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Abstract: The ability to characterize and predict extreme events is a vital topic in fields ranging from
finance to ocean engineering. Typically, the most-extreme events are also the most-rare, and it is
this property that makes data collection and direct simulation challenging. We consider the problem
of deriving optimal predictors of extremes directly from data characterizing a complex system, by
formulating the problem in the context of binary classification. Specifically, we assume that a training
dataset consists of: (i) indicator time series specifying on whether or not an extreme event occurs;
and (ii) observables time series, which are employed to formulate efficient predictors. We employ
and assess standard binary classification criteria for the selection of optimal predictors, such as total
and balanced error and area under the curve, in the context of extreme event prediction. For physical
systems for which there is sufficient separation between the extreme and regular events, i.e., extremes
are distinguishably larger compared with regular events, we prove the existence of optimal extreme
event thresholds that lead to efficient predictors. Moreover, motivated by the special character
of extreme events, i.e., the very low rate of occurrence, we formulate a new objective function
for the selection of predictors. This objective is constructed from the same principles as receiver
operating characteristic curves, and exhibits a geometric connection to the regime separation property.
We demonstrate the application of the new selection criterion to the advance prediction of intermittent
extreme events in two challenging complex systems: the Majda–McLaughlin–Tabak model, a 1D
nonlinear, dispersive wave model, and the 2D Kolmogorov flow model, which exhibits extreme
dissipation events.

Keywords: optimal predictors; binary classification; rare extreme events; chaotic systems;
data-driven methods

1. Introduction

Many phenomena in a wide range of physical domains and engineering applications
have observable properties that are normally distributed, that is, they obey Gaussian statistics.
Gaussian-distributed random variables and processes are particularly easy to manipulate algebraically,
and there is a rich literature using their properties in widely varying areas of probability and statistics,
from Bayesian regression [1] to stochastic differential equations [2]. In many applications, however,
random variables have significantly non-Gaussian character. Frequently, the “long-tails” of their
distribution, which contain extreme, but rare events, are particularly important for a complete
understanding of the phenomena in question. Examples of this behavior occur in systems ranging
from ocean waves [3,4] to finance [5], but similar phenomena are observed in fields as far afoot as cell
dynamics [6], mechanical part failure [7], and turbine shocks [8].

Several approaches have been developed that successfully resolve the statistics capturing extreme
events (see, e.g., [9–14]). These often take advantage of the special structure of the problem, which is of
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course the preferred approach in cases where the dynamics are well understood. For systems where
our understanding of the governing laws is partial or in situations where there are important model
errors, it can be shown that combining the available imperfect models with data-driven ideas can result
in prediction schemes that are more effective than each of the ingredients, data or imperfect model,
used independently [15]. Another perspective, for systems where we can control which samples to use
or compute, is to apply optimal experimental design ideas or active learning [16]. In this case, one can
optimize the samples that should be used, using information from samples already available, in order
to have accurate statistics with a very small computational or experimental cost.

There are situations, however, where the only information available that characterizes the system
is observations—“big data”. For such cases, one important class of problems is to identify extreme
event precursors—system states that are likely to evolve into extreme events. Successful identification
of precursors requires both a careful definition of what exactly qualifies as an extreme event, as well as a
balance between false positive and false negative errors [17–22]. While there is already a vast literature
in machine learning related to binary classification, little is specifically directed to the problem of
extreme event precursors and prediction.

In this paper, we first discuss limitations of standard methods from binary classification, in the
context of extreme event precursors. Motivated by these limitations, we design a machine learning
approach to compute optimal precursors to extreme events (“predictors”) directly from data, taking
into account the most important aspect of extreme events: their rare character. This approach will
naturally suggest a frontier for trade-offs between false positive and negative error rates, and in many
cases will geometrically identify an optimal threshold to separate extreme and quiescent events. We
demonstrate the derived ideas to two prototype systems that display highly complex chaotic behavior
with elements of extreme, rare events: the Majda–McLaughlin–Tabak model [23] and the Kolmogorov
flow [24]. In the first system, we compare our method to a standard loss function (total error rate) and
show how it leads to better predictors. In both systems, machine-learned predictors support previous
analysis on the mechanisms of intermittency in those systems.

