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Abstract: This paper applies a Machine Learning approach with the aim of providing a single
aggregated prediction from a set of individual predictions. Departing from the well-known
maximum-entropy inference methodology, a new factor capturing the distance between the true and
the estimated aggregated predictions presents a new problem. Algorithms such as ridge, lasso or
elastic net help in finding a new methodology to tackle this issue. We carry out a simulation study to
evaluate the performance of such a procedure and apply it in order to forecast and measure predictive
ability using a dataset of predictions on Spanish gross domestic product.
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1. Introduction

This paper applies a Machine Learning approach with the aim of providing a single aggregated
prediction from a set of individual predictions. Departing from the well-known maximum-entropy
inference methodology, a new factor capturing the distance between the true and the estimated
aggregated predictions presents a new problem. To tackle the issues posed by this additional factor, one
can look at machine learning (ML) algorithms like ridge regression, lasso or elastic nets. By doing so, the
main contribution of this paper is a novel algorithm that combines classic maximum-entropy inference
with machine learning and regularization principles by applying a penalty when the aggregated
forecast fails to match the forecast target. Via a simulation exercise, we assess the performance of
the algorithm and compare it against the naive approach in which aggregated predictions are built
as averages of individuals predictions. We also apply this algorithm to a dataset of predictions on
Spanish gross domestic product to produce optimal weights that are then used to produce predictions,
the predictive ability of which is also evaluated.

Nowadays, there is an increasing number of prospective sources and methods stating a wide
variety of forecasts for a given economic variable. The traditional methods for combining forecasts are
based on the relative past performance of the forecasters to be combined. However, the number of
forecasters has increased considerably over recent years, with the new ones not having had enough
time to sufficiently demonstrate their predictive ability, an issue relevant in Economics.

The convenience of combining individual results to obtain a single aggregated prediction is not
only problematic in Economics. In Physical Theory, understood as Statistical Mechanics, the seminal
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works of Jaynes ([1,2]) provide the connection with Information Theory that suggests a constructive
method for setting up probability distribution with partial knowledge. Another reason why an
Information Theory approach could be a more appropriate way of tackling the problem of the
prediction aggregation is an informational matter. Rational expectation says that experts should
converge eventually to the true prediction. After a long but successful learning process, experts should
make similar predictions. Therefore, a uniform distribution over the set of predictions should be the
ultimate combination of predictions. Such a distribution maximizes its entropy.

The machine learning literature on combining forecasts is vast and includes among others the
approaches of bagging [3], boosting [4,5] or neural network blending [6]. In the field of economics,
combining forecasts has a long tradition and is still an active area (see, e.g., Refs. [7-10]). Prediction
combination in order to forecast gross production represents also an active subfield of research (e.g.,
Refs. [11-16]). The ASA/NBER business outlook surveys started producing composite economic
forecasts on 1968 shortly after Ref. [17] commented on the advantages of averaging several forecasts of
gross production (as pointed out in Ref. [18]).

From the classic theory, the combination of individual results to obtain a single aggregated
prediction consists on a vector of weights that calibrates different degrees of expert ability. Several
alternatives can be considered for the combination of forecasts involving different degrees of
sophistication. For instance, Ref. [19] considers a minimization of variance-covariance; Ref. [20]
offer a method to compute the weights in order to minimize the error variance of the combination.
Another method called the regression methods by Ref. [21] interprets the coefficient vector of a linear
projection as the corresponding weights. This line of research takes into account the same optimization
problem by changing the restriction conditions. We present the benchmark model for the optimization
problem of the aggregation of prediction under the perspective of Information Theory. This model
activates the criterium of Kullback-Leibler distance to determine the weights of the aggregation of
prediction. The nature and objectives of the above problem consists of combining the predictions trying
to keep constant (uniform) the knowledge provided by each of them and verifying the true prediction.

Under this perspective, a second approach, the Machine Learning technique, presents a second
optimization problem. We draw inspiration from some machine learning algorithms to suggest a
specification that combines both objectives: the relative distance expression and the constraints part
related to the true prediction. We propose a new specification that also introduces temporal parameters
related to an arbitrary temporal structure. Parameters that weight each of the divergences between the
aggregation of the predictions and the true predictions. The resulting optimization problem resembles
that of regression with regularization [22] and we propose solving it using nested cross-validation [23].

