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Abstract: Community detection is a challenging task in attributed networks, due to the data
inconsistency between network topological structure and node attributes. The problem of how to
effectively and robustly fuse multi-source heterogeneous data plays an important role in community
detection algorithms. Although some algorithms taking both topological structure and node attributes
into account have been proposed in recent years, the fusion strategy is simple and usually adopts the
linear combination method. As a consequence of this, the detected community structure is vulnerable
to small variations of the input data. In order to overcome this challenge, we develop a novel two-layer
representation to capture the latent knowledge from both topological structure and node attributes
in attributed networks. Then, we propose a weighted co-association matrix-based fusion algorithm
(WCMFA) to detect the inherent community structure in attributed networks by using multi-layer
fusion strategies. It extends the community detection method from a single-view to a multi-view
style, which is consistent with the thinking model of human beings. Experiments show that our
method is superior to the state-of-the-art community detection algorithms for attributed networks.

Keywords: community detection; attributed graph; complex networks; information fusion;
data inconsistency

1. Introduction

A large number of complex systems in the real world are often represented as complex networks,
such as communication systems, biological systems, social systems, traffic systems and World Wide
Web (WWW), etc. [1,2]. One of the most important characteristics of complex networks is community
structure [3]. Detecting community structure is one of the fundamental problems in complex network
analysis. By detecting the community structure, one could easily understand not only the intrinsic
characteristics of complex networks, but also its evolutionary trends. The community detection
problem has become one of the hot spots in the field of complex network analysis. Many experts
and scholars have proposed a large number of excellent algorithms to find the community structure.
Early work [4–10] of community detection is mainly focused on networks without node and edge
attributes. Most community detection algorithms for complex networks are proposed mainly based on
graph partitioning [4], spectral methods [11], and graph cut [5]. In addition, some methods [12,13]
use entropy theory to measure the uncertainty in complex networks and improve the performance of
algorithms such as community detection. Although these methods would work well, they still do not
generate well partitioned and easily-understood community structure in a comprehensive view for
complex networks because of the lack of attribute information.
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In general, attribute information describes the inherent characteristics of each node and edge
and influences the community structure. As the attribute information of node and edge becomes
more and more abundant, there are many studies that are beginning to take attribute information
into account in the community detection algorithm [14–19]. However, information fusion is a big
challenge [20,21] existing in most community detection algorithms [22], due to the complexity of
multi-source heterogeneous data. In attributed networks, how to fuse the topological structure
and attribute information of complex networks is an important factor to reasonably recognize and
understand community structure. A natural strategy is to calculate the similarity matrix from network
structure and node attribute data, respectively, and combine these similarities into a mixture form
as the input of community detection algorithms requiring similarity matrix [23,24]. For example,
Neville et al. [23] use the matching coefficient similarity metric sima(oi, oj) to calculate the similarity
for node pair (oi, oj) by using node attributes, i.e.,

sima(oi, oj) = ∑
f

δ( f (oi), f (oj)), (1)

where f is an attribute (or feature), oi is a node in an attributed network, f (oi) is the value of oi in
attribute f , δ(b, d) is a delta function, that is, δ(b, d) = 1 if b = d; otherwise, it is 0. Then, the following
strategy is used to fuse the attribute similarity and topological similarity,

simm(oi, oj) =

{
sima(oi, oj), i f (oi, oj) is an edge in an attributed network,
0, otherwise.

(2)

Obviously, it is suitable only for categorical attributes. Steinhaeuser et al. [24] extends it to deal
with both categorical and continuous attributes. The drawback of this sort of methods is that the
fusion strategy will induce loss of information when there is no edge between node pairs. Therefore,
another fusion strategy is proposed which employees linear combination methods to calculate mixture
similarity considering both network topological structure and node attribute data [19,25]. For example,
Combe et al. [19] provides a mixture distance between nodes as follows:

distm(oi, oj) = α · dista(oi, oj) + (1− α) · dists(oi, oj), (3)

where dista(oi, oj) and dists(oi, oj) are the attribute and topological structure similarity, respectively,
between nodes oi and oj and 0 ≤ α ≤ 1 is a weighting parameter to adjust which part of similarity
is more important. Once the similarity is obtained, it will be used as the input parameter for
similarity-based community detection algorithms. Without loss of generality, suppose that the
parameter α is a random variable and the truth distribution of α is p(α); then, it would induce
the uncertainty, H(p, q), between p and q, where q is the selected parameter distribution of α in the
algorithm, i.e.,

H(p, q) = −
∫

α
p(α) log q(α). (4)

In fact, if the distribution q of α is not able to approximate p, then the uncertainty of the system will
increase, that is, the cross entropy H(p, q) will become larger, which affects the stability and accuracy of
the community detection algorithms. Although these methods could work well in the attributed graph,
they still remain some problems such as loss of information, uncertainties for weighting parameter,
results depending on expert experience, etc.; in particular, the fusion strategy is a big challenge to
mix the multi-source heterogeneous data. We summarize these methods as the community detection
algorithm fusing at a lower-layer.