2. A Critical Overview of Binary Classification Methods

The problem of identifying good precursors for extreme events can also be seen as a binary
classification problem. In this case, a training dataset takes the form of a set of pairs S = {(ai, xi)},
where ai is a scalar indicator or quantity of interest at time ti, whose value defines whether or not we
have an extreme event. The vector xi, on the other hand, contains all the possible observables available
up to time ti − τ that we can utilize to predict whether we have an extreme event or not in the near
future, i.e., after time τ. The aim is to identify the most effective function b = b(x) so that using the
value of b we can predict if a will exhibit extreme behavior.

For any given function b(x), the set of these predictor–indicators pairs together defines a two
dimensional joint distribution, with probability density function (pdf) fab(a, b) and cumulative
distribution function (cdf)

Fab(â, b̂) = P(a < â, b < b̂). (1)

We use hat notation when the choice of â or b̂ corresponds to a threshold value. A value exceeding
the threshold is called extreme, and a value not exceeding it is called quiescent. The joint distribution
may be constructed from simulations, from experimental measurements, or from analytical models.
We use the term histogram in this work to refer to the data and their functional representation as a
probability distribution.

A fixed choice of â and b̂ defines a binary classification problem with four possibilities (Figure 1):

• True Positive (TP): an event predicted to be extreme (b > b̂) that is actually extreme (a > â);
• True Negative (TN): an event predicted to be quiescent (b < b̂) that is actually quiescent (a < â);
• False Positive (FP): an event predicted to be extreme (b > b̂) that is actually quiescent (a < â);
• False Negative (FN): an event predicted to be quiescent (b < b̂) that is actually extreme (a > â).
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Figure 1. Optimization of predictors as a binary classification problem.

2.1. Total and Balanced Error Rate

Based on this classification, we can define several criteria for the selection of predictors. The typical
binary classification task minimizes the total error rate, which is defined as

ET = P(FP) + P(FN) = P(a < â, b > b̂) + P(a > â, b < b̂) (2)

This error metric is poorly suited for the extreme event prediction problem for two reasons:

• First, total error rate is unsuited for unbalanced data. Extreme events are usually associated
with extremely unbalanced datasets. This manifests in two ways. First, even a naive predictor
may achieve very high accuracy, simply because always predicting “not extreme” is usually
correct. Second, resampling the data (for instance, to balance the number of extreme and
not-extreme training points) may widely change the total error rate, which in turn may change
the optimal predictor.

• Second, this error metric is unsuited for strength-of-confidence measurement. It has no ability to
distinguish between confidently classified points and and un-confidently classified points. This is
particularly important if we expect our predictor to make many mistakes.

The first objection may be resolved by using balanced error quantities, such as the balanced
error rate:

EB = 1− 1
2

(
P(TP)

P(TP) + P(FN)
+

P(TN)

P(TN) + P(FP)

)
, (3)

which measures the true-positives and true-negatives but normalized by the number of predicted
positives and negatives, respectively.

2.2. F1−Score

Another criterion to deal with the strongly unbalanced character of the datasets that contain
extreme rare events is the F1−score. We first define several other important quantities that we use and
study their basic properties.

In particular, precision, denoted by s, is the probability that an event is a true positive, given that
it is predicted to be extreme:

s(â, b̂) =
P(TP)

P(TP) + P(FP)
=

1 + Fab(â, b̂)− Fa(â)− Fb(b̂)
1− Fb(b̂)

[Precision]. (4)
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The recall (sometimes called sensitivity), denoted by r, is the probability that an event is a true
positive, given that is actually extreme:

r(â, b̂) =
P(TP)

P(TP) + P(FN)
=

1 + Fab(â, b̂)− Fa(â)− Fb(b̂)
1− Fa(â)

[Recall], (5)

Furthermore, the extreme event rate, denoted by q, is the probability that an event is
actually extreme:

q(â) = P(TP) + P(FN) = P(a > â) = 1− Fa(â) [Extreme event rate].

By construction, the derived quantities have the following monotonicity properties:

Theorem 1 (Monotonicity). The precision function, s(â, b̂), is monotonic in its first argument, â, while the
recall function, r(â, b̂), is monotonic in its second argument, b̂. Furthermore, the extreme event rate, q(â), is a
monotonic function with respect to its argument, â.

Additionally, the choice of precision and recall as binary classification metrics is motivated by the
following three invariance properties

Theorem 2 (Invariance-I). Precision, recall, and extreme event rate are entirely determined by the function
Fab, and the thresholds â and b̂.