Empirical features of the proposed algorithm are illustrated using a dataset of predictions on
Spanish gross domestic product (GDP). The dataset used in this application comes from Fundacién de
las Cajas de Ahorro, FUNCAS. This is a rich dataset with a sufficient number of institutions making
predictions to allow the use of the proposed algorithm. Using this dataset, the proposed algorithm
produces optimal weights which are then used to produce both predictions and the predictive ability.
Although the dataset does not allow us to disentangle clear differences between the proposed algorithm
and a naive forecast, the algorithm is robust in the sense that selecting predictions made in either July
or December leads to similar results and interpretations.

The differences between the proposed algorithm and the naive forecast are further explored in
a simulation study. Such a study reveals that the proposed algorithm becomes more suitable than
the simpler, naive overall average as the length of the target time series increases, as the number of
forecasting institutions decreases and as the institutions with predictions sharper than the rest become
fewer in number and depart more from the rest.

The paper is organized as follows. In Section 2 we present the model. In Section 3 we introduce
the Machine Learning algorithm applied to the maximum-entropy inference problem. In Section 4
the above algorithm is applied to a dataset of predictions on Spanish gross domestic product and in
Section 5 assessed via a simulation exercise. Section 6 presents the concluding remarks.
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2. Model

This section presents first the benchmark model for the optimization problem of the aggregation
of predictions under the perspective of Information Theory. This model activates the criterium of
Kullback-Leibler distance to determine the optimal weights of the aggregation of predictions. A second
approach, the machine learning technique, provides the second model. Finally, the relationship
between both approaches is described.

2.1. Benchmark Maximum-Entropy-Inference (MEI)

Given a set of agents I, let {y; ; }ic] +>0 be forecasts for an economic variable at time t made at a
prior time. We consider the combination of the individual results or weighted by a vector of parameters
for each possible forecast denoted by w;. The weights w; are interpreted as the degrees of expertise for
every agent i € I. By assuming a non-degenerate distribution of weights, the true prediction at time ¢
is denoted a;, which verifies ) ;-; w;y; ; = a;. The first problem we tackle is to find out the weights w;
such that the true prediction fits the aggregation of predictions.

A parallel problem that we consider is the entropy maximization of the distribution of {w; }c|
subject to the true value coinciding with the aggregation of predictions for all possible temporal
horizon t. This optimization problem is expressed as follows:

max ) ;e w;log w;!
wj
subject to Yierwi =1 w; >0,
Yierwiyig =ar  fort>0

This methodology known as maximum-entropy inference is equivalent to the problem of finding
out a non-negative distribution of weights {w;};c; that minimizes the Kullback-Leibler-distance
between such a distribution and the uniform distribution over the set of agents, that is, ﬁ The

Kullback-Leibler distance between two distributions p and ¢ is defined as K(p,q) = ¥, p(x) log %
Notice that the Kullback-Leibler distance is always non-negative but it is not a proper distance
since it neither verifies the symmetric nor the triangular properties. This approach based on the
Kullback-Leibler-distance assures a non biased outcome over the set of agents.

Formally,
: 1 1
min ) rrlog(cil ) 1)

tojel

subjectto Y wi=1  w; >0,
Yiciwiyir =a; fort>0

To solve this, we start with the Lagrangian of the above problem. It should be noted that the
cardinality of variables compared with the set of restrictions may be not enough to guarantee a unique
solution, even the existence of a solution. Despite being able to characterize a set of possible weights
that minimize the relative distance, it may not fit the true prediction condition.

This issue is well recognized in the literature, since the complexity of finding a proper solution
increases with the cardinality of the parameters and conditions; hence, it is necessary to use numerical
algorithms to find out (if it exists) the set of candidates of solution.

In order to reduce the complexity of the problem, we can consider a new parametrization of
{wi}ier. In particular, one can reparameterize w; = % for x; € R. This guarantees that } ; w; = 1
with w; > 0 while simplifying the optimization problem by reducing the number of constraints from
three to one.

Another way to approach the original problem is to allow a balance between the two restrictions
written in the Lagrangian. On the one hand, the distribution of weights should minimize the relative
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entropy, on the other hand, this system should generate an aggregation of predictions as close as
possible to the true prediction.