In response to these challenges, in this paper, we propose a two-layer representation for attributed
networks and a community detection algorithm with multi-layer fusion strategy considering both
network topological structure and node attribute data. Unlike the fusion strategy directly combining
the similarity from multi-source data at lower-layer, we first generate the community structure from



Entropy 2019, 21, 95 3 of 17

the raw data, i.e., network topological data and node attributes, respectively. After the first step, we
would obtain a bag of community partitions, which are called the higher-layer representation of raw
data. As is known to all, there exists data inconsistency in the raw data (lower-layer), and it would
induce uncertainties to partition community structure. In addition, slight variations in the lower-layer
will result in a large influence for detected community structures. If we fuse multi-source data with
the two-layer representation, then it would help to reduce data inconsistency and generate optimal
community partitions which are less sensitive to the variations at the lower-layer representation.
Therefore, we proposed a weighted co-association matrix-based fusion algorithm (WCMFA) to
generate optimum community structure from the two-layer representation of raw data, by using
ensemble learning technology. The experiments proved that our method is effective and outperforms
state-of-the-art community detection algorithms for attributed networks.

The contributions of the paper are summarized as follows:

• We propose a two-layer representation for attributed networks. In the view of the representation,
the lower-layer representation is the raw data from network topological structure and node
attributes, respectively, while the higher-layer representation is a set of community partitions that
are generated from lower-layer data by using the existing community detection algorithms.

• We propose a weighted co-association matrix-based community ensemble method for community
detection in attributed networks. In order to reduce the uncertainty and data inconsistency,
the WCMFA employs the co-association matrix to learn optimum community structure with the
two-layer representation of raw data.

• We also empirically evaluate the effectiveness of WCMFA. The experiment results show that our
proposed community detection algorithm, WCMFA, is the optimal choice to detect community
structure in attributed networks.

The rest of the paper is organized as follows. In Section 2, we introduce some related work from
the viewpoint of networks with attributes and networks without attributes. In Section 3, we first
give a glimpse of our proposed method. Then, we develop the two-layer representation of attributed
networks and define the weighted co-association matrix. Finally, we design the community detection
algorithm, WCMFA, with a two-layer fusion strategy. In Section 4, we evaluate the performance of
WCMFA compared with the state-of-the-art community detection algorithms for attributed networks.
In Section 5, we draw a conclusion of this work.

2. Related Work

According to the attributes of network nodes and edges, complex networks can be classified into
two categories as attributed networks and non-attributed networks.

Related work of community detection on networks without attribute information. The Kernighan–Lin
algorithm [4] is one of the community detection methods which employs a greedy strategy to partition
networks by introducing a gain function to evaluate the quality of communities, based on graph
theory. Earl [11] proposed a method for partitioning networks into a given number of subsets that the
number of edges connecting the various subsets is a minimum, based on the spectral characteristic
of a Laplacian matrix. Spectral partition methods are expensive, since they require the computation
of the eigenvector corresponding to the second smallest eigenvalue. Therefore, researchers proposed
some community detection algorithms by using multilevel graph partitioning strategy [26], which
reduces the size of the graph by collapsing vertices and edges, partitions the smaller graph, and
then uncoarsens it to construct a partition for the original graph. Although the community detection
algorithm based on graph partition can work well, the drawback of its is obvious. That is, the size of
the two subgraphs must be specified first; otherwise, the correct result will not be obtained. For cases
where the number of communities is unknown, Girvan and Newman [5,6] proposed a community
detection algorithm, named GN, which obtains community structure by continuously deleting the
edges of the network with high betweenness value until there are no edges between the communities.
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This kind of algorithm does not need to know more additional information; only the topology of the
network is required. However, the time complexity of this kind of algorithms is O(n3), where n is the
number of nodes in a network. It is not easy to stop the algorithm, due to the terminate condition
not being clear. Modularity [27] is one of the terminate conditions that is used to evaluate the quality
of community partitioning. Some community detection algorithms with the modularity optimum
strategy are proposed [8,28–31]. There also exists some modularity maximization strategy embedded
community detection algorithms such as spectral methods [32,33], sampling technique [34], greedy
algorithms [8,35] and mathematical programming [36], etc. However, more and more research [37–39]
papers find that the modularity optimum strategy based community detection algorithms have some
limitations, such as the resolution limit [40] and extreme degeneracy [41]. Moreover, it was not
possible to discover small communities in networks with varying community size [42], and there were
expensive computation costs. However, in terms of computational complexity, the label propagation
algorithm (LPA) [7] is a simple and time-efficient method for community detection. In LPA-based
methods [7,9,10], every node is initialized with a unique label and, at each step, every node updates
its label according to the labels that its neighbors have. However, the LPA-based methods often
suffer unstable calculation results, that is, the detected community structure is unstable. In addition,
there also exists a category of community detection algorithms that use clustering techniques such as
graph-partitioning-based clustering [43], spectral-analysis-based clustering [33], hierarchical-based
clustering [44] and density-based clustering [45], etc.

