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Abstract: The basic problem of the numerical model’s quenching process is establishing the
characteristics of the boundary conditions. The existing descriptions of the boundary conditions,
which represent the parameters of equipment used in heat treatment processes, do not accurately
reflect the actual process conditions. In the present study, the method of choice for superficial heat
source parameters for TIG (tungsten inert gas) heating is modeled using artificial neural networks
(ANN) and the finite element method (FEM). A comparison of the calculations obtained from the
numerical model of non-steady state heat transfer with the results of the experimental studies is
presented. The possibility of using ANN to compute the parameters of the boundary conditions for
the heating treatment is analyzed. A multilayer feed-forward backpropagation network is developed
and trained using value of temperature in the selected nodes obtained from numerical simulation.

Keywords: artificial neural network; finite element method; TIG welding

1. Introduction

The continuous development of knowledge in the range of technical fields has increased demands
on modern engineers. Currently, both during the design and implementation of manufacturing
processes, special attention is paid to minimizing costs, shortening working time, and improving the
efficiency of technological processes. One of the main tools to achieve these goals is optimization.
Artificial neural networks (ANN) belong to the dynamically developing field of computational tools
called artificial intelligence. They are an attempt to imitate phenomena and processes occurring in
nervous systems of living organisms while searching for new technological solutions. Neural networks
can be used primarily for the analysis and processing of incomplete disrupted measurement data,
their prediction, classification, and control issues [1–3]. Therefore, neural networks find many
applications. It is now easier to list the areas in which they do not exist than all those in which
they are applied to.

The aim of this work is to analyze methods and tools of artificial intelligence to support
the process of numerical modeling’s quenching phenomena. The hybrid methods applied in the
work include the combination of advanced numerical methods, the theory of thermal phenomena,
mechanical phenomena, and phase transformations with artificial intelligence tools such as artificial
neural networks. The results obtained in this paper are supposed to answer the question of whether
artificial intelligence tools are effective to numerically support heat treatment processes. The control of
the numerical model will concern the parameters’ identification of the numerical model’s quenching
process. The identification model using the artificial neural networks will determine the parameters

Entropy 2019, 21, 954; doi:10.3390/e21100954 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-4622-4013
https://orcid.org/0000-0002-6417-5606
http://www.mdpi.com/1099-4300/21/10/954?type=check_update&version=1
http://dx.doi.org/10.3390/e21100954
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 954 2 of 11

of the moving heat source for example, velocity, power, size, and depth of the material’s penetration.
The purpose of the paper is to demonstrate that based on the temperature distribution, specified by
the user, the parameters of the process can be determined. It is also necessary to determine which
temperature values (from which area) should be analyzed.

The literature analysis shows that to identify the parameters of the heat source the ANN are
not taken into account. In the field of thermal phenomena, the artificial neural network is applied,
among others, to calculate hardness, determine phase transformations, or predict the mechanical
properties of steel. Lambiase et al. [4] developed an artificial neural network to predict the achieved
hardness in laser hardening. The ANN were trained based on the cooling time and temperature
history calculated by a 1D analytical model. Pouraliakbar et al. [5] also applied ANN to determine the
heat affected zone (HAZ) hardness of pipeline steels. The mass percent of chemical composition and
thermomechanical parameters were the input parameters of the network. Khalaj et al. [6] proposed
an artificial neural network to obtain the martensite fraction of microalloyed steel. The input values
were experimental data obtained from the literature. The author’s used the Matlab ANN toolbox with
the backpropagation algorithm training the network. Powar and Date [7] predicted the mechanical
properties and phase transformation of the quenching process using ANN. The input parameters
were the alloy composition, as well as the parameters of the heat treatment process and hardness.
All computation were carried out using Fluent and Matlab tools. In the authors’ early work [8] the
influence of the values of temperature on the parameters of the hybrid heat source (combination of the
superficial and volumetric source) were determined by the ANN. All calculations were obtained using
copyright software. The results presented in above papers showed that the developed models can be
used in a practical application in a manufacturing process.

