
entropy

Article

Reconstruction of PET Images Using Cross-Entropy
and Field of Experts

Jose Mejia 1 , Alberto Ochoa 2 and Boris Mederos 3,*
1 Department of Electrical and Computation Engineering, Universidad Autónoma de Ciudad Juárez,

Ciudad Juárez 32310, Mexico; jose.mejia@uacj.mx
2 Department of Industrial and Systems, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310,

Mexico; alberto.ochoa@uacj.mx
3 Department of Physics and Mathematics, Universidad Autónoma de Ciudad Juárez,

Ciudad Juárez 32310, Mexico
* Correspondence: boris.mederos@uacj.mx

Received: 17 December 2018; Accepted: 14 January 2019; Published: 18 January 2019
����������
�������

Abstract: The reconstruction of positron emission tomography data is a difficult task, particularly
at low count rates because Poisson noise has a significant influence on the statistical uncertainty of
positron emission tomography (PET) measurements. Prior information is frequently used to improve
image quality. In this paper, we propose the use of a field of experts to model a priori structure and
capture anatomical spatial dependencies of the PET images to address the problems of noise and
low count data, which make the reconstruction of the image difficult. We reconstruct PET images by
using a modified MXE algorithm, which minimizes a objective function with the cross-entropy as a
fidelity term, while the field of expert model is incorporated as a regularizing term. Comparisons
with the expectation maximization algorithm and a iterative method with a prior penalizing relative
differences showed that the proposed method can lead to accurate estimation of the image, especially
with acquisitions at low count rate.
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1. Introduction

Positron emission tomography is an imaging technology that provides quantitative studies to
detect, diagnose, and monitor treatment of different diseases such as hypernated myocardium, cancer,
and many others [1,2].

The scan process begins by administering a radioactive substance, the radiotracer, to the patient.
The substance is absorbed mainly by the target organs or tissues. The positron emission tomography
(PET) data are then obtained by detecting the radiotracer distribution within the body. These acquired
data are then processed by reconstruction algorithms to obtain the final image, which is presented to
the medical research personnel [2,3].

Quality of the PET image depends of several factors: physical factors such as positron range,
non collinearity and spurious events; hardware related factors such as crystal type and size and
response time of the electronics; and the software or reconstruction algorithm used to estimate the
final image [3].

In this paper, we are interested in improving the quality of the PET images by using algorithms to
reconstruct the image. Reconstruction algorithms can be broadly classified into analytic and iterative
methods. Iterative methods are popular in PET due to their robustness and ability to incorporate prior
data and noise statistics. Iterative methods are mainly based on the maximum likelihood expectation
maximization estimator or the least squares model. However, when excessive noise is present in
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the acquired data, such as in low count acquisitions, most iterative methods have difficulties in
obtaining an accurate estimation of the data and regularization techniques are required to stabilize the
solution [4].

In this paper a novel approach to reconstruct PET images is presented. Our approach is based on a
regularized expectation maximization (EM) algorithm. Here, we propose to regularize teh problem by
using a cross-entropy fidelity term and field of experts (FoE) priors [5], which are capable of capturing
richer spatial statistics through patches extracted from a dictionary of images. Therefore, we expect that
the FoE prior helps to recover the anatomical structure and capture anatomical spatial dependencies of
the PET images during the reconstruction process.

The rest of the paper is organized as follows. In Section 2, the proposed algorithm is presented.
In Section 3, experiments and results are shown. Finally, conclusions are provided in Section 4.

2. Methodology

2.1. ML-EM Algorithm

The Maximum Likelihood Expectation Maximization (ML-EM) algorithm takes into account the
Poisson-based likelihood distribution of the data.

The PET scanner detectors count pairs of events in coincidence throughout the entire ring.
These counts are subsequently processed to form the final image. Here, we represent the counts
registered by the I detectors of the scanner by the vector y = [y1, y2, y3, ..., yI ]. Each element yi of y is
modeled as independent random variables and Poisson distributed with expectation ȳi given by

ȳi = E[yi] =
J

∑
j=1

xjai,j (1)

where xi represents the radionuclide activity within the scanned subject and a pixel in the reconstructed
image of size J pixels. Here, the image will be ordered as a vector x = [x1, x2, x3, ..., xJ ]. The ai,js are
elements of the system matrix A. The probability P(y|x) of observing yi is a likelihood of the unknown
emissions at pixel xj, thus

L(x) = p(y|x) =
I

∏
i=1

e−ȳi
ȳyi

i
yi!