Related work of community detection on attributed networks. The attributed network (or attributed
graph) [15,46] is a kind of important complex network, which has both topological structures and
node attributes. In the attributed network context, the topological structure represents the interactions
between nodes and the attributes describe the inherent characteristics of each node in the network.
However, most community detection algorithms do not apply directly to attributed networks well,
due to the lack of attribute information of nodes or edges. Neville et al. [23] proposed a clustering
framework to detect community structure, by using a similarity metric that combines structure and
attribute information. The similarity metric first employs the matching coefficient similarity metric to
quantify the attribute similarity for every two nodes. Then, it is multiplied by 1 as the mixture similarity,
if there exists an edge between nodes; otherwise, it is 0. Some community detection algorithms with
mixture similarities that combine structure and attribute similarity by multiplying them together
are proposed for attributed networks such as [18,24]. Unlike the methods storing their attribute
information inside the edges of the network, some researchers [19,25] treat the structural similarity and
the attribute similarity as two different similarities and provide a linear combination strategy to mix
these similarities as the input of distance-based clustering methods to discover community structure.
In addition to community detection algorithms based on distance-based clustering, some methods
are random-walk-based approaches [47,48], statistical-inference-based algorithms [16,17,49,50] and
subspace-clustering-based approaches [51,52]. However, these methods still use the lower-layer
fusion strategy.

3. Proposed Method

In this section, we present our weighted co-association matrix-based fusion algorithm for
community detection. We first introduce the necessary notation and framework of our method.
Then, we describe the details of the method.

3.1. Notation and Method Overview

Let G = (V, E,A) be an attributed network, and let A, G = (V, E) be the node attribute set and
the network topological structure of the attributed network, respectively. In general, a network (a.k.a
graph) G = (V, E) consists of a node set V = {u|u ∈ 1..N} and an edge set E = {〈u, v〉|∀u, v ∈ V}.
The node attribute set A describes the feature set of each node v ∈ Rd in node set V. The goal of the
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community detection is to learn an optimum node partition according to the feature set of attributed
network considering both network topological structure and node attributes data.

In order to implement the goal, we propose a novel community detection method, i.e., WCMFA.
Furthermore, the framework of WCMFA is shown in Figure 1. In the framework, we first divide
attributed network data into two categories, i.e., topological structure G(V, E) and node attribute
set A. Then, it applies community detection algorithms and clustering algorithms to G(V, E) and A,
respectively. In addition, it will generate a set of candidate community partitions from each branch.
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Figure 1. The framework of weighted co-association matrix-based fusion algorithm (WCMFA).

Consider N candidate community partitions P from the data G(V, E) and A. The P is defined as

P = {P1, P2, ..., PN} (5)

and

P1 = {C1
1 , C1

2 , ..., C1
k1
},

...

PN = {CN
1 , CN

2 , ..., CN
kN
},

(6)

where Ci
j is the jth community in the community partition Pi, which has ki communities and ni

j is

the cardinality of Ci
j, with ∑ki

j=1 ni
j = n, i = 1, ..., N, and n is the number of node in the attributed

graph G. Then, the community detection problem transfers to an optimization problem that finds a
consensus community structure P∗ from the candidate community partitions P . The main concern of
WCMFA is the fusion strategy that could guarantee the final community partition P∗ is the optimum
structure which would have different similarities with every partition {Pi|Pi ∈ P , i = 1, ..., N}, which is
generated by the base community detection algorithm. In general, the consensus community partition
P∗ should satisfy the following properties:

• P∗ should be robustness to small variations in P , according to the fusion strategy;
• P∗ should have better performance than each candidate community partition P ∈ P , statistically;
• P∗ should be similar to all single community partition.
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The robustness property means that we assume the consensus partition P∗ are invariant to small
perturbations in P , according to the community fusion strategy. In addition, well performance means
that the partition P∗ is the optimum one in terms of ground truth.

3.2. Two-Layer Representation and Community Fusion

As is shown in the previous sections, we first introduce a two-layer hierarchical structure
to represent attributed network data. Then, we introduce a weighted co-associate matrix based
community fusion method taking both lower-layer and higher-layer representation into account. It is a
significant difference between our approach and the existing community detection algorithms which
employee the fusion strategy at the lower-layer representation.

