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Abstract: In this paper, a new three-dimensional fractional-order Hopfield-type neural network with
delay is proposed. The system has a unique equilibrium point at the origin, which is a saddle point
with index two, hence unstable. Intermittent chaos is found in this system. The complex dynamics
are analyzed both theoretically and numerically, including intermittent chaos, periodicity, and stability.
Those phenomena are confirmed by phase portraits, bifurcation diagrams, and the Largest Lyapunov
exponent. Furthermore, a synchronization method based on the state observer is proposed to synchronize
a class of time-delayed fractional-order Hopfield-type neural networks.

Keywords: dynamics analysis; fractional-order; Hopfield neural network; generalized projective
synchronization

1. Introduction

Fractional calculus has a history of 300 years. In the early days, because of its computational
complexity and lack of intuitive physical and geometric explanations, it did not attract the interest of
researchers [1–3]. Recently, people have discovered that using fractional calculus to describe many natural
phenomena will be more accurate, such as biomedical engineering [4], fractional control [5], and specific
physical problems [6]. The fractional calculus model is considered as an excellent tool to describe the
hereditary and memory characteristics of various processes due to a memory term in the model [1].

The Hopfield neural network (HNN), which can store memories like the human brain does,
is considered as one of the most influential neural networks [7]. It is natural to consider that incorporating
the two memory terms (fractional calculus and the Hopfield neural network) will potentially be a huge step
toward the enhancement of both memory characteristics and the efficiency of information processing [8].
Studies have shown that chaos, which appears in the human brain, plays a vital role in memory storage in a
biological neural network [9–11]. It is known to us that there exists a delay effect on information processing
in intra-neural communication. Therefore, studying the chaotic fractional-order Hopfield neural network
(FHNN) with time-delay is a very significant issue that can narrow the gap between biological neuronal
systems and artificial neural networks. Due to the complex dynamical behaviors of chaotic systems,
they have a wide range of applications such as secure communication [12]. Besides, compared with the
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integer-order chaotic system, the fractional-order chaotic system exhibits higher nonlinearity and larger
key space due to the existence of fractional-order derivatives [13].

Research on synchronization is still attractive due to its potential applications in control processing
and secure communication [14]. Various methods of chaotic synchronization have been proposed
recently, such as impulse control [15], linear matrix inequalities (LMI) [16], sliding mode control [17]
and many others based on observer theory to chaotic synchronization [18]. A well-known method is
based on the state observer where the response system is designed to behave as an observer of the
drive system [19]. Recently, many researchers have begun to pay attention to the synchronization
problem of fractional-order chaotic systems, such as phase synchronization, antiphase synchronization,
and generalized projective synchronization.

In the last few years, many papers on FHNN have been published [20–27]. Unfortunately, only a
few of them studied the chaotic characteristics and generalized projective synchronization (GPS) schemes
of time-delayed FHNN. Motivated by the discussions above, in this paper, we propose a new class of
time-delayed FHNN and analyze the rich dynamics, then design its GPS scheme.

The remainder of this paper is organized as follows. In Section 2, the basic definition of fractional
derivatives, the stability criterion of the fractional-order system, and the numerical algorithm of
time-delayed FHNN are presented. In Section 3, the new time-delayed FHNN with three neurons is
introduced. Its complex dynamics like chaos, periodicity, and stability are analyzed. Its chaotic nature is
confirmed by phase portraits, bifurcation diagrams, and the Largest Lyapunov exponent. In Section 4 a
GPS scheme between two identical time-delayed FHNN based on the state observer is introduced. Finally,
in Section 5, some conclusions are given.

2. Preliminaries and Numerical Algorithm

2.1. Preliminaries

There exist some definitions of fractional derivatives; in this article, we will use the Caputo derivative
due to its wider range of engineering applications. The Caputo derivation definition is as follows [1]:

Dqx(t) = D−(n−q) dn

dtn x(t) =
1

Γ(n− q)

∫ t

t0
(t− τ)n−q−1xn(τ)dτ (1)

where q(q > 0) is the fractional-order, n − 1 < q < n ∈ Z+, and Γ(·) is the gamma function
Γ(x) =

∫ ∞
0 tx−1e−tdt.