2.2. Machine-Learning-Inference (MLI)

The nature and objectives of problem (1) consists of (i) combining the predictions of a set of
institutions, (ii) trying to keep constant (uniform) the knowledge (the information) provided by each of
them and (iii) verifying (approaching as much as possible) a set of restrictions. Under this perspective,
we draw inspiration from some machine learning algorithms, such as ridge, lasso or elastic net
(in ridge, lasso or elastic net the goal is to minimize a distance, keeping under control the number of
parameters of the model to avoid overfitting and all this is controlled by a parameter that allow to
rescale or determine the relative importance of each source error function) to propose a specification
that combines both objectives: the relative distance expression and the constraints part related to the
true predictions. We propose a new specification, which also introduces the parameters J; related
to an arbitrary temporal structure (for example, each of those parameters may depend on the time
distance of the restriction to the forecasted period or on the certainty available about the corresponding
constraint value), with a parameter A that weights the restrictions imposed by the distance between
the aggregation of the predictions and the true predictions. It is possible to consider a family of norms
since the problem is in R” and we are under a normed vector space.

Putting together both expressions and being mindful that the parameters {w;} are parametrized,
we formalize the minimization problem under a machine learning perspective as:

. 1 _
min)_ i log(will)™ + A Lol Do - atl| @
t

tojel iel

The connection of the proposed specification to the machine learning literature stems from the
form of the objective function (Equation (2)) and its two summands. The first one refers to the
divergence of Kullback-Leibler: Y ;c; ‘17‘ log(w;|I|)~". The second one corresponds (resembles) to a
flexible regularization term: A Y ; &¢|| Yic wivit — al|.

Lambda (A, hereafter) is a penalty parameter to choose weights that minimize the divergence
of Kullback-Leibler to a uniform distribution and penalize the magnitude of the deviation of the
weighted prediction from the observed value. On the one hand, when A is equal to 0 there is no
past prediction penalty and the result is equivalent to the classic model without temporal restrictions.
On the other hand, when A grows the breach of the temporal restrictions is gaining weight and
dominates Equation (2). In this latter case, the problem may be thought of as a weighted regression
problem but with the coefficients restricted to being positive and to adding up to one and without
showing the drawbacks of traditional procedures when the number of forecasters is larger than the
number of temporal restrictions.

The delta parameters (J, hereafter) are an improvement measure for the magnitude of the
importance that A gives to the breach of the restrictions. In other words, § weights the relative
importance to the restriction from one year to another.

2.3. From Maximum-Entropy Inference to Machine Learning Inference

Problem (1) indeed shares the same essence as the minimization of problem (2). The first problem
is a constrained optimization problem and the second one incorporates this restriction to the objective
function. The methodology of solving problem (1) is by the method of the Lagrange multipliers.
Specifically, the constrained problem is converted into a structural form with both the objective and the
constrained conditions together multiplied by parameters depending on the set of restrictions. Solving
the first order conditions of the Lagrangian function, the optimum is derived. The Lagrangian for (1) is
written as:
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L= Yie |17| log(w;|I])™" + ¢ At (Kier wiyip — ar)

It should be noted that the solution {(w}, A{)} (e ), if it exists, pushes down to 0 the second part
of the Lagrangian since the restrictions must hold and moreover minimize the relative distance.

Let us now assume a family of problems denoted by P(A). Fixing A we have the following
minimization problem:

mmZm log(cwi|I])~ +/\Z5t||zwyzt—ﬂt|| 3)

Yioel iel

When the norm is the absolute distance and A; = Ay, both problems, (3) and (1) coincide. If a
solution in the former problem (3) exists, then such a solution is a candidate for the later problem (1)
for the specific A;. Only the restrictions may not be satisfied in problem (3) if this distortion allows the
reduction of (if it is possible) the relative entropy with the uniform distribution. Therefore, under the
assumption of existence of solution, both problems will offer the same class of solution.

The consideration in the optimum allows us to consider addressing problem (3) from another
perspective when in fact problem (1) has no solution or it is too complex to find. The algorithms
and structural forms borrowed by machine learning could be a way to approach the solution from a
machine learning framework.