Definition 1 (Base Community Detector). Given an attributed network G(V, E,A), we define the base
community detector f = { f t(G), f a(G)} as the community detect algorithm that could apply to network
topological structure data G(V, E), i.e.,

f t(G) : G → P, G ∈ G,

where P is a community partition, and the clustering algorithm which could apply to node attributes A, i.e.,

f a(G) : A → P, A ∈ G.

Given node attributesA, we can obtain a community partition P = {C1, C2, ..., Cm}which satisfies
∪iCi = V and ∀Ci, Cj ∈ P, Ci ∩ Cj = ∅, according to the base community detector f a. Suppose the
base community Ci = {v1, ..., vl}(l ≤ N, ∀vi ∈ Rd) is a finite independent and identically distributed
(IID) node set with attributes. A probability density estimate p̂(v) can be obtained from Ci by using
kernel density estimation (KDE), i.e.,

p̂(v) =
1

(2π)d/2lhd

l

∑
i=1

exp
(
− 1

2h2 (v− vi)
T(v− vi)

)
, (7)

where h is the window width. For each node vk ∈ Ci, the class-conditional probability p(vk|Ci) is

p(vk|Ci) =
1

(2π)d/2lhd

l

∑
i=1

exp
(
− 1

2h2 (vk − vi)
T(vk − vi)

)
. (8)

For simplicity, we use the mean of Ci, i.e., v̄, to replace vi; then, we have

p(vk|Ci) =
1

(2π)d/2hd exp
(
− 1

2h2 (vk − v̄)T(vk − v̄)
)

. (9)

If vt ∈ Ci, then the co-occurrence probability of vk, vt in Ci is

p(vk, vt|Ci) =
1

(2π)dh2d exp
(
− 1

2h2 [(vk − v̄)T(vk − v̄) + (vt − v̄)T(vt − v̄)]
)

=
1

(2π)dh2d exp
(
− 1

2h2 [(vk − vt)
T(vk − vt) + 2(vk − v̄)T(vt − v̄)]

)
.

(10)

As vk and vt are independent and identically distributed, then E[(vk − v̄)T(vt − v̄)] = 0; then, we have

p(vk, vt|Ci) =
1

(2π)dh2d exp
(
− 1

2h2 (vk − vt)
T(vk − vt)

)
=

1
(2π)dh2d exp

(
− 1

2h2 ‖vk − vt‖2
)

,
(11)
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where ‖vk − vt‖2 denotes the Euclidean distance between vk and vt. Now, we can see that the
p(vk, vt|Ci) is determined by ‖vk − vt‖. In addition, with the window width h fixed, there exists a
negative correlation between p(vk, vt|Ci) and ‖vk − vt‖. Therefore, we have the following definition.

Definition 2 (Related Attribute Similarity Matrix). Suppose that a community partition P =

{C1, C2, ..., Cm} is generated by the base community detector f a and node attributes A; then, the related
attribute similarity of vk, vt in the same community Ci(Ci ∈ P) is defined as

ψ(vk, vt) = 1− ‖vk − vt‖
maxvp ,vq∈Ci‖vp − vq‖

. (12)

Note that the number of community Ci which vk, vt belongs to is only one in P. Then, the matrix Ψ is defined as

Ψkt =

{
ψ(vk, vt), i f vk, vt in the same community;
0, otherwise.

(13)

Definition 3 (Two-Layer Representation). Given an attributed network G(V, E,A), we define the raw data
G(V, E) and A as the lower-layer representationRlow for the attributed network G, i.e.,

Rlow = {G(V, E),A}. (14)

Given a set of base community detector, i.e., F = { fi}N
i=1, i = 1, 2, ...N, we apply it to the lower-layer

representation, and it will generate some outputs, that is, the basic community partitions {Pi|Pi = fi(G), i =
1, 2, ..., N} and the related attribute similarity matrix Ψ, which are defined as a part of higher-layer representation
Rhigh, i.e.,

Rhigh = 〈{ fi}N
i=1, {Pi}N

i=1, {Ψi}N
i=1〉, Pi = fi(G), fi ∈ F, i = 1, 2, ...N. (15)

Note that, if fi is a base community detector for topological structure, then Ψi = 0. Therefore, the two-layer
representation of an attributed network G isR = {Rlow,Rhigh}.