2. Finite Element Simulation

In the paper, the ANN was used to calculate the parameters of the superficial heat source. For this
purpose, the heat treatment of a steel element was carried out using tungsten inert gas (TIG) heating.
On the basis of the experiment described in the earlier paper of [9], the parameters for the numerical
model were selected. The experiment’s parameters:

• Plate sheet with a thickness of 3 mm made of medium carbon steel (C45);
• Thorium tungsten electrode WTh20 with a diameter of 2 mm and a tip grinding angle of 60°;
• Shielding gas—Argone 4.6;
• The distance of the electrode from the workpiece—2 mm;
• Negative direct current source, the arc current I = 60 A, and heating rate V = 0.0033 m/s.

Getting the right amount of input data is associated with long-term and costly experimental
research. Therefore, it was decided to replace data from the experiment with data from the
numerical simulation.

Three-dimensional simulations were performed to simulate the real process. The computation
were carried out for the steel plate with dimensions 0.03× 0.003× 0.015 m made of C45 steel (Figure 1).
The model of thermal phenomena were based on the following equation:

∇ · (λ∇T)− ρc
∂T
∂t

= 0 (1)

In the model, the heating was taken into account using the second-type boundary condition
(Neumann): Superficial heat source [10]. The power of the heat source QN was determined using the
equation of effective arc power [11,12]:

qN = QN
2πR2

N
exp

(
− (x−x0)

2+(z−z0)
2

2R2
N

)
QN = UIξ, U = 10 + 0.04I

(2)
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The mathematical model was solved by the finite element method in the method of weighted
residuals. Eight-point elements with the linear shape function were used.
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Figure 1. Visualization of example [9].

In the simulation the quenching process for the following conditions were taken into account:

• The initial temperature of the steel element 293 K;
• The Neumann boundary condition in the plane of symmetry (ΓS) with q = 0 W/m2;
• The Newton–Robin condition on boundaries ΓD (lower plane) and ΓT (upper plane) with the heat

transfer coefficient α∞ for air [13];
• The parameters of the superficial heat source: Heating rate V = 0.0033 m/s (non steady-state), arc

current I = 60 A, radius RN = 0.0012 m;
• The Dirichlet condition on ΓF (front plane and steady-state);
• The drift velocity (steady-state).

The material properties (λ, ρ, and c) were the functions of temperature in the range
273 K–1773 K [14].

Several dozen numerical simulations were carried out in order to select the appropriate value of
the arc efficiency coefficient. The searched coefficient had to give a comparable with the experiment’s
field of heat affected zone (HAZ) and fusion zone (FZ). In the paper the width and depth of HAZ and
FZ obtained from numerical calculations and the experiment were compared for two values of the arc
efficiency (ξ = 0.6 and ξ = 0.85) (Figures 2 and 3). The first value of arc efficiency was chosen as it is
often found in the literature, whereas the second value was selected based on the compatibility with
the experiment and fell within the range presented by [15]. The field of HAZ was determined using
the Ac1 temperature (1008 K). The FZ was limited by solidification temperature Ts = 1750 K. The size
of the heat affected zone and fusion zone was set as the matching parameter.

Figure 2. The width and depth of HAZ (heat affected zone) and FZ (fusion zone) obtained from the
experiment and numerical simulation (ξ = 0.6).
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Figure 3. The width and depth of HAZ and FZ obtained from the experiment and numerical simulation
(ξ = 0.85).

Good compatibility of the following distributions was obtained: The temperature (fields of HAZ
and FZ, see Figure 3), the phase fractions, and the hardness. The obtained results confirmed the
correctness of the developed model.

3. Artificial Neural Network Modeling

The values of the arc current and velocity of the welding head are only a few parameters,
affecting the field of the heat affected zone and fusion zone. Achieving the appropriate size of zones
is often associated with many expensive and time-consuming experiments. In this paper, a system
to support the selection of the parameters of the quenching process based on ANN was presented.
The numerical simulations were performed assuming that the heat source model well reflects the
real conditions.