3. Algorithm

This section proposes an algorithm to deal with problem (3). The proposed algorithm finds a
solution to problem (3) analogously as they do well-understood regularization, machine-learning
algorithms. The main steps of the algorithm are splitting the data into training, validation and test sets
and choosing the penalty coefficient, A, via cross-validation on validation sets. The parameters ¢; are
exogenous. Following this, the algorithm prediction error can be computed on the test sets and the x;
values estimated using the whole set after addressing the A and J parameters, bearing in mind that the
parameters {w; } are parametrized. The estimated values are finally used as weights to combine the
individual predictions.

For cross-validation, we follow the time-series machine-learning literature and propose the use
of rolling-origin evaluation [24], also known as rolling-origin-recalibration evaluation [25]. These are
forms of nested cross-validation, which should give an almost unbiased estimate of error [23]. Once the
number of institutions (forecasters) that we could be used to properly define the training, validation
and test sets are selected, we can start to solve the optimization problem. As we will have already
noticed, the institutions must be the same in the training, testing and validation sets. If this condition is
not fulfilled, the problem will not be well defined. To solve this issue, in our application (see Section 4),
the dimensionality of the initial data bank was reduced from 21 to around 10 forecasters satisfying
the condition of existence of data for the three phases. This gives us three sets of data sampling with
around 10 institutions for each phase.

As a possible specification we select one of the possible options, we consider the quadratic norm,
a ridge regression, in the objective function and add a parameter A and the J’s that characterize
the slackness of the process. For simplicity we use ; = 1, where we give equal importance to all
restrictions. Different values of A, from a grid of values, are tested to find the optimum that minimizes
the divergence and penalizes the combinatorial prediction with respect to the observed value.

The steps of the proposed algorithm are described in detail in Algorithm 1. The output of the
algorithm is a prediction for period T + 1 denoted by 47 ;. The requirements to apply this algorithm
are: (i) the three dataset splits mentioned above (training, validation and test), (ii) a set of discrete
values of A between 0 and infinity, (iii) a set of discount values § emphasizing the A parameter, and
(iv) a prediction error function. The algorithm solves the optimization problem on the training subset
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for each of the different values of A and é. Once the optimization problem is solved, we get a set of
prediction errors on the validation set, as many as values for A. Subsequently, through cross-validation,
we make the selection of the A that minimizes this prediction error. Thanks to this selection, it is
possible to obtain the best penalty in terms of prediction error. Once the best A is obtained, we apply
the algorithm on the test set and evaluate its performance. We get the w; that minimize the objective
function and a measure of its prediction error.

Algorithm 1: Machine learning based entropy

1 input:
2 Forecast data made by institution i for year n, {y; ,; iin1:I,nin1: N+ 1} (N > 2)
3 Realized values, a1.y
4 Set of penalty coefficients, {A;, jin1:]}
5 Set of discount coefficients {é; 7, tin1:(N—1), Tin2:N}
6 Forecast error function f
7 output:
8 Prediction dn.1
9 Pseudocode:
10 Fornin2:N
1 Forjinl:]

12 Solve for weights using the training subset y1, ..., y,_1:

13 Set wiy,j = argming ) ey \1T\ log(cw;|1])~" + Aj Ztn:_ll Ot Lier wiip — atl|
14 Determine the forecast error using the validation set y,;:

15 Set Cnj = f(lln, Yicl wi,n,jyi,n)

16  End For

17 End For

18 Setj* = argmin]»(N ~1)t'yN, et

19 SetA* = A

20 Solve for weights using A* and the full data set:

2 Setw] = argming, Yics ﬁ log(wi|I]) P+ A* TN din

| Yicr wiyiy — atl|

22 Set ﬁN+1 = Ziel W;F]/i,NJrl

4. Data Analysis

A dataset of predictions on Spanish gross domestic product is used to illustrate empirical features
of the proposed algorithm. The proposed algorithm produces optimal weights w; (Table 1) that
are used to produce predictions a7, (Table 2), the predictive ability of which can be assessed.
The predictive ability of the proposed algorithm for this dataset is similar to that of alternative
naive forecast algorithms, in agreement with the simulation exercise of Table 3.