Definition 4 (Weighted Co-Association Matrix). Given the two-layer representationR = {Rlow,Rhigh}
of the attributed network G and the partition weighting vector , w = (w1, w2, ..., wN), for each node pair
accompanying with each partition Pk, the weighted co-association matrix C is defined as

Cij =
1
N

N

∑
k

wk(vi, vj) · δ(Pk(vi), Pk(vj)), ∀vi, vj ∈ V, Pk ∈ P (16)

and
wk(vi, vj) : V ×V → [0, 1], (17)

where Pk(vi) represents the cluster label of node vi in the partition Pk, and δ(b, d) is 1, if b = d, and 0 otherwise.
If we let w = {1, ..., 1}, then the weighted co-association matrix becomes the co-association matrix, which is
defined in Ref. [53]. For the network topological data G(V, E), the weighting function wk(vi, vj) could be
defined as the topological similarity such as Jaccard similarity coefficient, i.e.,

wk(vi, vj) =

{ |Γ(vi)∩Γ(vj)|
|Γ(vi)∪Γ(vj)|

, δ(Pk(vi), Pk(vj)) > 0,

0, otherwise,
(18)
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where Γ(vi) is a function to measure the neighbors of node vi in G(V, E). Correspondingly, wk(vi, vj) also
could be defined as the related attribute similarity ψ(ṽi, ṽj), i.e.,

wk(vi, vj) =

 1− ‖ṽi−ṽj‖
maxṽp ,ṽq∈Ci

‖ṽp−ṽq‖ , δ(Pk(vi), Pk(vj)) > 0,

0, otherwise,
(19)

where ṽi represents the feature vector of node vi in the node attributes A, ‖·‖ is the norm operator. Ci represents
the cluster which has the label Pk(vi). If the δ(Pk(vi), Pk(vj)) > 0 is satisfied, then we have Ci = Cj.

Obviously, the matrix C could be viewed as a similarity matrix for the node set V in attributed
network G. In addition, the more nodes vi and vj appear in the same communities, the more similar
they are. Unlike the co-association matrix [53], we consider the similarity between any two nodes
taking both lower-layer representation and higher-layer representation into account. The weighted
co-association matrix is divided into two parts, i.e., the weighting part and the partition part. We first
take a glance at the co-occurrence of two nodes in the same community partition, which is the data
form higher-layer representation. If the node pair is indeed in the same partition, then we will calculate
the degree of its similarity in detail by using lower-layer representation data, otherwise, ignore it.
The core idea of weighted co-association matrix avoids the case where the node co-occurrence degree
is only 0 and 1, and it is in line with the idea of human being to deal with the problem from the
whole to the local. In other words, two-layer representation provides a Comprehensive perspective
for attributed networks, while the other methods only consider the single view of attributed networks,
which is prone to fall into the trap of local optimization.

3.3. Community Fusion Algorithm

Based on the weighted co-association matrix, then the community fusion algorithm, i.e., WCMFA,
is constructed by using clustering algorithm, which could generate the consensus partition P∗.
The following Algorithm 1 outlines our proposed community detection algorithm.

Algorithm 1 The weighted co-association matrix based community fusion algorithm, WCMFA, which
detects community structure in attributed networks based on the two-layer representation

Input: G = 〈(G(V, E),A)〉: an attributed network; { f }N
i=1: a set of base community detector; N: the

number of candidate community partitions; M: the total number of node in the attributed network

G; simt(·, ·): the node pair similarity measure for topological structure; sima(·, ·): the node pair

similarity measure for attribute set;M(·): a similarity matrix based clustering algorithm.
Output: P∗: the consensus community partition.

1: Rlow ← G〈G(V, E),A〉;
2: //calculate the candidate community partitions P ;
3: for i = 1, 2, ..., N do
4: if fi is an instance of f t for G(V, E) then
5: P [i]← f t

i (G);
6: else
7: P [i]← f a

i (G);
8: calculate the matrix Ψi associated with P [i];
9: end if

10: end for
11: Rhigh ← 〈{ fi}N

i=1,P , {Ψi}N
i=1〉;

12: //community fusion;
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Algorithm 1 Cont.

13: for i = 1, 2, ..., N do
14: if Pi is generated by f t(G) then
15: wi(·, ·)← simt(·, ·);
16: else
17: wi(·, ·)← sima(·, ·);
18: end if
19: end for
20: for u = 1, 2, ..., n do
21: for v = 1, 2, ..., n do
22: if u ≥ v then
23: continue;
24: end if
25: Cuv ← 0;
26: for k = 1, 2, ..., N do
27: Cuv ← Cuv + wk(u, v) · δ(Pk(u), Pk(v));
28: end for
29: Cuv ← 1

N · Cuv;
30: end for
31: end for
32: C← C + CT ;
33: P∗ ←M(C);
34: return the consensus community partition P∗.

In Algorithm 1,M(·) can be any kind of clustering algorithm which requires a similarity matrix
as input, such as Single Link, Complete-Link, Average-Link, etc. [54].

4. Experiments

The empirical study of the WCMFA is given in this section. We first set up the experiments by
introducing the datasets and comparison methods. Then, we evaluate the performance in terms of
some criteria compared with other methods.

4.1. Experiment Setup

Data sets: in order to test the performance of our method, we selected three networks with node
attributes: the counselor relationship network (Consult) [15], the London gang relationship network
(London Gang) [55] and the Montreal gang relationship network (Montreal Gang) [56].