In the presented model, it was assumed that the neural network was trained using data obtained
from the solution of the steady-state heat transfer equation. In order to determine the training and
testing sets, the 2000 numerical simulations of the heat treatment for a steel element (Figure 1) were
carried out. Just as in Section 2, conditions were assumed. The drift velocity in stationary task
corresponded to the velocity of the heat source in the non-stationary task.

The quenching was modeled by a superficial heat source with a gaussian distribution, Equation (2).
The power and velocity of the heat source were taken based on the values from the experiment.
These parameters were changed randomly within the appropriate ranges: V ∈ [0.0025, 0.0058]
m/s, and QN ∈ [420, 860] W. Whereas, the radius of the heat source was chosen from the range
RN ∈ [0.0002, 0.003] m. The 2000 numerical simulations were carried out, assuming that the maximal
temperature on the top surface of the element (control node, see Figure 1) should be in the range of
[1000, 4000] K. The received data from the simulation were divided into two equal parts and assigned
to the training and testing sets. The values of temperature in the z-plane were extracted from the
received data (analyzed temperature profile, see Figure 1). The values of temperature were the input
data of the ANN. Meanwhile, the power, radius, and velocity of the heat source were the output
parameters of the network.

In order to check the possibility of limiting the number of input parameters, the four configurations
of ANN were considered (Table 1). The possibility of eliminating parameters that do not have a
significant impact on the training process is particularly important when the training data are obtained
from time-consuming and expensive experiments.

The location of the control nodes for each analysis is shown in Figure 4. A multi-layer perceptron
(MLP) network with two hidden layers was used for the calculations. The number of neurons
in each layer varied depending on the type of analyzed configuration (Table 1). The training
process of MLP network was carried out with the backpropagation algorithm with a momentum
term. To training neural network using the backpropagation algorithm, the following steps are
required: Preparation of input and output data, generation of initial weights, network architecture,
activation function, training of ANN, testing of ANN, and obtaining results [1–3]. It was assumed that
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for all analyzed configurations, the momentum coefficient was equal α = 0.76 and learning coefficient
−η = 0.03.

a) Analysis No. 1Analysis No. 2
b) Analysys No. 4 Analysys No. 3

Figure 4. Location of control nodes: (a) Analysis No. 1 and No. 2, (b) analysis No. 3 and No. 4.

Table 1. Analyzed configurations of the artificial neural network.

ANN Structure- Number of Neurons in Layer

Analysis No. Input (N0) I Hidden (N1) II Hidden (N2) Output

1 20 12 6 3
2 30 20 10 3
3 110 50 20 3
4 300 150 30 3

4. Results and Discussion

The analysis was carried out for the four cases of the nodes localization, two on the edge in
the area of highest changes of temperature, and two in the cross section. The data were divided
into two equal sets: Training (1000 samples) and testing (1000 samples). The validation set was not
included due to the earlier determination of the ANN structure. The training process was carried out
for n epochs (n = {100, 200, 240, 400, 500, 1000}). To determine the effectiveness of the ANN, the values
of the root-mean-square error (RMSE) and percentage error were used. The values of the errors were
obtained on the basis of the 10 series of calculations (Figure 5).

The percentage error, obtained during the training process was comparable for 1 and 2 of the
analyzed network configurations. To obtain a value of an error smaller than 10% for the output
value, the minimum size of the training set for 1, 2, and 3 analysis must amount to 1,000,000 elements
(1000 elements and 1000 epochs). The use of a set for such a number of elements is connected
with the necessity of extending training time. On the other hand, for the four configurations of the
network, 160,000 elements (400 elements and 400 epochs) was enough to obtain an error below 10%.
As mentioned earlier, the important information is the possibility of limiting the number of input
data. The use of three network configurations with a training set size of 250,000 (500 elements and
500 epochs) will allow the limit of the input parameters and obtain an error of 11%.