(2)

The log-likelihood is obtained by combining Equations (1) and (2) as

ln(L(x)) = −
I

∑
i=1

[
J

∑
j=1

xjai,j + yiln(
J

∑
j=1

xjai,j) + ln(yi!)] (3)

The application of maximum-likelihood estimation techniques in Equation (3) leads the EM
iterative scheme for the update of the ith pixel at iteration (n + 1) as follows:

x(n+1)
j =

x(n)j

∑i ai,j
∑

i

ai,jyi

∑k ai,kx(n)k

(4)

This method has been widely used in PET reconstruction as it produces images with better quality
than other techniques. However, it is affected when data are acquired at low-count rates, producing
noisy images.

2.2. Cross-Entropy

One of the trade offs of the reconstruction algorithms is to minimize the difference between
the measured and reconstructed data, while at the same time maintaining the final result without
nuisances such as noise. The term that reflects the degree of similarity is often called fidelity term.
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In this paper, we adopt as fidelity term the cross entropy, which in information theory measures the
resemblance between two probability distributions. This approach is taken in [6], where the authors
reconstructed the measured data by minimizing a weighted sum of two cross-entropy terms.

The cross-entropy or Kullback–Leiber distance between Ax and y is defined as

J0(x) = D(y, Ax) = ∑
i
(yilnyi − yiln(Ax)i − yi + (Ax)i) (5)

It is known that D(y, Ax) is strictly convex and then a sufficient condition for a global minimum
is that ∂J0(x)

∂xj
= 0, due to

∂J0(x)
∂xj

=
∂D(y, Ax)

∂xj
= −

ai,jyi

q(n)i

+ ai,j, (6)

and then the sufficient condition is written as

−
ai,jyi

q(n)i

+ ai,j = 0. (7)

It is possible to develop an optimization method based on the EM scheme. In [6], it has been
shown that the minimization of Equation (5) with respect to x is equivalent to the maximization of the
log-likelihood function in the ML estimate of Equation (4). Thus, using the EM algorithm to minimize
Equation (5), and using q(n)i = ∑k ai,kx(n)k and Equation (6), we have

x(n+1)
j =

x(n)j

∑i ai,jyi
∑

i

ai,jyi

q(n)i

(8)

x(n+1)
j =

x(n)j

∑i ai,j
∑

i

ai,j(yi + q(n)i − q(n)i )

q(n)i

(9)

x(n+1)
j = x(n)j −

x(n)j

∑i ai,j
∑

i

(
−

ai,jyi

q(n)i

+ ai,j

)
(10)

Now, using Equation (6), we obtain

x(n+1)
j = x(n)j −

x(n)j

∑i ai,j

∂J0(x(n))
∂xj

(11)

This scheme is termed as MXE1 in [6] and has been used in several algorithms for reconstruct
PET images [7,8]. It worth to remarking that Equation (11) can be seem as a gradient descent step of

the cross-entropy function J0 with variable step-size
x(n)j

∑i ai,j
. Additionally, in this context, this idea can

accommodate more complex objective functions, as will be shown in Section 2.4.

2.3. Field of Experts Model

The Field-of-expert scheme [5,9] models high-dimensional probability distributions by taking the
product of several distributions (the experts). This provides a framework for learning image priors
from sets of experts. Each expert distribution takes into account certain image structure learned using
a database of images. In this manner, a prior captures richer spatial statistics present in the image.
The modeled priors represent clique potential functions on a Markov random field (MRF) [10], and the
experts are modeled as t-distributions, defined on each clique, with parameters learned by using the
contrastive divergence method of Carreira-Perpinan and Hinton [11]. Field of expert have been used
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in several image processing algorithms and applications, such as segmentation [12], painting [13],
and compressed sensing based restoration [14], among others.