The dataset used in this application comes from the Fundacién de las Cajas de Ahorro, FUNCAS.
The sample covers the economic predictions of different institutions from 2000 to 2018. The selected
sample contains a total of 21 institutions: Analistas financieros, Asesor, Bankia, BBVA, Caixabank,
Cémara de Comercio de Espafia, CatalunyaCaixa, CEEM-UR]JC, Cemex, CEOE, CEPREDE-UAM,
ESADE, Funcas, ICAE-UCM, IEE, Instituto de Macroeconomia y Finanzas (Universidad CJC), Instituto
Flores de Lemus, Intermoney, Repsol, Santander, Solchaga Recio & asociados). Each agency makes
two predictions a year, in July and December for both the current and the following year. Therefore,
each year is predicted by each agency up to 4 times. FUNCAS prediction panels are very well known
with a prominent experience in economic research and for their thorough work in collecting forecasts
at the regional and national levels. In addition, FUNCAS provides such information for free (see
www.funcas.es).
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For this data analysis, a quadratic forecast error function f(x,y) = (x — y)? and the following
algorithmic parameter values have been used: A € {1 x 1074,2 x 1074,...,8 x 101%,9 x 101® } and
67 = 1forallt, T. The optimization problems have been solved using the free software R version-3.6.1
[26] and the optimization algorithms available in the nloptr library, which serves as an interface for the
NLOPT library [27]. NLOPT algorithms can be global or local and based on derivatives or gradient
free and include, for example, the augmented Lagrangian algorithm, which uses subsidiary local
optimization algorithms. All optimizations have been initialized with a uniform starting point.

To help illustrate the application of the algorithm, Tables 1 and 2 focus on the subset of the full
dataset that only includes forecasts for each given year made in July of that same year. Alternative
restrictions of the full dataset are possible, for example, forecasts for each year made in December of
that same year or forecasts for each year made in July of the previous year. Such alternative restrictions
lead to similar key features regarding predictive ability and optimal weights as are described below.

Key features of the optimal weights w; output by the proposed algorithm included in Table 1 are
weight variation across years and across institutions, variations that can be substantial but also reveal
some consistencies. The years for which Table 1 reports optimal weights are 2002 through 2018. For
the first two prediction years, all weights are negligible except for one, with that single key institution
representing about 10% of the number of institutions. For the remaining fifteen years, weights spread
out producing 20% to 60% of key institutions. Institutions range from those receiving large optimal
weights (e.g., CatalunyaCaixa with 100% on 2002-2003 or IEE and ICO with about 75% on 2004 and
2006 respectively) to those receiving negligible weights. Some institutions are not considered in some
years. Of the initial 21 institutions in the full dataset, only 13 produced forecasts from 2000, of which
only 9 were still producing forecasts by the end of the sample. Considering years and institutions
jointly gives two institution groups: institutions with strikes of substantial weights (e.g., using 25% as
threshold: CatalunyaCaixa, IEE and ICO) and the rest of institutions.

Some key factors to assess the predictive ability of predictions 41,1 made using the proposed
algorithm included in Table 2 have been varied as parameters in the simulation study. The simulation
study considers multiple combinations of different parameters (Table 3). A combination of parameters
that resembles the features in the data could be: (i) 40% of key agents, given that about half of the
estimated optimal weights in Table 1 are non-negligible , i.e., > 4% (note however that the fraction
of non-negligible weights grows substantially over time in the data while it remains constant in the
simulation study); (ii) 10 forecasting agents, given that the number of agents decreases from 13 on 2000
to 9 on 2018; and (iii) a sample size of T = 20 years, with the data covering nineteen years (2000-2018).
According to the simulation study, such combination of parameters seems to have potential for favoring
either the naive or the proposed algorithm depending on the degree of variability between predictions.
A variability of SD = 0.2 might be reasonable for the data, since predictions for a year are made in July
of that same year. This amount of variability produced an average increase of 3.21% in the root mean
square prediction error relative to the naive algorithm in the simulation study. This is consistent with
the differences reported in Table 3 for the data.
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Table 1. Optimal weights w; output by the proposed algorithm.