After the training process, the neural network was able to determine the parameters of the
boundary conditions for the testing data, which was not presented during the training process. For the
determined network weights, for each number of elements in the learning set and the number of
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epochs, a numerical test was carried out for the data from the testing set. The values of the heat source
parameters obtained from the numerical simulation were compared with the values determined by
ANN (Figure 6).
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Figure 5. The comparison of the percentage and RMS (root-mean-square) error for the performed
computation: (a) Analysis No. 1, (b) analysis No. 2, (c) analysis No. 3, and (d) analysis No. 4.

It was noticed that, for all of the analyzed cases the error of estimating the drift velocity was below
1%. Whereas, the maximum percentage error of estimation of the power and radius of the heat source
did not exceed 1.6% for all network configurations. For 62,500 elements (250 elements and 250 epochs)
of the training set, this error was below 10%.

In the next test, on the basis of the output parameters of ANN the numerical simulations were
performed. The compatibility of the temperature in the control nodes were compared for both methods
(numerical simulation and artificial neural network). The difference for the analysis No. 1 and No. 4
were presented. For all configurations, the same input temperature profile was considered.

Figures 7–10 shows the: Temperature profile loaded into the network input (Figure 7a),
temperature profile calculated on the basis of output data from the ANN (Figures 7b–10b), and
the percentage difference between profiles (Figures 7c–10c). The local percentage error value for the
temperature profile in the cross-section was not higher than 5% (Figures 7c–10c).
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Figure 6. The mean percentage error for the performed computation: (a) Analysis No. 1, (b) analysis
No. 2, (c) analysis No. 3, and (d) analysis No. 4.
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Figure 7. Analysis No. 1: (a) The temperature profile obtained from the numerical simulation
(RN = 0.00141 m, QN = 840 W, V = 0.002595 m/s), (b) the temperature profile calculated on the
basis of output data from the ANN (RN = 0.001339 m, QN = 801.21 W, V = 0.002563 m/s), and (c) the
percentage difference between the required and determined temperature.
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Figure 8. Analysis No. 2: (a) The temperature profile obtained from the numerical simulation
(RN = 0.001413 m, QN = 840 W, V = 0.002595 m/s), (b) the temperature profile calculated on the
basis of output data from the ANN (RN = 0.00141 m, QN = 816.44 W, V = 0.002555 m/s), and (c) the
percentage difference between the required and determined temperature.0 0.002 0.004 0.006 0.008 0.01 0.012 0.014z [m]00.0010.0020.003y [m]a)b)c)
Figure 9. Analysis No. 3: (a) The temperature profile obtained from the numerical simulation
(RN = 0.00141 m, QN = 840 W, V = 0.002595 m/s), (b) the temperature profile calculated on the
basis of output data from the ANN (RN = 0.001435 m, QN = 834.77 W, V = 0.002568 m/s), and (c) the
percentage difference between the required and determined temperature.
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Figure 10. Analysis No. 4: (a) The temperature profile obtained from the numerical simulation
(RN = 0.00141 m, QN = 840 W, V = 0.002595 m/s), (b) the temperature profile calculated on the basis of
output data from the ANN (RN = 0.001373 m, QN = 830.91 W, V = 0.0026 m/s), and (c) the percentage
difference between the required and determined temperature.

A comparison of the numerical simulations and experiment results shows that an important
problem in the modeling of the thermal phenomena is an appropriate choice of the heat source
model and its parameters. The use of a superficial heat source, according to the values of arc
efficiency presented in literature [12], caused poor matching between the HAZ and FZ (Figure 3).
The applied artificial neural networks allowed the determination of the parameters of the heat
treatment process for a given temperature profile. This method allows for the easy control of the
quenching process, and modification of the heat source parameters for the required field of the HAZ
and FZ. The knowledge contained in ANN, obtained from the simulation avoids expensive research.
The performed analysis confirmed the possibility of limiting the number of input parameters in the
artificial neural network by up to 1/3.