Theorem 3 (Invariance-II). Let f1(a, b) and f2(a, b) be two histograms with the property that, outside of a
certain region [−∞, a∗]⊗ [−∞, b∗], f1(a, b) = β f2(a, b) for some fixed constant β. That is to say, f1(a, b)
and f2(a, b) correspond to histograms that differ only by some number of points (ai, bi) for which ai < a∗ and
bi < b∗.

Then, for all â > a∗ and b̂ > b∗, s(â, b̂; F1) = s(â, b̂; F2) and r(â, b̂; F1) = r(â, b̂; F2).

Theorem 4 (Invariance-III). Let h1(y), h2(y) : R → R be order-preserving monotonic functions. Let Fab be
a histogram, and let Fa′b′ be the histogram formed from the dataset {(h1(ai), h2(bi))}. Then,

s(â, b̂; Fab) = s(h1(â), h2(b̂); Fa′b′)

r(â, b̂; Fab) = r(h1(â), h2(b̂); Fa′b′)

q(â; Fab) = q(h1(â); Fa′b′) (6)

In other words, precision, recall, and extreme event rate are invariant under arbitrary nonlinear monotonic
rescalings of the indicator and predictor.

Proof. The proof of Theorem 2 follows directly from the definitions of q, r, and s in Equation (6),
where they are expressed in terms of conditional probabilities.

The proof of Theorem 3 follows from the restatement of the definition in Equation (6) in the form
of ratios of cumulative density functions. The numerators can be written in cumulative distribution
form as 1 + Fab(â, b̂)− Fa(â)− Fb(b̂) =

∫ ∞
b̂

∫ ∞
â fab(a, b)dadb, which takes as support fab only in the

complement of the region [−∞, a∗]⊗ [−∞, b∗]. Similarly, the denominator support does not intersect
the variable region. Because s and r are ratios of definite integrals, each of which is linear in its
integrand, they are invariant under the linear rescaling β. Note that this is not true for q, which is not
defined as a ratio.

Finally, the proof of Theorem 4 follows from the familiar u-substitution rule of ordinary calculus,
restricted to the well behaved class of monotonic substitutions.
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These invariance properties simplify the issue of scale in the choice of predictor functions, limiting
the hypothesis space of potential predictors. Using the precision and recall function, we define the the
F−score, given by the harmonic mean of the precision and the recall:

F1 =
2

r−1 + s−1 . (7)

Both the F1−score and the balanced error depend on normalized quantities which take into
account the extremely unbalanced character of the datasets. However, their value depends on the
thresholds â and b̂.

2.3. Area under the Precision–Recall Curve

To overcome the dependence on the b̂−threshold value, we we consider a fixed extreme event
rate, q(â), or equivalently fixed â, and define the precision–recall curve (sr curve) as

ρ(b̂; â) =
(
r(â, b̂), s(â, b̂)

)
(8)

Because r(â, b̂) is invertible in its second argument (Theorem 1), this curve gives precision as a
unique function of recall and the extreme event rate:

s = s(r; q) (9)

An example sr curve (for fixed q) is exhibited in Figure 2. Smaller values of recall correspond
to larger values of precision and vice versa. This is intuitive: to be sure to catch every extreme event
(high recall), the predictor will have to let through many false positive quiescent events (low precision).
Note the precision does not vanish as r increases, even when the predictor threshold, b̂, is arbitrarily
small. Instead, if that is the case, all events will be predicted as extremes and therefore the precision of
the predictor will be given by the rate of extreme events. Therefore, the following limit holds:

Theorem 5 (Extreme Event Rate Correspondence). Let the sr curve, ρ, correspond to extreme event rate q.
Then, we have the following limit

lim
r→1

s(r; q) = q (10)

Figure 2. (left) Plot of a sample pdf fab; (right) the corresponding precision–recall sr curve.
The parameterized curve is generated by fixing â and letting b̂ vary.
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The sr curve is a variation of the Receiver Operating Characteristic (ROC) curve used in medical
literature [19], which displays predictor performance over a range of threshold values. Here, we employ
the sr curve as various reviews (see, e.g., [18]) have shown that it performs better on discriminating
between classifiers when the data are wildly unbalanced. To obtain a metric that does not depend on a
specific threshold value of the predictor, b̂, a standard metric is the area under the curve (AUC), α.