The stability theory of fractional derivative system is not the same as that of the integer system. For an
n-dimensional fractional-order system:

Dq(X) = g(X), (2)

where Dq(X) = (Dq1(x1), Dq2(x2), · · · , Dqn(xn))
T , X = (x1, x2, · · · , xn).

Like the integer case, the roots of the equation g(x) = 0 are the equilibrium points of this
fractional system.

Theorem 1. [28] For an n-dimensional fractional-order system, if all the eigenvalues (λ1, λ2, · · · , λn) of the
Jacobian matrix of some equilibrium points satisfy:

|arg(λi)| > aπ/2, a = max(q1, q2, · · · , qn) (i = 1, 2, · · · , n). (3)

then the system is asymptotically stable at one point.
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Lemma 1. If there exists one equilibrium point that is stable, then the fractional system will be stable; if and only if
all equilibrium points are unstable, then the fractional system will be unstable, maybe periodic or chaotic.

Lemma 2. For n = 3, the equilibrium point is called a saddle point with index two, if one of the eigenvalues
λ1 < 0 and the other two conjugate eigenvalues |arg(λ2)| = |arg(λ3)| < qπ/2; the equilibrium point is
called a saddle point with index one, if one of the eigenvalues λ1 > 0 and the other two conjugate eigenvalues
|arg(λ2)| = |arg(λ3)| > qπ/2. Both of these two types of saddle points are unstable.

2.2. Numerical Algorithm

Many numerical algorithms to solve the differential equations of fractional-order (FDE) have
been proposed [29–31]. We will use the widely-used method, which is modified based on the
Adams–Bashforth–Moulton predictor-corrector scheme, to solve time-delayed differential equations of
fractional-order (FDDE) [31]. The method is described below.

Consider the general FDDE:

Dq
t y(t) = f (t, y(t), y(t− τ)), t ∈ [0, T], q ∈ (0, 1]

y(t) = m(t), t ∈ [−τ, 0].
(4)

Consider a uniform grid {tn = nh : n = −l,−l + 1, · · · ,−1, 0, 1, · · · , N} , in which l ∈ Z, N ∈ Z and
l = τ/h, N = T/h. Let:

yh(tk) = m(tk), k = −l,−l + 1, · · · ,−1, 0. (5)

and denote:
yh(tk − τ) = yh(kh− lh) = yh(tk−l), k = 0, 1, · · · , N. (6)

Suppose that we have already obtained the approximations yh(tk)(k = 1, 2, · · · , n), then we will
calculate yh(tn+1) according to:

y(tn+1) = m(0) +
1

Γ(q)

tn−1∫
0

(tn+1 − ζ)q+1 f (ζ, y(ζ), y(ζ − τ))dζ. (7)

We obtain Equation (7) by applying fractional integration on both sides of (4). Then, we use
approximations yh(tn) for y(tn). Thus, the corrector formula is as follows:

yh(tn+1) = m(0) + hq

Γ(q+2) f (tn+1, yh(tn+1), yh(tn+1 − τ)) + hq

Γ(q+2)

n
∑

k=0
ak,n+1 f (tj, yh(tj), yh(tj − τ))

= m(0) + hq

Γ(q+2) f (tn+1, yh(tn+1), yh(tn+1−l)) +
hq

Γ(q+2)

n
∑

k=0
ak,n+1 f (tj, yh(tj), yh(tj−l)),

(8)

where:

ak,n+1 =


nq+1 − (n− q)(n + 1)q, k = 0

(n− k− 2)q+1 + (n− k)q+1

−2(n− k + 1)q+1, 1 < k < n
1, k = n + 1

(9)

Then, we use a “predictor” yP
h (tn+1) to replace the term yh(tn+1) on the right side of (8).
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where:
yP

h (tn+1) = m(0) + 1
Γ(q)

n
∑

k=0
bk,n+1 f (tk, yh(tj), yh(tk − τ))

= m(0) + 1
Γ(q)

n
∑

k=0
bk,n+1 f (tk, yh(tj), yh(tk−l)),

bk,n+1 = hq

q ((n + 1− k)q − (n− j)q).