Institucion 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Analistas Financieros 0.00 000 001 001 o001 004 004 001 001 005 008 009 009 010 010 016 0.16
Bankia 0.00 000 001 001 001 004 004 001 001 005 008 0.08 0.08 0.07 008 011 011
BBVA 0.00 000 0.01 001 001 004 004 001 001 004 008 007 007 004 0.04 0.06 0.06
Caixabank 000 000 0.01 001 o001 005 005 001 001 005 008 009 009 011 0.09 013 0.14
CatalunyaCaixa 1.00 100 003 004 006 017 017 036 037 033 008 010 0.10
CEPREDE-UAM 0.00 000 0.01 001 o001 005 005 001 001 004 008 007 007 004 004 005 0.05
Funcas 000 000 0.01 001 001 004 004 001 001 004 008 008 008 006 0.07 010 0.10
ICAE-UCM 0.00 000 001 001 001 003 003 001 001 0.04 008 0.08 008 006 005 007 0.07
ICO 0.00 000 013 064 074 026 026
IEE 000 000 075 022 011 013 013 052 051 013 0.08 010 010 025 027
Instituto Flores de Lemus 0.00 0.00 0.01 0.01 001 004 004 001 0.01 004 0.08 008 0.08 006 0.06
Intermoney 0.00 000 0.01 001 001 004 004 001 001 008 0.08 008 008 008 0.0 012 012
Santander 0.00 000 0.02 002 002 007 007 003 003 012 008 009 009 012 012 019 019

8of13
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Table 2. Gross Domestic Product (GDP), forecasts d7.1 and corresponding sample forecast root mean
square errors (RMSE) for the time period 2000-2018 using different methods: the arithmetic average
of predictions made by all institutions (naive); the proposed algorithm (machine); and the arithmetic
average of the subset of predictions used to make the predictions with the proposed algorithm (naive2).

Year GDP Naive Naive2 Machine
2000 5.20 4.01
2001 4.00 3.00
2002 2.90 2.09 2.01 2.30
2003 3.20 2.28 2.22 2.10
2004 3.20 2.81 2.77 2.74
2005 3.70 3.28 3.29 3.28
2006 4.20 3.37 3.39 3.30
2007 3.80 3.85 3.88 3.84
2008 1.10 1.74 1.69 1.76
2009 —3.60 —3.64 —3.57 —3.65
2010 0.00 —0.59 —0.52 —-0.72
2011 —1.00 0.79 0.80 0.86
2012 —-290 —1.69 —1.56 —1.60
2013 —-1.70 —-1.49 —1.48 —-1.50
2014 1.40 1.19 1.20 1.18
2015 3.60 3.05 3.03 3.09
2016 3.20 2.85 2.83 2.88
2017 3.00 3.15 3.16 3.16
2018 2.60 2.79 2.82 2.84
Sample RMSE 0.76 0.73 0.74

5. Simulation Study

5.1. Simulation Set-Up

The simulation study covers a wide range of scenarios, each evaluated using 30 replicates. Each
replicate is constructed using the following process. Initially, the Spanish gross domestic product
actual data to be predicted in our data analysis is used to obtain parameter estimates (f, ¢ and ¢), for
a standard autoregressive process of order one, y; = y + ¢y;_1 + 0c€;. These estimates are used in
each replicate to generate a preliminary simulated target time series, {7; }. This preliminary target
is then used to generate simulated predictions for each institution, {7;,}, by adding noise (all noises
considered, i.e., €, 11; and ¢;), are independent standard Gaussian noises) with different intensities
parameterized by its standard deviation, that s, #;; = #; + 0y#;. These simulated predictions are then
aggregated using simulated weights, {@;}. Simulated weights depend on the number of key agents
(institutions) considered. For a 100% of key agents, simulated weights are set to equal weights. For 40%
and 10% of key agents, that percentage of the total of institutions is randomly selected and randomly
assigned uniform weights between 0.5 and 1. The other institutions are assigned a negligible weight
and all weights are rescaled to add up to one. These simulated weights are used to produce the final
simulated target time series 7; = }_; @;¥; ; + oee; (with o fixed at 0.1 to introduce some but not much
deviation from the direct aggregate). Algorithm performance for different such simulated target time
series is analyzed by varying the following parameters: the number of institutions, the sample size,
the percentage of key agents and the noise standard deviation.

The number of institutions or agents takes values 10, 20 and 40. The first two values are slightly
under and slightly over the number of institutions in our data analysis (Section 4, Table 1). The third
value corresponds to an ideal, large number of institutions. Sample size (T) takes values 6, 10 and 20.
The first value matches the observations available in our data analysis and the other values consider
reasonable and desirable horizons respectively. The percentages of key agents considered are 10%,
40% and 100%, with the latter corresponding to all institutions weighting equally in the generating the
target time series. The noise standard deviation (SD), 0, takes values 0.1, 0.2 and 0.3. While the first
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two values are appropriate for near-future forecasts (e.g., forecasts for a given year made in December
of that same year), the last value corresponds to forecasts further into the future (e.g., for a given year
made in July of the preceding year).