In particular, for a fixed value of the rate q (equivalent to a fixed extreme event threshold â),
the area under the curve, α, is given by

α(q) =
∫ 1

0
s(r)dr =

∫ ∞

−∞
s(b̂)

∣∣∣∣ ∂r
∂b̂

∣∣∣∣ db̂. (11)

A larger value of α corresponds to a more favorable set of choices b̂ that maximize both precision
and recall in combination. The ideal rs curve would run from (0, 1) to (1, 1), and then down from (1, 1)
to (1, q). Therefore, we can choose a predictor by maximizing α for a fixed value of q. The value of q,
however, has to be chosen in an ad-hoc manner and this motivates the introduction of the next measure.

2.4. Volume under the Precision–Recall–Rate Surface

To overcome the dependence on the ad-hoc parameter, â, we generalize the notion of the
precision–recall curve to the precision–recall–rate surface (qrs surface). This is the parametric surface
defined by

σ(â, b̂) =
(
q(â), r(â, b̂), s(â, b̂)

)
. (12)

Such qrs surface is shown in Figure 3a. Similar to the sr curve, q and r may be inverted sequentially.
By analogy with the area under the curve, α, we can define an enclosed volume functional for the qrs
surface as well. In particular, we have the volume under the surface, V, given by

V =
∫ 1

0

∫ 1

0
s(r, q)drdq. (13)

While V evaluates the goodness of a predictor over all possible pairs (â, b̂), it does not specifically
quantify the quality of the predictor for extreme-events, i.e., low values of the rate, q.

(a) (b)

Figure 3. (a) Plot of a sample precision–recall–extreme-event-rate, qrs surface. The surface is generated
by varying â and b̂; (b) Precision–rate slice of the qrs plot, where r = 0.5.

3. Separation of Extreme and Quiescent Events

Before we proceed to the definition of a measure that explicitly takes into account the rare
event character (or low rate) of extreme events, it is important to study some properties of the
precision–recall–rate surface. We are interested in understanding the structure of these surfaces and the
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implications on selecting predictors, for physical systems exhibiting extreme events. For a large class of
such systems, the causal mechanism of extremes are internal instabilities, combined with the intrinsic
stochasticity of the system (see, e.g., [14,20,25–27]). In this case, the extreme events are distinguishably
larger compared with regular events. This is because extreme event properties are primarily controlled
by the system nonlinearity and the subsequent instabilities. For such cases, the joint pdf between
indicator and predictor has a special structure where two distinguished probability regions can be
observed. A sample pdf exhibiting this property is shown in Figure 4.

We have observed that this separation of regimes in the probabilistic sense implies interesting
properties for the qrs surface (shown in Figure 3 for the pdf shown in Figure 4). In particular,
the separation in the pdf fab results in a knuckle point on the qs curves (Figure 3b). This knuckle
point is associated with a local maximum of the precision for the particular choice of the rate, q.
It essentially defines an optimal value of the extreme event threshold, â, which, if chosen, optimizes
the performance of the predictor.

Figure 4. Sample pdf exhibiting separation of extremes from quiescent events, corresponding to the qrs
surface in Figure 3a.

Motivated by these observations, we study further the topological properties of the qrs surface.
We have already presented several properties of the rs curves and to this end we focus on the qs curves.
We first note the following basic properties:

Theorem 6 (Basic qs curve properties). Let fab be a continuous joint pdf for the indicator and predictor,
with finite support. Then, for all values of recall, r, the qs curve has the following properties:

1. 0 ≤ s(q, r) ≤ 1, for all q, r;
2. s(q = 0) = 0 and s(q = 1) = 1; and
3. ∂s

∂q (q = 0) ≥ 0 and ∂s
∂q (q = 1) ≥ 0.

Proof. Property 1 follows from the cdf form of Definition 4, which is expressed as a ratio. Both
numerator and denominator are necessarily positive, leading to 0 ≤ s(q, r). Furthermore, the numerator
is written as the denominator minus a positive function, thus the numerator is never larger than the
denominator, leading to s(q, r) ≤ 1.

Property 2 follows from the confusion matrix formulation of Definition 4. When q = 0, there are
no true positive events, thus the numerator of s is identically zero. When q = 1, there are no false
positive events, so the numerator and denominator are equal.

Property 3 follows from the requirements of previous two properties and continuity.