(10)

In the remaining part of this paper, we use the algorithm above for numerical simulation and take the
step size h = 0.01.

3. Dynamic Analysis of This New Time-Delayed FHNN

3.1. System Description

The time-delayed FHNN model can be presented as the following fractional-order
differential equation:

Dq
t (xi(t)) = −cixi(t) +

n
∑

j=1
Wij f (xj(t)) +

n
∑

j=1
Tij f (xj(t− τij)) + Ii, i = 1, 2, · · · , n,

xi(t) = mi(t), t ∈ [−τ, 0], 0 < q < 1,
(11)

where q is the Caputo differential operator, n represents the number of units in a Hopfield neural network,
ci is a positive real number, ci represent the self-regulating coefficients of the neurons, Wij and Tij are real
constant numbers, Wij represents the synaptic connection coefficient of the neuron j on the neuron i at
time t, and Tij represents the synaptic connection coefficient of the neuron j on the neuron i at time t− τij.
f (x) represents the activation to its incoming potentials of the unit j at time t, also known as the activation
function, and τij is the delay, while Ii represent the external input.

In this article, we consider time-delayed FHNN with three neurons; then, System (11) can be rewritten
with the vector form as follows:

Dq
t (x(t)) = −Cx(t) + W f (x(t)) + T f (x(t− τ)) + I
x(t) = m(t), t ∈ [−τ, 0], 0 < q < 1,

(12)

where x(t) = (x1(t), x2(t), x3(t))
T , corresponds to the state vector at time t of three neurons, f (x(t)) =

tanh(x(t), f (x(t)), the activation function that we chose as the hyperbolic tangent, and f (x(t)) =

tanh(x(t),m(t) = (0, 0, 0)T , is the initial condition. I = (0, 0, 0)T is the external input vector. The weight
matrix largely determines the characteristics of the entire network, such as good memory characteristics,
classification characteristics, and chaos characteristics.

After the elaborate design, our connection weight matrix is defined as follows:

C =

1 0 0
0 1 0
0 0 1

W =

−1.5 −19.9 −3.2
20 −0.9 0.7
1.4 2.79 −2.3

 T =

0 19.9 0
0 0 0
0 0 0

 (13)

The topology connection of System (12) is the full connection as Figure 1 shows.



Entropy 2019, 21, 1 5 of 12

Figure 1. Connection topology of System (12).

3.2. Dynamic Analysis

Firstly, we consider the case in which the delay τ = 0; then, System (12) becomes an FHNN with
three neurons, and the system of equations becomes:

Dq(x1(t))

Dq(x2(t))

Dq(x3(t))

 =


− x1(t)

− x2(t)

− x3(t)

+

−1.5 0 −3.2
20 −0.9 0.7
1.4 2.79 −2.3

 ∗


tanh(x1(t))

tanh(x2(t))

tanh(x3(t))


=


− x1(t)

− x2(t)

− x3(t)

+ W∗ ∗


tanh(x1(t))

tanh(x2(t))

tanh(x3(t))


(14)

Then, the topology connection of System (14) is no longer the full connection, which is shown in
Figure 2.

Figure 2. Connection topology of System (14).

