
hubs or cease to be hubs. This preference may indicate that neutral hubs play a supporting role to
divergent hubs in integrating the different sub-networks that can emerge during some behavioral
states. However, we can also see that, during cognitive tasks, the “swap” between convergent and
divergent hubs becomes greater than during resting-state. Analyzing the percent variation in relation
to resting-state, we observed an increase of approximately 29% for ST and of more than 100% for 2B.
Fair et al. [18] described that an integrative process can manage different control networks, offering a
possible explanation for the increase of the observed “swap” effect during cognitive tasks.

EEG microstate topographies are thought to be electrophysiological correlates of these episodes
of coherent activity proposed by the global workspace model [5,19–22]. Researchers who have tried to
establish a microstate with resting-state fMRI (rsfMRI) signal have frequently observed no correlation
between discrete EEG frequency bands and corresponding hemodynamic states [23–25]. On the
other hand, microstate time courses, rather than discrete frequencies, have shown correlation with
BOLD activation of distinct networks [24]. The large-scale networks described in the global workspace
model have to be both stable, through the duration of a specific cognitive process, and flexible,
to rapidly transition between tasks. Thus, these networks must be able to change into different patterns
of connectivity at a sub-second time scale that is consistent with that of EEG microstates.

A correlation analysis of resting-state fMRI and EEG microstates to determine if a single
hemodynamic network is related to one or more microstates relies on the assumption that during this
“rest” period no conscious cognitive process is occurring in the brain being analyzed. However, given
that participants are awake, there is no way of monitoring the amount of cognitive processes that they
may engage despite the participant not being explicitly instructed to do so (i.e., to complete a specific
task). When these sub-second dynamics within a period of rest are taken into account, the EEG time
course correlation with distinct networks of BOLD activation makes sense [26–28].

Given these observed patterns, we performed an analysis of complexity of the microstates’
sequences in selected windows of EEG data, as described in Section 4.6. In doing so, we observed that
in windows with common high quantities of different hub types, the microstates’ sequences complexity
are higher than in windows with only one high quantity of a given hub type (see Section 2.4). Therefore,
the presence of high quantities of different hub types in the same windows can be a signature of
the transition between cognitive networks in a global neuronal workspace [5]; this effect was also
described by Sporns [15], who asserted that the study of the connective core offers a potential substrate
for understanding theories about the global neuronal workspace, high cognition, consciousness, and
how disturbances on hub regions can affect integrative processes.

4. Materials and Methods

4.1. EEG Data and Tasks

For this study, we collected EEG data using a 32 channel set, with active electrodes from actiCAP
and a BrainAmp amplifier (Brain Products, Gilching DE). Electrodes were placed according to the 10/20
standard system and their impedances were kept under 10 kΩ. We collected data at a sampling rate of
1 kHz. Pre-processing was done through the BrainVision analyzer 2.1 (Brain Products, Gilching DE).
Data were filtered through a Butterworth bandpass (0.5–50 Hz) and a notch filter at 60 Hz. Ocular and
muscular artifacts were further removed using independent component analysis and the semiautomatic
correction feature of the program. Channels were referenced with respect to their average value.
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We collected EEG data from eleven volunteers during a resting-state (RS) period, a “Stroop
color–word test” (ST) and a “2-back working memory test” (2B). During the RS, volunteers were
asked to relax and fix their gaze at a fixation cross on the screen for five minutes [13]. During the
Stroop task—which has been used to assess selective attention, self-regulation, and top-down
control [11,29]—participants completed three different 20-s blocks during 5 min: a congruent block,
where words were printed in the color that their names represent (e.g., the word “RED” displayed in
red ink); a neutral block, where words did not conflict with their color (e.g., the word “HOUSE” printed
in red ink); and an incongruent block, where the colors and names of words conflicted with
each other (e.g., the word “RED” printed in blue ink). Finally, participants also completed a 2B
task—a well-established cognitive test that evaluates working memory. In this task, during a 7-min
time span, subjects were exposed to a sequence of visual stimuli and had to indicate whether the
stimulus they were currently looking at matched the one shown two trials prior [12].