The above properties restrict the possible shapes of the qs curves. We are interested to understand
conditions that lead to the occurrence of a knuckle point. Clearly, this is going to be the case when we
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have an interval of rates for which ∂s
∂q < 0. We compute this condition in terms of the joint pdf fab. We

have the derivative of s with respect to q for constant r:

ds
dq

∣∣∣∣
r
=

1
∂q
∂â

∂r
∂b̂

(
∂s
∂â

∂r
∂b̂
− ∂s

∂b̂
∂r
∂â

)
. (14)

Substituting the expressions for the precision and recall function, we find that the sign of the
above derivative is given by the function

Q(â, b̂) =
∫ ∞

â

∫ ∞

−∞
fab(a, b)dbda

∫ ∞

b̂
fab(â, b)db

∫ ∞

−∞
fab(a, b̂)da

+
∫ ∞

−∞

∫ ∞

b̂
fab(a, b)dbda

∫ ∞

−∞
fab(â, b)db

∫ ∞

â
fab(a, b̂)da

−
∫ ∞

â

∫ ∞

b̂
fab(a, b)dbda

∫ ∞

−∞
fab(â, b)db

∫ ∞

−∞
fab(a, b̂)da (15)

The first two terms of Q will always be positive. That implies that Q can only change sign when
the third term grows large enough in magnitude to dominate the other two terms. It is straightforward
to show that this will be the case if there are threshold values such that the last term is larger than both
the first and second term, i.e., the following sufficient condition holds for some threshold values:

s(â, b̂) > P(b > b̂|a = â) and r(â, b̂) > P(a > â|b = b̂) (16)

The first condition requires that the ratio of the true positives, P(TP), over all extremes, P(TP) +
P(FP), is larger than the the conditional probability for a positive prediction (b > b̂) given that the
indicator is just going to reach the threshold value, â. The second condition requires that the ratio of the
true positives, P(TP), over all extreme predictions, P(TP) + P(FN), is larger than the the conditional
probability for an extreme (a > â) given that the predictor is just reaching the threshold value, b̂.
If both of these conditions hold, then there is an optimal value of â or q for which the precision of the
predictor is optimized.

4. A Predictor Selection Criterion Adjusted for Extreme Events

We introduce a new criterion for optimizing predictors, which takes into account the special
features of extreme events, in particular their low rate of occurrence. This criterion should also be
able to distinguish predictors that optimally capture extreme events for the case where we have well
separated extreme events (knuckle point in the qs curve) but also in more typical cases.

We begin by noting that a completely uninformed predictor (e.g., flip a weighted coin to determine
the prediction) will have the parametric form s = q. This is because such predictor will only need to be
consistent with the rate of occurrence of extreme events. Any other predictor will have s > q at least
somewhere. Note that if we find a predictor with s < q this can be transformed into a good one by just
taking the opposite guess. To this end, it is meaningful to consider the difference between the AUC
of any arbitrary predictor, α(q), and the completely uninformed one which has AUC equal to q. That
is, we should take the amount by which the predictor is better than an appropriately weighted coin,
in the sense of area under the precision–recall curve. Moreover, α(q) will vary in value as q is varied.
Our extreme event predictor should single out one specific threshold that corresponds to the most
effective separation (between extremes and quiescent events), the threshold that corresponds to the
best predictive power.

Based on this analysis, we suggest the maximum adjusted area under the curve, α∗, as a choice of
metric, given by

α∗ = max
q∈[0,1]

(α(q)− q). (17)
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The quantity α(q)− q is a measure, at extreme event rate q, of how much better a predictor B is than
the uninformed predictor. When α(q)− q� 0, the predictor does an excellent job of predicting extreme
events at the threshold â corresponding to the extreme event rate q. Conversely, when α(q)− q ≈ 0
(or even α(q)− q < 0), the predictor is poor at that extreme event rate. Below, we examine several
analytical forms of joint pdfs between indicators and predictors, to understand the mechanics of the
volume under the surface metric and the maximum adjusted area under the curve.

4.1. Coinflip Indicator—Predictor

The coinflip predictor is the naive predictor that is completely independent of the indicator.
Its characteristic triangular shape, shown in Figure 5, has the minimum value of the volume under
the surface: V = 0.5. Further, the coinflip predictor is the baseline against which the metric α∗ is
constructed. Indeed, for the coinflip predictor, α∗ = 0.

Figure 5. Plot of the qrs surface for the coinflip predictor. V = 0.5, α∗ = 0.