When we consider the equilibrium points of the fractional-order system, it is the same as the integer
case. Because all principal minors of−W∗ are nonnegative, System (14) has a unique equilibrium point [32].
Obviously, the equilibrium point is the origin. The eigenvalues of the corresponding Jacobian matrix are
λ1 = −8.047, λ2,3 = 0.174± 4.956i. According to Lemma 1, if Condition (3) is satisfied, the system will be
convergent. Otherwise, the system may be periodic or chaotic once Condition (3) is not satisfied. We can
obtain arg(λ1) = π, |arg(λ2)| = |arg(λ3)| = 1.536. If q > 2

π · |arg(λ2)| = 0.977 is satisfied, the origin will
be a saddle point with index two, the system may be periodic or chaotic. If q < 2

π · |arg(λ2)| = 0.977
is satisfied, the origin will be a stable point, and the system will be convergent. Figures 3 and 4 are
the simulation results of System (14) with order 0.9 and 0.99, respectively, consistent with the analysis
results above.

Time-delay can cause changes in system stability [19]. Here, we consider system changes at different
delays while fixing q = 0.9. When τ = 0.5, as shown in Figure 5, the system will be unstable, which is
periodic; the system trajectory is periodic and oscillates around the equilibrium point. Increasing the
delay to 1.8, we can learn from Figure 6 that the system becomes chaotic, one chaotic attractor exists in
the system trajectory. If we continue increasing the delay, we can see the intermittent chaos phenomenon.
When delay τ = 3.3, the system trajectory, as shown in Figure 7, becomes periodic again. When increasing
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the delay to four, the system becomes chaotic again, as shown in Figure 8; the chaotic attractor exists once
again. In order to see intermittent chaos intuitively, we draw the bifurcation diagrams of x(t) versus τ

shown in Figure 9. In order to further confirm the phenomenon above, we calculate the largest Lyapunov
exponents(LLE) of the above system by the TISEAN package [33], shown in Figure 10.
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Figure 3. When q = 0.9, System (14) converges to the origin.
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Figure 4. When q = 0.99; System (14)’s phase diagrams.
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Figure 6. When q = 0.9, τ = 1.8; System (13)’s phase diagrams.
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Figure 7. When q = 0.9, τ = 3.3; System (13)’s phase diagrams.
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Figure 9. Bifurcation diagrams of x(t) versus delay τ.
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Figure 10. LLEversus delay τ.

4. Generalized Projective Synchronization of Time-Delayed FHNN

In this section, we discuss the GPS of the system above. Synchronization of the fractional-order
system based on the state observer has been reported in many articles [34–37]. We will extend this method
to a class of time-delayed FHNN. A time-delayed FHNN system serves as the driving system, which can
be rewritten as follows:

Dq
t (x(t)) = −Cx(t) + W{ f (x(t)) + Z f (x(t− τ))},

x(t) = m(t), t ∈ [−τ, 0], 0 < q < 1,
u(t) = Kx(t) + { f (x(t)) + Z f (x(t− τ))}.

(15)

where x(t) = (x1(t), x2(t), · · · , xn(t))
T , f (x(t)) = tanh(x(t)), m(t) = (0, 0, · · · , 0)T , C, W and Z ∈ Rnxn

are constant matrices, u(t) is the synchronized vector signal, and K ∈ Rnxn will be determined later.
The response system can be designed as follows:

Dq
t (y(t)) = −Cy(t) + W{ f (y(t)) + Z f (y(t− τ))}+ W(u(t)− v(t)),

y(t) = m(t), t ∈ [−τ, 0], 0 < q < 1,
v(t) = Ky(t) + { f (y(t)) + Z f (y(t− τ))}.

(16)

where y(t) = (y1(t), y2(t), · · · , yn(t))
T , f (y(t)) = tanh(y(t)), m(t) = (0, 0, · · · , 0)T , C, W and Z ∈ Rnxn

are constant matrices, v(t) is the observer predictor of u(t), and K ∈ Rnxn will be determined later.
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The GPS error signal of System (15) and System (16) can be written as e(t) = y(t) − εx(t); ε is
the scaling factor, which is a non-zero real number. Obviously, if the scaling factor is selected as one,
the synchronization will become complete synchronization. The fractional-order error signal is determined
as follows:

Dq
t (e(t)) = Dq

t (y(t)− εx(t)),

according to the basic properties of fractional-order operations, the error signal can be expanded as:

Dq
t (e(t)) = Dq

t (y(t)− εx(t)) = Dq
t (y(t))− εDq

t (x(t)),

then we replace the term Dq
t (y(t)) and Dq

t (x(t)) with System (16) and System (15), respectively. The error
system becomes:

Dq
t (e(t)) =− Cy(t) + W{ f (y(t)) + Z f (y(t− τ))}+ W(εu(t)− v(t))

− ε{−Cx(t) + W{ f (x(t)) + Z f (x(t− τ))}},

now, we replace the term u(t) and v(t) with System (15) and System (16), respectively. The error system
can be simplified as:

Dq
t (e(t)) = −Cy(t) + W{ f (y(t)) + Z f (y(t− τ))}+ W{ε{Kx(t) + { f (x(t)) + Z f (x(t− τ))}}

−Ky(t)− { f (y(t)) + Z f (y(t− τ))}}+ εCx(t)− εW{ f (x(t)) + Z f (x(t− τ))}
= (−C−WK)(y(t)− εx(t))
= (−C−WK)e(t)

(17)

System (15) and System (16) will achieve GPS if the error signal eventually stabilizes at the origin.
We can easily get that the origin is one of the equilibrium points of System (17). According to Theorem 1
and Lemma 1, if all the eigenvalues (λ1, λ2, · · · , λn) of the Jacobian matrix of origin satisfy:

|arg(λi)| > qπ/2, i = 1, 2, · · · , n, (18)

then the error system will be asymptotically stable at one point. We can select some eigenvalues satisfying
Inequality (18), because C and W are known system parameters, and applying some knowledge of matrix
theory and with the aid of MATLAB, we can obtain the desired K.

For example, we use the system we proposed in Section 3.2 and set q = 0.9. Values for the connection
weight matrix C, W, and Z are as follow:

C =

1 0 0
0 1 0
0 0 1

W =

−1.5 −19.9 −3.2
20 −0.9 0.7
1.4 2.79 −2.3

 Z =

0 −0.0021 0
0 −0.8365 0
0 −1.0159 0

 .

For the simplicity of calculation, we can select eigenvalues as: λ1 = −1, λ2 = −2, λ3 = −3; at this
time, Inequality (18) is satisfied. We can get the desired K by solving the following matrix equation:

−

1 0 0
0 1 0
0 0 1

 −
−1.5 −19.9 −3.2

20 −0.9 0.7
1.4 2.79 −2.3

 ∗ K =

−1 0 0
0 −2 0
0 0 −3

 ,
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after some simple calculations, we obtain:

K =

0 0.0489 0.0301
0 −0.0071 0.1126
0 0.0212 −0.7146

 . (19)

Substituting Equation (19) into Equation (17), the error system becomes:
D0.9

t (e1(t))

D0.9
t (e2(t))

D0.9
t (e3(t))

 =

−1 0 0
0 −2 0
0 0 −3




e1(t)

e2(t)

e3(t)

 . (20)

Obviously, System (20) will stabilize at the origin. Figure 11 is the time evolution of the error signal,
which shows that System (20) will converge to the origin. That is to say, System (15) and System (16)
achieve GPS.
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Figure 11. The time evolution of the error signal.

5. Conclusions

In this paper, a novel time-delayed FHNN with three neurons is proposed. The rich dynamical
behaviors of this new system are analyzed theoretically and verified by numerical simulations.
Without delay, this new system presents stability or periodicity with different fractional-orders. Along with
the increase of delay, the system presents an intermittent chaos phenomenon when the fractional-order is
fixed. The GPS of two time-delayed FHNN with the same structure are achieved by using a synchronization
method based on the state observer. The novel time-delayed FHNN can be used as a new chaos
generator, which can be applied in many engineering applications such as secure communication. How to
implement this system and synchronization method with actual circuits and how to apply them in secure
communication will be discussed in the future.
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