In this paper, we propose to model the prior distribution for PET images by using a field of experts.
Each expert is represented as a distribution modeled by linear filters J. Thus, the prior function is
defined as

P(x, Θ) =
1

Z(Θ)

K

∏
k=1

N

∏
i=1

φ(JT
i x(k), αi) (12)

where Θ = θ1, ..., θN is a set of learned parameters θi = {αi, Ji}, αi is a parameter of expert i, Z(Θ) is
the normalizing function, and φ(·, ·) represents the experts, and are given by the student t-experts

φ(JT
i x, αi) = (1 +

1
2
(JT

i x)2)−αi ) (13)

Note that α is similar to the degrees of freedom [15].
Several techniques have been developed to take into account the similarity between the anatomical

and functional images to define priors to improve the reconstruction process [16,17].
In this work, to capture anatomical spatial dependencies of the PET images, we use the FoE

scheme. To this end, we trained 5× 5 filters to model priors that adapt to the images and underlaying
anatomy. The training data consisted of 1000 images of real and simulated PET images. We also
included a set of 50 images of studies of computer tomography and magnetic resonance without PET
to provide the filter with more detailed anatomical characteristics. The obtained filter are shown in
Figure 1.

Figure 1. The 5× 5 filters obtained by training the oroduct-of-experts model on positron emission
tomography (PET) images database. The colors in each frame are proportional to the magnitude of the
filter coefficient, using a gray scale.

In this way, we could incorporate into the reconstruction filters adapted to structure of the PET
images and anatomical information, in the form of organ and lesion boundaries, derived from CT
and MR.

2.4. Proposed Objective Function

In this section, we present our proposed function:

JFoE(x) = D(y, Ax) + βP(x, Θ) (14)
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where D is the cross entropy and P is a prior based in the FoE framework. To derive an optimization
method, we examine the derivative of Equation (14).

∂JFoE(x)
∂xj

= ∂D(y,Ax)
∂xj

+ β
∂P(x,Θ)

∂xj

= ∑i

[−yiai,j
(Ax)i

+ ai,j

]
+ β ∑N

k J(k)− ∗ φ′(J(k) ∗ x; αi),
(15)

where J(k) is the convolutional filter corresponding to Jk and J(k)− is obtained by mirroring J(k) around
the center (for more details, see [5]).

Then, we can generalize the idea of (MXE1 iterative scheme) to the proposed regularization of the
cross-entropy (Equation (14))

x(n+1)
j = x(n)j −

x(n)j

∑i ai,j

∂JFoE(x(n))
∂xj

(16)

This iterative scheme corresponds to a gradient descent step of the proposed functional JFoE with

variable step-size
x(n)j

∑i ai,j
, as mentioned in Section 2.2.

Unfortunately, MXE1 offer no guarantee that the algorithm will preserve non-negativity
constraints. This can be remedied by using the line search algorithm LINU described in [18] by
setting all negative elements in the new iteration to 0. For implementation of the algorithm, we used a
fixed iteration scheme, with 27 iterations, and a β = 0.5.

3. Results

In this section, we present acquired and simulated datasets of PET images to show how the
proposed algorithm deals with noise and structures and borders. We also offer comparisons with
the EM algorithm and the algorithm proposed in [19], which uses a concave prior penalizing relative
differences (CP) between neighbors. This algorithm was modified in [20] (GE healthcare white paper).
Here, we set the parameters of the CP algorithm as β = 0.01, γ = 0.1, and λ = 0.97. The EM was used
with 12 iterations.

The simulated images were generated using Simset (a Simulation System for Emission
Tomography) software (version 2.9.2, provided by the Division of Nuclear Medicine, University
of Washington, Seattle, WA, USA) [21]. We used a simulated 3D PET detector with two axial rings
consisting of an aluminum front cover followed by a single layer of 3.5 cm of BGO. From the generated
volumetric data, 2D sinograms were taken.

3.1. Simulated Data

In this experiment, the efficacy of the reconstruction under low count conditions was evaluated.
We used the reconstructed images from each method to generate selected surfaces to show graphically
how close the reconstructed image was to the ground truth.

To this end, we designed a cylindrical software phantom of polymethyl methacrylate with five
rows of holes (water-filled cylindrical inserts) of 2, 3, 4, and 5 mm in diameter. Each hole was filled
with activity of 1:8 with respect to background. Figure 2 shows the phantom, a simulation of 30 M
counts and its reconstruction using expectation maximization (EM).
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(a) (b) (c)

Figure 2. Cylindrical software phantom: (a) ground truth; (b) simulated sinogram data at 30 M counts;
and (c) reconstruction with expectation maximization (EM).

We were interested in low count reconstructions, since this means less radiation exposure for
the patient. Similar to higher counts data, all methods evaluated had practically equal quality in the
reconstruction. Thus, we ran a PET scan simulation at 5 M count using the Simset software. Figure 3a
shows the simulated sinogram data at lower count and Figure 3b–d shows the reconstruction using
EM, CP, and the proposed method, respectively. It can be seen that the image reconstructed with the
proposed method had better definition of the rods.