4.2. Bimodal Indicator—Predictor

A repository with sample codes for the following subsections may be found on Github. Sample
implementations of the algorithms discussed may be found at https://doi.org/10.5281/zenodo.
3417076, or https://github.com/batsteve/ferocious-cucumber. To demonstrate the relationship
between separation of data (probability bimodality) and α∗, we consider a bimodal pdf, given by:

fab(a, b; γ, ρ) =
1
β
[e−(a2+b2)ρ2

+ γe−((a−1)2+(b−1)2)ρ2
] (18)

This function is the sum of two Gaussian modes: a quiescent mode centered at (0, 0) and an
extreme event mode centered at (1, 1). The pdf is further controlled by two parameters: γ and ρ.
The parameter γ controls the weight of the extreme mode relative to the quiescent mode, and ρ controls
the spacing of the modes. Figure 6 shows the joint pdf and the corresponding qrs plots for representative
parameter values. Note that the knuckle becomes more pronounced as ρ (separation) increases.

The plots in Figure 7 shows the volume under the curve, V, and the maximum adjusted area
under the curve, α∗, for the bimodal scenario as a function of γ and ρ. We note that V is largest when
the separation between extreme and quiescent events, ρ, is large but γ is close to 1 (equal distribution
of probability mass between extreme and and quiescent events). On the other hand, α∗ peaks even
at small values of γ, a scenario which is more realistic for extreme events occurring in physical
systems due to internal instabilities, and which cannot be captured with the standard approach
relying on V. This clearly demonstrates the advantage of the introduced criterion for the selection of
optimal predictors.

https://doi.org/10.5281/zenodo.3417076
https://doi.org/10.5281/zenodo.3417076
https://github.com/batsteve/ferocious-cucumber
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Figure 6. (top) Joint pdf plots of the bimodal scenario for various parameters; and (bottom)
corresponding qrs plots.

Figure 7. Volume under the curve (V) (left); and maximum adjusted area under the curve (α∗) (right)
for the bimodal scenario.

4.3. Gaussian Indicator—Predictor

The multivariate Gaussian scenario is described by a pdf of the form

fab(a, b; ρ, θ) =
1
β

e
−(cos θa+sin θb)2 1

ρ2−(sin θa−cos θb)2ρ2

(19)

where β is a normalization factor, ρ2 is the length ratio of the two principal axes, and θ is the angle
between the principal axis and the a axis. Figure 8 shows a sample pdf. When θ = 0 or θ = π

2 , there
is no linear (or higher order) correlation between the indicator and predictor and in both cases the
predictor is merely the coinflip predictor. However, when θ is near π

4 , and ρ > 1, there is a (linear)
correlation between a and b. In this regime, we see both V and α∗ increase (Figure 9). Unlike the
bimodal scenario, there is no distinct scale separation. As a result, V and α∗ track each other closely.
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Figure 8. Joint pdf plot (left); and the corresponding qrs surface for the Gaussian scenario (right).

Figure 9. Volume Under the Curve (V) (left) and Maximum Adjusted Area Under the Curve (α∗) (right)
for the Gaussian scenario.

5. Applications

5.1. The Majda–McLaughlin–Tabak (MMT) Model

The Majda–McLaughlin–Tabak (MMT) model is a 1D nonlinear model of deep water wave
dispersion first introduced in [23], and since studied in the context of weak turbulence and intermittent
extreme events [25,28,29]. The governing equation is given by

iut = |∂x|αu + λ|∂x|
−β
4
(∣∣|∂x|

−β
4 u
∣∣2|∂x|

−β
4 u
)
+ iDu, (20)

where u is a complex scalar, while the pseudodifferential operator |∂x|α is defined through the Fourier
transform as follows:

̂|∂x|αu(k) = |k|αû(k).

Here, we select the system parameters following the authors of [25], who employed the MMT
equation to validate a model for nonlinear wave collapse and extreme event prediction. The domain
has spatial extent 2π, discretized into 8192 points, and temporal extent 150, discretized into 6000 points
for integration purposes. The parameters are chosen so that λ = −4 (focusing case), α = 1

2 (deep water
waves case), and β = 0. The operator Du is a selective Laplacian designed to model dissipation at
small scales, i.e., due to wave breaking. The first 1000 points are discarded to avoid transients due to
random initial conditions; no forcing term is included and the simulations represent free decay.

Extreme events are indicated by large values of the wave group amplitude:

A(x0, t0) = |u(x0, t0)|. (21)



Entropy 2019, 21, 925 12 of 18

Figure 10 shows sample realization of the MMT model near an extreme event.