4.2. Normalized Transfer Entropy

To model the effective connectivity, we used a directional measure called normalized transfer
entropy (NTE), proposed by Shovon et al. [30]. This measure builds upon the transfer entropy concept
created by Schreiber [31]. NTE incorporates nonlinear, dynamic connections, and directional properties
to determine if a pattern of brain activation is dependent on another pattern of activity and not on
its own past activity. Thus, transfer entropy characterizes the information flow between two signals,
and is defined by

TEY→X = ∑
t

p(xt+1, xt, yt) log2
p(xt+1|xt, yt)

p(xt+1|xt)
, (1)

where p(xt+1, xt, yt) is the joint probability among xt+1, xt and yt. Moreover, we define the deviation
from causal independence considering the generalized Markov property p(xt+1|xt, yt) = p(xt+1|xt).
When there is no causal relationship between the signals, TE goes to zero. TE is an asymmetric measure,
thus TEY→X 6= TEX→Y, and characterizes information about xt+1 from the observations xt and yt.

However, the finite size and nonstationarity of EEG data introduces uncertainty on the
TE measurement. To obtain a suitable estimate, Shovon et al. [30] proposed two additional steps
that increase accuracy. These two steps consist of subtracting the mean value of TEỸ→X from TEY→X
(where Ỹ is a surrogate randomization of the Y signal) and normalizing the measure by the conditional
entropy of xt+1 and xt, H(xt+1|xt) = −∑xt+1,xt p(xt+1, xt) log2(p(xt+1, xt)/p(xt)), where p(xt+1, xt)

is the joint probability of xt+1 and xt. Therefore, the NTE is defined as

NTEY→X =
TEY→X − 〈TEỸ→X〉

H(xt+1|xt)
, (2)

where 〈·〉 indicates the average over n random realizations. Here, we adopted n = 30. In Figure 3,
we show the connectivity matrices inferred by NTE for all behavioral states.
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Figure 3. Connectivity matrices inferred by the NTE (see Section 4.2) from EEG data of one subject.
For each connectivity matrix, the x-axis represents the information generator channels and the y-axis
represents the information receiver channels.

4.3. Order Parameters

To study the centrality properties of networks and define their hubs, we used a measure based on
the shortest path length concept, called betweenness centrality (BC). This measure was used alongside
the method for hub definition proposed by da Silva et al. [32]. For two given nodes k and j from
the set of nodes N, the shortest path length is defined by dkj = ∑auv∈gk↔j

auv, where auv belongs to a
connectivity matrix and gk↔j is the shortest path length between the nodes i and j [33]. Thus, BC is the
fraction of all shortest path lengths that a given node participates in, expressed by

BCi =
1

(n− 1)(n− 2) ∑
k∈N

∑
j∈N

#dkij

#dkj
, for k 6= j, k 6= i, j 6= i , (3)

where #dkj is the number of shortest paths between k and j, #dkij is the number of shortest paths
between k and j that pass through i, and n is the number of nodes.

Following this measure, we applied the method of da Silva et al. [32] to identify hubs from nodes.
We used a left-sided Mann–Whitney test with significance level of 5% to compare the BC value of each
node with all remaining nodes. The node that had a statistically higher BC value than the others was
classified as a hub.

Moreover, we applied another order parameter called characteristic path length, denoted by `,
and defined by the average shortest path length between of all pairs of nodes:

` =
1

n(n− 1) ∑
k∈N

∑
j∈N,k 6=j

dkj . (4)

4.4. Divergent, Convergent and Neutral Hubs

In addition to identifying the hubs in the network, we also proposed a classification method to
study in detail the role of these nodes in the effective connectivity of the brain. This method uses the
net normalized transfer entropy, denoted by

Ki =
N

∑
j=1

NTEi→j −
N

∑
m=1

NTEm→i , (5)

where ∑N
j=1 NTEi→j is the output degree (OD) and ∑N

m=1 NTEm→i is the input degree (ID). If a given
hub has an OD 10% higher than its ID, this node is classified as a divergent hub (HD). If a given
hub’s ID is 10% higher than its OD, this node is classified as a convergent hub (HC). When these two
conditions are not satisfied, the hub is classified as a neutral hub (HN), as illustrated in Figure 4.
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HN HC

HD

K > 0

K < 0

K = 0

Figure 4. Graphical representation of the hub classification, where the arrows in bold illustrate the
connective core, gray nodes represent non-hub nodes, and red nodes represent hubs. The connective
core is classified into three types of hubs using the K measure (see Section 4.4): divergent hub (HD);
neutral hub (HN); and convergent hub (HC).