Consult is an attributed network that describes the relationship between employees in a consulting
company. The topological structure of Consult is represented by a graph where a node is an employee
and an edge is a relationship between two employees. In addition, every node has a feature set such as
the organisation level (1: Research Assistant; 2: Junior Consultant; 3: Senior Consultant; 4: Managing
Consultant; 5: partner), gender(1: Male; 2: Female), region (1: Europe; 2: USA), and location (1: Boston;
2: London; 3: Paris; 4: Rome; 5: Madrid; 6: Oslo; 7: Copenhangen), etc.

London gang: the attributed network is on co-offending in a London-based inner-city street gang,
2005–2009. In addition, the data comes from anonymised police arrest and conviction data for ’all
confirmed’ members of the gang. The topological structure of London gang consists of 54 persons
as nodes and the relationship between nodes as edges. In addition, every node also has a attribute
set to describe the features of it such as Age, Birthplace, Residence, Arrests, Convictions, Prison and
Music, etc.

Montreal gang: the data obtained form the Montreal Police’s central intelligence base,
the Automated Criminal Intelligence Information System (ACIIS), was used to reconstruct the
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organization of drug-distribution operations in Montreal North. The topological structure of Montreal
gang consists of 35 nodes with its interactions. Every node has a feature set such as Gang affiliation
(1: Bloods; 2: Crips, 3: Other), Gang Ethnicity (1: Hispanic, 2: Afro-Canadian; 3: Caucasian; 4: Asian;
4: No main association/mixed) and Territory data (1: Downtown; 2: East; 3:West), etc.

Comparison Methods and Base Community Detector Settings: We select LPA [7] + CNS [15],
denoted as LPACNS, BGLL + CNS [15], denoted as BGLLCNS, kMedoids + CNS [15], denoted as
KmedCNS to perform the comparison experiment. These community detection methods incorporate
node attribute similarities into edge weights by using the coupled similarity measure, i.e., CNS, and
execute LPA, BGLL and kMedoids to detect community structure, respectively. As is discussed in
the previous sections, we classified these methods as lower-layer fusion algorithms. In our proposed
method, WCMFA, we select LPA, BGLL as the base community detector for network topological
structure data and k-Means, k-Medoids as the base community detector for network attributes, in
order to generate the higher-layer representation for attributed networks.

Evaluation Metric: For attributed networks with known community structure, we use the
following criteria to evaluate the performance of WCMFA compared with other methods. Suppose
P = {P1, P2, ..., PK} is the result community partition generated by the selected method above,
and O = {O1, O2, ..., OL} is the ground-truth community structure. Then, we have the following
evaluation metrics.

Rand Index (RI) [57]: Let a be the number of pairs of elements in V that are in the same subset
in P and in the same subset in O, and b be the number of pairs of elements in V that are in different
subsets in P and in different subsets in O, then we have

RI =
a + b
(n

2)
. (20)

Adjust Rand Index (ARI) [58]: Let nkl = |Pk ∩Ol |, bk = ∑L
l=1 nkl and dl = ∑K

k=1 nkl , then we have
the following definition about ARI, i.e.,

ARI =
∑kl (

nkl
2 )−

[
∑k (

bk
2 )∑l (

dl
2 )
] /

(n
2)

1
2

[
∑k (

bk
2 ) + ∑l (

dl
2 )
]
−
[
∑k (

bk
2 )∑l (

dl
2 )
] /

(n
2)

. (21)

Normalized Mutual Information (NMI) [59] :

NMI = −
2 ·∑K

k=1 ∑L
l=1

|Pk∩Ol |
|V| log

(
|V|·|Pk∩Ol |
|Pk |·|Ol |

)
∑K

k=1
|Pk |
|V| log

(
|Pk |
|V|

)
+ ∑L

l=1
|Ol |
|V| log

(
|Ol |
|V|

) . (22)

For the attributed network without a known community structure, the modularity is a popular
evaluate metric to test the performance of different methods. Weighted modularity [15] for attributed
networks is defined as:

WQ =
1

mw ∑
i,j∈V

[
Aw(i, j)−

dw
i dw

j

mw

]
× δ(ci, cj), (23)

where Aw(i, j) is the weighted edge between node i and j, dw
i = ∑j Aw(i, j), mw = ∑ij Aw(i, j) and ci

represents the community which the node i belong to. δ(ci, cj) is a delta function, that is, δ(ci, cj) = 1 if
ci = cj; otherwise, it is 0.
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4.2. Results

Tables 1–3 demonstrate the comparison results of the community detection algorithms: LPACNS,
BGLLCNS, KmedCNS and WCMFA, which were performed on the attributed networks Consult,
London Gang and Montreal Gang, respectively. Each column in all tables represents the corresponding
results that all methods performed under one of evaluation metrics from RI, ARI, NMI and WQ. In
addition, the last rows of three tables are the minimum performance difference between these methods
on all evaluation metrics. Furthermore, numbers in bold style mean they are the best ones among all
results in that column.