Figure 10. Sample plot of one simulated realization of the Majda–McLaughlin–Tabak (MMT) model
near an extreme event.

We construct predictors using a simple machine learning paradigm: surrogate optimization across
a specified hypothesis space. We compare α∗ (introduced in Equation (17)) against other standard
binary classification objectives, such as F1-score and total accuracy. For total accuracy and F1-score, we
use an extreme-event threshold â = 1.5 (Figure 11). The hypothesis class for the predictor is chosen as
a two-element linear combination of k zero-order Gabor coefficients of variable length scales [30]:

hP(x) = a1 exp

(
− x2

2L2
1

)
+ a2 exp

(
− x2

2L2
2

)
. (22)

These functions can be conceptualized as localized Gaussian wavelets. We use a standard
implementation of a surrogate search [31,32] to identify the optimal values for a1

a2
, L1, L2. Except where

otherwise noted, we terminated optimization after 100 function evaluations when calculating from
1 unit of simulation data.

(a) (b)

Figure 11. (a) Probability density function of the MMT wave height. Rayleigh distribution overlaid for
comparison (note the “long-tail’ extending from x ≈ 1.5 to x ≈ 3.5); and (b) histogram of the number
of extreme events for different simulation runs.

In the MMT model, extreme events are localized both spatially and temporally. To convert from
simulation data into training pairs, we use strict time-lags and spatial maxima. The rule strict time-lag
means that a prediction from time t0 is always paired to an indicator measured at exactly time t0 + τ.
This underestimates predictor quality by throwing out “near-misses,” but avoids the definitional
quagmire needed to avoid the issue. The spatial maximization rule means that the most extreme
prediction anywhere (at fixed time t0) is compared to the most extreme event anywhere (at fixed time
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t0 + τ). This overestimates goodness by including “false coincidences”, however, in simulation, false
coincidences are extremely rare.

Numerical Results

Regardless of the objective function, all the computed optimal predictors are typically
characterized by a short length scale component, a long length scale component, and an amplitude
weighting greatly favoring the short component. This breakdown has a simple physical interpretation
that agrees with with previous work [25]. In order for an extreme event to occur, there must be sufficient
background energy to draw up (long length scale), and also enough localized “seed” energy which
will begin the collapse.

Exploratory investigations of three-component predictors (with five adjustable parameters) almost
invariably collapsed onto two-vector solutions. This suggests that the two length-scale interpretation
of the optimal predictors is not just a necessary artifact of hypothesis space dimension. The joint
prediction–truth pdf (Figure 12a) does not appear to contain any scale separation. Indeed, the only
easily visible feature is the density peak in the low-prediction low-indicator corner (true negatives).
However, in the associated qrs surface plot (Figure 12b), the knuckle feature near r = 0.05 suggests
that there is some hidden scale separation.

The different choices of objective function lead to different optimal parameters, as shown
in Figure 13. Three of the objectives, F1, V, and α∗, result in similar parameter values, while the total
accuracy criterion, ET , is quite different—generally resulting in longer length scales for the predictor.

A natural question is: How do the predictions (of the different optimal predictors) differ,
and which one is better? Figure 14 shows two sets of ROC curves for the different optimal predictors.
The precision–recall curve (Figure 14a) shows that the total-accuracy-optimized predictor can achieve
slightly better precision at very low recall tolerances, but otherwise performs more poorly. In typical
extreme event prediction contexts, a high recall (avoid false negatives) is a more valuable property.

The near-50% precision rate (Figure 14a) reflects an approximate temporal symmetry of the MMT
extreme event mechanism: focusing and defocusing energy distributions look very similar, especially
within a restricted hypothesis space that discards phase information.

In the previous numerical experiments, a fixed time gap τ = 0.015 has been used to represent a
suitable prediction time scale: long enough for significant wave evolution, short enough that good
predictions are better than blind chance. Figure 15 shows the optimal predictor parameters associated
with the α∗ objective function for other choices of τ. The dramatic drop near τ = 0.007 obscures the
fact that the predictor parameters are interdependent–the increase of the amplitude ratio partially
counteracts the effects of the shorter length scales.

(a) (b)

Figure 12. (a) Sample prediction–truth joint pdf for a good MMT predictor; and (b) corresponding qrs
surface plot.
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Figure 13. Optimal predictor parameters for each objective function. Note that total accuracy is very
different from the others.