4.5. Homogeneity and Heterogeneity Measures

To work with the global workspace concept proposed by Dehaene et al. [5] on complex
networks metrics, it was necessary to track back the hubs’ behaviors across tasks. To track a hub’s
role in the connective core during each behavioral state, we developed a measure, which we call
the homogeneity measure, that quantifies the stable percent hub composition of the connective core
during tasks. Our homogeneity measure is defined by:

Γ =
2n(A ∩ B)

n(A) + n(B)
, (6)

where A is a given set of different hub types of a specific task, B is the hub type set of a second task and
n is the cardinality of each hub set. In addition, we also developed a measure to calculate the variable
percent hub composition of the connective core during tasks, called the heterogeneity measure and
defined by

Λ =
n(A′) + n(B′)
n(A) + n(B)

, (7)

where A′ is the complementary set of A and B′ is the complementary set of B.

4.6. Brain Microstates and Hubs

Microstate analysis is one of the several methods that make use of EEG recordings. Microstates
consist of a series of predictable, quasi-stable topographical states of electrical potentials lasting on
average 100 ms (see Figure 5). This technique is a useful tool to analyze the function of large-scale
brain networks because the simultaneous activity of cortical regions generates the topographical
potential maps/microstates. Hence, a change in topography—a transition from one microstate to
another—corresponds to an electrical change in potential, which in turn is interpreted as a change in
the activation of functional networks [34,35].
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Figure 5. Representation of microstate analysis for 2500 ms of multivariate EEG signal condensed into

a single “global field signal” GFPt =
√

∑Nch
i=1(EEGi,t − 〈EEGt〉)2/Nch, from which electrical potential

topographies were calculated and then classified into four functional networks, called microstates.
We also illustrate the transitions of microstates over time, as well as each microstate topography.
Microstate “A” corresponds to the topographic representation of the auditory functional network;
microstate “B” is associated with the visual functional network; microstate “C” is associated with
the default mode network; and microstate “D” corresponds to the topographic representation of the
attentional functional network.

Attempts have been made to determine if EEG microstates are electrophysiological signatures
of hemodynamic signals in rsfMRI [24,25]. The global workspace theory, postulated by Baars [6],
and later elaborated on by Dehaene & Naccache [7], highlights that top-down attentional mechanisms
have an influence on the global neural representation of information. In essence, this means that
the synchronicity of neural activity is a requirement for global workspace activation, such that
synchrony and connectivity become essential features of global workspace engagement associated
with intentional actions. That is, while several networks may be active during cognitive tasks,
different networks will be preferentially activated through the duration of that task.
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Thus, to establish a parallel between the global workspace theory and the invariant structures
formed by hubs exposed by the present work, we segmented the EEG data into mobile windows of five
seconds with an 80% overlap. Microstate analysis was triggered during windows that presented peaks
of quantity one standard deviation above the mean for a given hub type. Moreover, in these windows,
we applied an adaptation of complexity measure proposed by Lempel & Ziv [36] for quaternary data
to assess microstates time course patterns. The complexity measure allowed us to quantify and study
microstates time course patterns.

5. Conclusions

In this study, we analyzed the connective core network across three behavioral conditions:
resting-state, Stroop and 2-back paradigms. We observed that divergent hubs are more effective
in characterizing the network, independent of the fact that these hubs are the most abundant type
in the the connective core. In addition, we noticed that the connective core is composed of both an
invariant substructure that is preserved between behavioral states, and a variant substructure that is
characteristic of each cognitive task and the resting-state. The constructs proposed here can be used to
analyze transitions in brain states associated with task components and/or resting-states, playing a
relevant role in the balance between functional segregation and integration. Moreover, we observed
that the effectiveness of convergent hubs during resting-state may be associated with anatomically
distant modules described in the default mode network. Furthermore, the prevalence of a specific hub
type supports the existence of well-established functional networks, while the transitions observed
characterize an increased expression of different hub types.

This description may bring light to the role of functional brain networks across different contexts,
from cognitive processes in healthy subjects to disordered neural events. Thus, studying the connective
core offers a potential substrate for understanding theories about the global neuronal workspace,
high cognition, consciousness, and how disturbances on hub regions can affect integrative processes.
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Abbreviations

The following abbreviations are used in this manuscript:

2B 2-back working memory test
BC Betweenness centrality
BOLD Blood-oxygen-level-dependent
DMN Default-mode-network
EEG Electroencephalography
fMRI Functional magnetic resonance imaging
GFP Global field potential
GW Global neuronal workspace
HC Convergent hubs
HD Divergent hubs
HN Neutral hubs
ID Input degree
NTE Normalized transfer entropy
OD Output degree
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pK p-value of Kruskal–Wallis test
pQ p-value of Friedman test
RS Resting-state
rsfMRI Resting-state functional magnetic resonance imaging
ST Stroop color–word test
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