5.2. Simulation Results

The results from the simulation study are as expected (Tables 3 and 4). The proposed algorithm
becomes preferable to the simpler, naive overall average as the length of the target time series increases
and as the number of both institutions and key institutions decreases. The simulation study reveals
that the root average square error can more than double when using the naive algorithm instead of the
proposed one. Also, while the results show a good number of improvements of relative error over
20%, negative results seem to stop at around 12%.

The results in terms of weight recovery are shown in Table 4. We assess weight recovery via
the Kullback-Leibler divergence between true and recovered weights. A small Kullback-Leibler
divergence between these weights is linked to the improvements identified by the simulation study
in forecast error resulting from applying the proposed algorithm. The results from Table 4 are in
agreement with those from Table 3.

The so-called forecast combination puzzle consists in the realization that simple combinations
of point forecasts have been found to outperform elaborated weighted combinations in repeated
empirical applications [28]. Smith and Wallis [28] pointed out at finite-sample errors in weight
estimation as a likely culprit. More recently, Genre et al. [13] establish that “we would not conclude
that there exists a strong case for considering combinations other than equal weighting as a means of
better summarizing the information collected as part of the regular quarterly rounds” of the Survey
of Professional Forecasters. Our findings are in agreement with this literature. The agreement
is both from the empirical perspective and from that of the simulation study. This agreement
complements the main contribution of this paper in connecting the information theory literature
with the machine learning literature in the context of forecast combination. The success of equal
weighting for forecast combination can also be linked to the fact that forecasting institutions tend
to form a well-informed consensus, which benefits simultaneously from a herd effect [29] and a
wisdom-of-the-crowds effect [30].

Table 3. Relative changes (in %) of root average square error (averaging over years) of the arithmetic
average of simulated institution predictions (“naive2” in Table 2) with respect to the the proposed
algorithm. The parameters are the number of institutions or agents, sample size T (inner subtable
dimensions), key agents and noise standard deviation (outer dimensions).

Key Noise SD = 0.1 Noise SD = 0.2 Noise SD = 0.3
Agents Sample Size (T) Sample Size (T) Sample Size (T)
Agents T=6 T=10 T=20 T=6 T=10 T=20 T=6 T=10 T=20
10 9.054 4412 18.990 30.949 38425 54.184 47.125 104.228 103.081
10% 20 —10.597 —4.592 —-1.951 0.189 6.892 9.293 11.791  21.052 34.796
40 —2.586 —5.273 —3.923 —2.806 —1.578 —0.214 -1.774 0725 2796
Agents T=6 T=10 T=20 T=6 T=10 T=20 T=6 T=10 T=20
10 —7.664 —7.808 —3.638 —-1210 -3.582 —3.214 2117 0.619  4.131
40% 20 —9.622 —0.997 —4.204 —-10.501 —7.674 —6.759 —8.960 —7.862 —4.530
40 —6.705 —398 —6.479 3712 —-1271 —6.835 —4716 —5.989 —3.499
Agents T=6 T=10 T=20 T=6 T=10 T=20 T=6 T=10 T=20
10 —5.369 —5.737 —6.963 1.667  —1027 —6.739 —9.857 —9.534 —8.856
100% 20 —11.972 —-8.850 —3.873 —-9.304 —12.018 —7.438 —11.344 —-8470 —6.108

40 —-10.179 —-9.636 —5.620 —11.407 8597 —3.475 -9.157 —-7.703 —7.479
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Table 4. Kullback-Leibler divergence between true and recovered weights.