(a) (b)

(c) (d)

Figure 3. Cylindrical software phantom: (a) Input sinogram; (b) low count reconstruction with EM;
(c) low count reconstruction with CP; and (d) low count reconstruction with the proposed method.
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Figure 4 depicts the surfaces for each row of the holes. The proposed method had a smoother
surface than EM, without losing contrast. In addition, contrast for the larger cylinders was slightly
better at some points in the surface with CP, and achieved a maximum for the 5 mm surface.

In our next experiment, we used the Digimouse anatomical atlas dataset described in [22] to design
a software mouse phantom. The mouse phantom was used to have a more realistic assessment of the
structures found on practical data. The PET scans of the mouse were simulated using Simset software
(version, publisher, city, state abbreviation if USA or Canada, country).

We simulated two realizations with different number of counts: 30 M and 5 M counts. The 30 M
counts realization was taken as a ground truth. Figure 5 presents two different slices of the phantom,
the first column shows the 30 M realization reconstructed with EM, while the second, third, and fourth
columns show the 5 M realization reconstructed with EM, CP and the proposed method, respectively.
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Figure 4. Profiles of the different methods with the cylindrical software phantom. Each row shows the
same hole, and each column the same method. The maximum of each surface is indicated next to it.

To quantitatively evaluate image quality in the Digimouse, a channelized Hoteling
observer [23,24] was used in the context of lesion detectability. The area under the curve (AUC)
was used as a figure of merit. The task performed by the observer was the detection of a lesion with
known location. To this end, we used 25 simulations with lesion and 25 without lesion. The lesion has
an activity of 1:5 with respect to background, in 10 of the 25 phantoms with lesion, and 1:3 with respect
to background in the rest. The images were reconstructed with each method. These images were fed to
the observer to analyze its output. Figure 6 shows the AUC attained by each method. As can be seen,
our method obtained more AUC than EM and CP. Based on this result, the simulated observer was
able to better detect the lesion in the images reconstructed by the proposed method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Slices of the Digimouse software phantom: ground truth (a,e); low count reconstruction with
EM (b,f); low count reconstruction with CP (c,g); and (d,h) low count reconstruction with the proposed
method. In (a), the arrow indicates a lesion.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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CP  AUC=0.66
EM  AUC=0.68

False Positive

T
ru

e 
P

os
it

iv
e

Figure 6. ROC analysis evaluated on the Digimouse phantom.

In the next experiment, we evaluated the performance with measured data. We used data from
http:\\web.eecs.umich.edu\~fessler\, which is from a subject who was scanned on a CTI ECAT PET
scanner. The raw sinograms were acquired at 160 radial samples and 192 angular samples; data were
pre-corrected for delayed coincidences [25]. Figure 7a–c shows the reconstructions of the data using
EM, CP, and the proposed method, respectively.

(a) (b) (c)

Figure 7. Reconstruction of measured data with: (a) EM; (b) CP; and (c) the proposed method.

http: \ \ web.eecs.umich.edu\ ~fessler\
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Table 1 shows the results of applying the contrast resolution (CR) metric [18] between the two
rectangles depicted in Figure 7a. Our method has better CR than the other methods evaluated,
and lower noise.

Table 1. Contrast resolution measures.

Method CR

EM 0.577
CP 0.541

Proposed 0.695

4. Conclusions

In this paper, a novel reconstruction method for PET images is presented based on a cross-entropy
fidelity term. We propose to regularize the ill-posed problem by using field of experts priors. In this
way, we can incorporate into the reconstruction process prior distributions from adapted filters to
structure PET images and anatomical information.

The experimental results show that the proposed method led to a better reconstruction
performance than EM and CP. In an experiment with a phantom with rods of different sizes, we found
an improvement in the recovering of the pixels of the smallest rods, showing that the proposed method
could perform better in the reconstruction of small structures such as lesions. This was also observed
in a second experiment with a phantom with lesions, where a ROC analysis of a observer detecting
lesions was simulated and the proposed method outperformed EM and CP methods. In the experiment
with measured data, our method obtained more contrast resolution, and visually the image of the
proposed method had more defined edges than EM and CP. As future work, we plan to implement the
algorithm with listmode data and take into account the additional information of time of flight, as well
as construct a database of more images including PET/CT and PET/MRI.
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the final manuscript.
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