Table 1. The comparison results with respect to the Consult.

Methods RI ARI NMI WQ

LPACNS 0.5855 0.1717 0.3182 0.1024
BGLLCNS 0.4889 0.0237 0.0014 0.0165
KmedCNS 0.8019 0.6038 0.6007 0.1345
WCMFA 0.9150 0.8299 0.7828 0.1970

∆ 0.1130 0.2261 0.1822 0.0625

In terms of the Consult data, WCMFA is superior to LPACNS, BGLLCNS and KmedCNS in all
evaluation metrics. For example, WCMFA gains 0.2261 improvement of ARI over the KmedCNS that
is the best one among the other methods. Furthermore, WCMFA also achieves 0.0625 improvement
of modularity over the best result 0.1345 which is generated by the KmedCNS. Similarly, WCMFA
gains 0.113 and 0.1822 improvement of RI and NMI over the best results that are achieved by the other
methods, respectively.

Table 2. The comparison results with respect to the London Gang.

Methods RI ARI NMI WQ

LPACNS 0.3788 0.0015 0.0003 0.0000
BGLLCNS 0.5265 0.0138 0.1108 0.0032
KmedCNS 0.3753 0.0353 0.0359 0.0005
WCMFA 0.5514 0.0712 0.1008 0.0487

∆ 0.0249 0.0359 −0.0100 0.0455

In terms of the London Gang data, WCMFA is superior to LPACNS, BGLLCNS and KmedCNS in
all evaluation metrics, except the NMI. From Table 2, it is clear that WCMFA gains 0.0249, 0.0359 and
0.0455 improvement of RI, ARI and WQ over the best results that are obtained by the other methods,
respectively. However, on the metric of NMI, WCMFA is not as good as BGLLCNS (the gap is 0.01)
but is still superior to the other methods.

Table 3. The comparison results with respect to the Montreal Gang.

Methods RI ARI NMI WQ

LPACNS 0.5513 0.2340 0.4312 0.0560
BGLLCNS 0.6639 0.0110 0.2064 0.0283
KmedCNS 0.7899 0.5146 0.6372 0.1151
WCMFA 0.8739 0.6973 0.7785 0.3035

∆ 0.0840 0.1827 0.1413 0.1884

From Table 3, we could see that WCMFA is superior to LPACNS, BGLLCNS and KmedCNS in all
evaluation metrics in terms of the Montreal Gang data. WCMFA gains 0.084, 0.1827, 0.1413 and 0.1884
improvement of RI, ARI, NMI and modularity over the best results that are achieved by the other
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methods, respectively. In other words, WCMFA is the best choice to detect the community structure
among all comparison methods for the Consult, London Gang and Montreal Gang data, except the
metric NMI on Montreal Gang.

From the results above, we could see that our community detction algorithm, WCMFA, is better
in most cases than the other methods in most evaluation metrics. The main reason is that the fusion
strategy of topological structure and nodes attributes at lower-layer will induce the loss of information
in attributed networks. Another reason is that the two-layer representation is less sensitive to the
change of raw data. Obviously, the lower-layer fusion strategy is vulnerable to a variation of raw
data, that is, the little change in the raw data should induce a big influence for the final output of
the community detection algorithm. Although the variation of lower-layer data would influence the
higher-layer representation, we could reduce the influence at the lowest degree by using community
ensemble learning, i.e., using community fusion strategy which considered both lower-layer and
higher-layer representation of data. Therefore, our two-layer representation can avoid the problem
that exists in the lower-layer fusion strategy. In our viewpoint, the higher-layer data is an abstract of
lower-layer data, and it enhances the representation ability of the raw data. Based on the two-layer
representation, our community detection approach, WCMFA, could achieve better results than the
methods with the lower-layer fusion strategy, because the weighted co-association matrix based fusion
strategy could mine more knowledge to improve the quality of detected community structure by
leveraging both lower-layer and higher-layer data to the greatest extent.

In summary, the WCMFA which has the capability to capture the inherent information from
the two-layer representation of attributed networks could obtain more intrinsic knowledge from
data, so that it is more conducive to achieve a better performance in the data environments of
multi-source heterogeneous.

4.3. Impact of Varying Size of Candidate Community Partitions and Nodes

As is discussed in the previous sections, the time-consuming part of WCMFA is sensitive to
the size of nodes and the size of the candidate community partitions which are generated by the
base community detectors. Roughly speaking, the WCMFA has two-stages, i.e., the base community
partition generation stage and the community fusion stage. In the base community partition generation
stage, the WCMFA could select anyone of the state-of-the-arts community detection algorithms to
detect the candidate community partitions. However, our work focus on the fusion stage, that is, the
performance of the WCMFA mainly depends on the size of candidate community partitions and nodes.
Therefore, in this section, we randomly generate community partitions to test the performance of the
WCMFA with varying size of |P| and N.