Key Noise SD = 0.1 Noise SD = 0.2 Noise SD = 0.3
Agents Sample Size (T) Sample Size (T) Sample Size (T)
Agents T=6 T=10 T =20 T=6 T=10 T=20 T=6 T=10 T=20
10 2.653 1.197  0.362 0.815 0.376  0.154 0.686 0.166  0.116
10% 20 2964 2378 1438 1958 1316  0.574 1.663 0930 0.286
40 3.118 2623 2253 2483 2314 1.832 2122 1960 1.295
Agents T=6 T=10 T =20 T=6 T=10 T=20 T=6 T=10 T=20
10 2495 1613 1229 1429 1.015 0.702 1229 0734 0438
40% 20 2.638 2232 1.143 1497 1.083  0.960 1208 0986  0.871
40 2.053 1462 1178 1281 1220 1.022 1.039 1.163  0.960
Agents T=6 T=10 T=20 T=6 T=10 T=20 T=6 T=10 T=20
10 1.647 1346  0.357 0.639 0.356  0.068 0.371 0253  0.035
100% 20 1.173  0.860  0.613 0.637 0259  0.098 0222 0.135 0.092
40 0.856 0.731  0.392 0423 0.304 0.325 0294 0294 0.155

6. Concluding Remarks

According to prediction and sampling theories, forecasting errors and variances of single forecasts
can be reduced by combining individual predictions. The traditional methods for combining forecasts
are based on assessing the relative past performance of the forecasters to be combined. The problem,
however, becomes indeterminate as soon as the number of forecasters is larger than the number of past
results. To overcome this issue, an alternative is to assume some set of a priori weights and to apply
the principle of maximum entropy to obtain a set of a posteriori weights, subject to the constraint that
the combined predictions equal the realized values. Unfortunately, this is a complex problem that
grows with the cardinality of the variables and the possibility of finding a solution is not guarantee.

In order to reach a solution within the information theory framework we propose a fresh approach
to the problem and, inspired in the machine learning literature, we suggest a new specification based on
regularization regression and an algorithm to solve it. The new approach always produces a solution,
being moreover quite flexible. It permits the use of different norms to measure the discrepancies
among the combined predictions and the realized values and to weight the relative importance of the
discrepancies. Our regularization approach also has the advantage of producing, as a by-product, the
weights assigned to the different forecasters. These weights could be understood as a measure of the
forecasters’ ability and be used as a tool to decide the methodologies deserving more credit.

Further flexibility could be introduced in our model. For instance, by substituting in Equation (2)
the single prediction values by prediction functions (for example, regression equations). In this
case, the parameters of such prediction functions would be estimated simultaneously, during the
cross-validation step. This will enable us to apply our proposal in one step when, for instance, we try
to obtain, from a set of national forecasts, a prediction for a regional economy where single forecasts
are not available. We could substitute the (unavailable) single regional forecasts for a parametrized
function (e.g., a dynamic regression equation) of the national values.

In our algorithm, we have considered a quadratic norm (a ridge penalty) and a rolling-origin
evaluation as cross-validation strategy. Obviously, other penalties (e.g., lasso or elastic net) are
also possible and, likewise, there is also room for implementing other methods of cross-validation.
For instance, we can explicitly omit the temporal order of the data in the training sets and carry out
leave-one-out cross-validation. At the end, the relative importance of the most recent predictions can
be implicitly included in our specification through the é’s coefficients.

Regarding our application, as it is a common practice we have used the last reliable GDP available
figures (all the countries elaborate several vintages of GDP. National accounts are regularly revised
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as statistical information is enlarged. For instance, in the case of Spain, the estimates from each year
undergo three revisions until they are considered definite [31]) as realized values, 4;. In our opinion,
this is not however the best strategy to be followed for a “combiner” of macroeconomic forecasts.
Instead, flash estimates should be used. Flash estimates (the most provisional and least reliable figures,
though) are the most appealing, getting a strong attention (on the one hand, they occupy the front pages
of the media and are the ones more analysed, debated and commented on. Revised and definitive data,
published three to four years later, attract little public opinion interest. On the other hand, and more
importantly, the flash estimates serve as a framework for decision-making by economic stakeholders.
Decisions which may give rise to rights and obligations: budgetary stability commitments in the EU,
ceilings on general government expenditure, size of deficit or government debt allowed). This may
entail marked consequences on the weights each forecaster receives.

The key contribution of this paper is to link the maximum-entropy inference methodology from
the information theory literature with regularization from the machine learning literature with the
ultimate goal of combining forecasts. Although one might envisage linking forecast combination
algorithms other than regularization (e.g., boosting or bagging) with the information theory literature,
it does not seem immediatly clear how this could be done. Such immediacy seems to be one of the
advantages of regularization over alternative algorithms when it comes to connecting the machine
learning and information theory literature.
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