5. Conclusions

Based on the obtained results and the accuracy of the artificial neural network, it can be concluded
that the trained neural network can select parameters of simulation for modeling the TIG process of
medium carbon steels. This approach allowed the control of both the heat affected zone and the fusion
zone. The obtained data could also be used to determine the actual process parameters.
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Using the artificial neural network allows, after proper training, for one to determine the
parameters of the heat treatment process. In the presented study, the application of the ANN allowed
the determination of the parameters of the superficial heat source for a limited number of network
input. A total of four network configurations were considered. It was noted that the percentage
error decreased when the number of training inputs increased. For the fourth network configuration
this error was ≈1.6% and the observed maximum error value applied to a small area (Figure 10d).
The accuracy of the results achieved from neural networks was satisfactory for 110 neurons in the input
layer. On the basis of the obtained values of error for four network configurations, it can be concluded
that for the training of ANN, the data was needed not only from the surface of the quenching element
but also from the interior of the element. Therefore, data in the training sets must come from accurate
numerical simulations.

All computation results presented in the paper were performed using the authors’ own software.
The implementation was done by the authors of this paper in C++ language on the Visual Studio 2010
platform. The functions of linear algebra were taken from the Intel® Math Kernel Library 11.0.
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Abbreviations

T Temperature [K]
λ Thermal conductivity coefficient [W/(mK)]
ρ Density [kg/m3]

c Thermal capacity [J/(kgK)]
t Time [s]
qN Heat flux on boundary (II-type boundary condition) [W/m2K]
QN Power of the superficial heat source [W]

RN Radius of the superficial heat source [m]

x0, z0 Coordinates of the centre of heat source
U Arc voltage [V]

I Arc current [A]

ξ Arc efficiency

References

1. Hagan, M.T.; Demuth, H.B.; Beale, M.H.; De Jesús O. Neural Network Design, 2nd Edtion. Available online:
http://hagan.okstate.edu/NNDesign.pdf (accessed on 24 September 2019).

2. Priddy, K.L.; Keller, P.E. Artificial Neural Networks: An Introduction; SPIE-International Society for Optical
Engineering: Bellingham, WA, USA, 2005.

3. Rutkowski, L. Computational Intelligence: Methods and Techniques; Springer: Berlin, Germany, 2005.
4. Lambiase, F.; Di Ilio, A.M.; Paoletti, A. Prediction of laser hardening by means of neural network.

Procedia CIRP 2013, 12, 181–186. [CrossRef]
5. Pouraliakbar, H.; Khalaj, M.; Nazerfakhari, M.; Khalaj, G. Artificial Neural Networks for Hardness Prediction

of HAZ with Chemical Composition and Tensile Test of X70 Pipeline Steels. J. Iron Steel Res. Int. 2015, 22,
446–4500. [CrossRef]

6. Khalaj, G.; Nazari, A.; Pouraliakbar, H. Prediction martensite fraction of microalloyed steel by artificial
neural networks. Neural Netw. World 2013, 23, 117–130. [CrossRef]

7. Powar, A.; Date, P. Modeling of microstructure and mechanical properties of heat treated components by
using Artificial Neural Network. Mater. Sci. Eng. A 2015, 628, 89–97. [CrossRef]

http://hagan.okstate.edu/NNDesign.pdf
http://dx.doi.org/10.1016/j.procir.2013.09.032
http://dx.doi.org/10.1016/S1006-706X(15)30025-X
http://dx.doi.org/10.14311/NNW.2013.23.009
http://dx.doi.org/10.1016/j.msea.2015.01.044


Entropy 2019, 21, 954 11 of 11

8. Wróbel, J.; Kulawik, A. Calculations of the heat source parameters on the basis of temperature fields with
the use of ANN. Neural. Comput. Appl. 2018, 1–11. [CrossRef]

9. Wróbel, J.; Kulawik, A. Analysis of the influence of material parameters of the numerical model on the
obtained shape of the heat affected zone for the TIG heating process. AIP Conf. Proc. 2018 1978, 470029.

10. Teixeira, P.; Araújo, D.; Antônio Bragança da Cunha, L. Study of the gaussian distribution heat source model
applied to numerical thermal simulations of TIG welding processes. Cienc. Eng. 2014 23, 15–122.

11. Dobaj, E. Maszyny i Urzadzenia Spawalnicze; Wydawnictwo WNT: Warszawa, Poland, 2014.
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