(a) (b)

Figure 14. Receiver operating characteristic curve comparisons of optimal predictors calculated via
different objectives: (a) precision–recall curve; and (b) sensitivity–specificity curve.

Figure 15. (a,b) Optimal predictor parameters as a function of τ; and (c) optimal α∗ as a function of τ.
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5.2. The Kolmogorov Flow Model

The Kolomogorov flow is a solution to the forced Navier–Stokes problem on a 2D periodic domain.
Above Re ≈ 35, the solution is unstable, and there are intermittent bursts of energy dissipation [14].
The Navier–Stokes equations (pressure–velocity form), defined over some domain Ω ∈ R2, are
given by

∂tu = −u · ∇u−∇p + ν∆u + f

∇ · u = 0 (23)

where u is the (vector valued) fluid velocity field, p is the (scalar valued) pressure field, ν is the
dimensionless viscosity (inversely related to the famous Reynolds number) and f is some forcing term.
In the Kolmogorov flow model, the forcing is a monochromatic time invariant field given by

f (x) = sin(ky · x)ê1 (24)

where ky = (0, 4) is the wavenumber of the forcing field and ê1 = (1, 0) is a unit vector perpendicular
to ky. The intermittent bursting phenomena associated with the Kolmogorov flow for large enough
Reynolds numbers (Re ' 35) are captured by the energy dissipation rate, given by

Ediss(u) =
ν

|Ω|

∫
Ω
|∇u|2dx (25)

Figure 16 contains descriptive plots for the Kolmogorov flow model: two visualizations of a
sample realization, and the pdf function.

A natural global set of predictors are the coefficients associated with low-k 2D Fourier modes, bk.
We also consider arbitrary linear combinations of these coefficients, that is, predictors given by

B = Σkγkbk (26)

Other machine learning algorithmic choices closely track those employed for the MMT model,
although intermittent events are spatially global so there is no spatial maximization required.

(a) (b) (c)

Figure 16. Descriptive plots for the Kolmogorov flow: (a) sample realization of the the vorticity; (b) time
series of energy dissipation near an extreme event; and (c) pdf of the energy dissipation.

Numerical Results

Figure 17 shows the prediction quality of the single-coefficient predictors according to different
metrics. By every metric, the Fourier coefficient with wavenumber k = (0, 4) has consistently good
predictive properties. This is consistent with the findings in [14] where a variational approach was
employed to compute precursors directly from the governing equations and some basic properties of
the system attractor. Figure 18 plots the six most significant γk from Equation (26) to show the effects
of changing τ on the composition of the optimal predictors.
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Figure 17. Plots of single coefficient predictor quality for different wavenumbers and objectives: (a) α∗;
(b) volume under the surface; (c) total accuracy; (d) balanced error; and (e) F1 score. Note the consistent
peak at (0, 4), which is resolved best by α∗ and F1.

Figure 18. Composition of optimal predictor, in terms of Fourier modes as a function of prediction gap τ.
Positive coefficients correspond to increasing extreme event likelihood, while negative coefficients
correspond to suppression.

The next numerical study involves optimization of a combined predictor employing several
wavenumbers. Even in this case, the most important component from the combined predictor is the
(0, 4) mode, and its weighting factor is always positive. Other Fourier modes, such as (3, 0), have a
negative weighting factor, which means they are inversely correlated with bursts of extreme dissipation.
Due to the consistent downward trend in prediction quality as τ increases, trends in the data past
τ ≈ 15 are less likely to be meaningful.

6. Conclusions

We have formulated a method for optimizing extreme event prediction in an equation free manner,
i.e., using only data. Our first aim was to understand critical limitations of binary classification methods
in the context of precursors for extreme events. We then showed how the qrs surface construction
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allows for a geometric interpretation of scale separation, and naturally led to the metric α∗, which is
well suited to this problem. We compared α∗ to other metrics in two models of extreme events, where
we showed that α∗ selects for qualitatively better predictions than the total accuracy, and has superior
optimization properties as compared to F1-score.

While the main focus of this work was a way to construct a prediction metric suited to the
problem of extreme event prediction, there are still important questions related to the selection of good
hypothesis classes, and the binning procedure to go from trajectory data to training pairs. While we
believe both these questions are highly problem dependent, any attempt to apply the machine learning
paradigm to a related problem must focus on these issues carefully.
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