Tables 4 and 5 describe the running time of the community fusion part of the WCMFA with the
varying size of the candidate partitions and the nodes in networks, respectively. More specifically, the
results shown in Tables 4 and 5 are at the settings of n = 200, |P| = 2, respectively. Figures 2 and 3
show the comparison results with the varying size of |P| and N, respectively. From the result above,
we could see that the size of the candidate community partitions has approximately a linear correlation
with the running time of the WCMFA. In other words, we can generate more candidate community
partitions to improve the performance of the algorithm, and the time cost of the algorithm is not
serious. However, the scale of the nodes in network plays an important role in the running time of the
WCMFA. In Figure 3, the time curve rises sharply from 5.65 to 243.40 when the size of nodes ranges
from 200 to 4000. In general, some parallel computing strategies that could be used to improve the
bottleneck of algorithms which suffer the low efficiency of the large scale of data.



Entropy 2019, 21, 95 13 of 17

Table 4. Running time with the varying size of candidate community partitions.

Candidate Partitions
The Number of Communities in One Partition |P|
2 4 8 16 32

5 0.39 0.38 0.39 0.46 0.52
10 0.40 0.43 0.46 0.57 0.65
15 0.41 0.46 0.51 0.66 0.77
20 0.44 0.51 0.59 0.78 0.94
25 0.46 0.55 0.64 0.90 1.15
30 0.49 0.57 0.71 1.09 1.30
35 0.54 0.60 0.78 1.24 1.56
40 0.55 0.65 0.81 1.36 1.74
45 0.58 0.69 0.89 1.54 1.97
50 0.64 0.78 1.02 1.66 2.29
55 0.66 0.78 1.27 1.75 2.37
60 0.69 0.83 1.28 2.05 2.79
65 0.71 0.89 1.39 2.37 3.28
70 0.74 0.93 1.53 2.47 3.30
75 0.78 1.00 1.75 2.52 3.76
80 0.80 1.02 1.76 2.95 4.13
85 0.87 1.13 1.94 3.28 4.39
90 0.89 1.14 2.00 3.49 4.73
95 0.92 1.19 2.06 3.73 5.17

100 0.94 1.24 2.37 4.05 5.43

Table 5. Running time with different node sizes.

Node Size
The Number of Communities in One Partition |P|
2 4 8 16 32

200 0.93 1.25 2.30 4.90 5.65
400 1.37 1.70 2.55 6.32 8.87
600 1.92 2.14 2.99 6.82 15.50
800 2.62 2.93 3.75 7.10 23.04

1000 3.50 3.67 4.62 8.86 35.34
1200 4.43 4.70 5.59 11.16 37.86
1400 5.51 5.74 6.49 14.37 49.48
1600 6.86 7.16 7.72 15.74 59.71
1800 8.08 8.35 9.00 15.76 82.09
2000 9.17 9.78 10.86 17.92 92.41
2200 11.47 11.66 12.18 19.80 118.44
2400 13.33 13.05 14.09 20.96 126.04
2600 15.26 15.42 16.01 22.60 145.14
2800 15.38 17.52 18.34 24.36 149.09
3000 19.68 19.84 20.66 25.90 162.64
3200 22.17 22.25 22.56 28.27 174.81
3400 24.45 24.42 25.76 29.11 179.99
3600 26.99 27.16 27.24 31.44 184.27
3800 29.83 29.14 30.22 33.93 187.42
4000 32.14 31.99 32.98 37.06 243.40
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Figure 2. Comparison results with the varying size of |P|.
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Figure 3. Comparison results with the varying size of N.

In summary, the WCMFA could generate more candidate community partitions to improve the
performance with low time cost. Although the scale of data has more impacts than the size of |P|, it is
useful to incorporate some parallel computing strategies to save the running time.

5. Conclusions

Due to the complexity of data and the lack of effective community fusion strategy, how to
effectively and robustly detect the inherent community structure in the attributed networks is a
challenging task. In this work, we developed a novel two-layer representation of data to capture
the latent and inherent knowledge form attributed networks in a multi-source heterogeneous data
environment, and proposed a multi-layer fusion strategy based community ensemble learning method,
WCMFA, to detect the community structure from network data. It extends the community detection
method from a single-view to a multi-view style, which is consistent with the thinking model of
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the human beings. Experiments show that our method is superior to the state-of-the-art community
detection algorithms for attributed networks.

Several aspects of the new method are worth investigating in further depth, including how to
select the number of layers, fusion strategies and the style of community ensembles, etc. In the future,
we will focus on the hierarchical representation of attributed networks because a good representation
will obtain an easy solution to solve the problem that seems complicated.
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