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Abstract: From basic principles, we review some fundamentals of entropy calculations, some of
which are implicit in the literature. We mainly deal with microcanonical ensembles to effectively
compare the counting of states in continuous and discrete settings. When dealing with non-interacting
elements, this effectively reduces the calculation of the microcanonical entropy to counting the number
of certain partitions, or compositions of a number. This is true in the literal sense, when quantization is
assumed, even in the classical limit. Thus, we build on a moderately dated, ingenuous mathematical
work of Haselgrove and Temperley on counting the partitions of an arbitrarily large positive integer
into a fixed (but still large) number of summands, and show that it allows us to exactly calculate
the low energy/temperature entropy of a one-dimensional Bose–Einstein gas in a box. Next, aided
by the asymptotic analysis of the number of compositions of an integer as the sum of three squares,
we estimate the entropy of the three-dimensional problem. For each selection of the total energy,
there is a very sharp optimal number of particles to realize that energy. Therefore, the entropy is
‘large’ and almost independent of the particles, when the particles exceed that number. This number
scales as the energy to the power of (2/3)-rds in one dimension, and (3/5)-ths in three dimensions.
In the one-dimensional case, the threshold approaches zero temperature in the thermodynamic limit,
but it is finite for mesoscopic systems. Below that value, we studied the intermediate stage, before the
number of particles becomes a strong limiting factor for entropy optimization. We apply the results of
moments of partitions of Coons and Kirsten to calculate the relative fluctuations of the ground state
and excited states occupation numbers. At much lower temperatures than threshold, they vanish in
all dimensions. We briefly review some of the same results in the grand canonical ensemble to show
to what extents they differ.

Keywords: time correlation functions; time reversal; parity; quantum symmetry transformations

1. Introduction

One tenet of equilibrium statistical mechanics is that one can derive physical predictions from
calculating the number of microstates of a system compatible with some macroscipic measurements
that can be performed on it [1–3]. This implies the reduction of the number of independent variables
from the order of Avogadro’s number to a very few, even just three. For microcanonic ensembles,
this improvement in the economy of computation follows from the conjecture that all the said
compatible microstates, not otherwise distinguishable, are equally likely to be visited. This conjecture
forms the basis of all other statistical mechanics approaches, for example, the ones employing other
ensembles. However, calculations in the microcanonical ensemble are sometimes more convoluted
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than in other ensembles. In the so-called thermodynamic limit, i.e., one in which all the extensive
variables approach infinity with equal rates, the ensembles are equivalent, the relative fluctuations of
many observables approach zero and there is every reason to choose the ensemble that is more practical
for computation. As it has been pointed out [4–8], for mesoscopic quantum systems, the situation
is more articulated. Experiments of Bose–Einstein condensates employ relatively few atoms [9–11],
yet their number is sufficiently large to allow asymptotic expansion of the relevant mathematical
functions. With those numbers, the fluctuations of the calculated thermodynamic variables change
among different ensembles [12,13].

The grand canonical ensemble is most commonly used to treat Bose–Einstein condensates of
non-interacting particles because it greatly simplifies the mathematical burden of the calculations.
However, the thermodynamic (or ‘bulk’) limit is assumed beforehand [14]. This is a drawback for
mesoscopic systems and the choice of which ensemble is best to use is a problematic one. Temperley
[15] was among the firsts to recognize that the equivalence of ensembles in dealing with quantum
systems is not always obvious. In his analysis, he contrasted the microcanonical and grand canonical
ensemble approach and he pointed out that some of the implicit mathematical assumptions in the
grand canonical ensemble are better suited in the low and high energy/temperature regimes, but not
necessarily in the intermediate regions. However, one should bear in mind a discussion over the
orthodicity of the microcanonical ensemble [1], which emerges when a continuous phase space is
additionally assumed. In this respect, treating mesoscopic systems via the microcanonical ensemble
implicates additional assumptions when the thermodynamic relations are obtained through derivation.

To put things into context, let us define the entropy:

S = kB log Ω(x|X), (1)

where log stands for the natural logarithm, the vector x is the set of independent microscopic variables,
the vector X the set of macroscopic independent variables (for example X = (V, N, E)). Ω(x|X) is the
number of all states x conditional to an assignment of X, and kB is Boltzmann’s constant. Here, we are
not interested in the statistics and entropy of the interacting systems where the advanced methods of
quantum-field theory, Green’s functions and Dyson’s equation (and so on) should be employed.

Clearly, Ω(x|X) must be a positive integer, which implies a cancellation of all the dimensional
quantities. This in turn implies that Ω(x|X) is a sum of certain integers, but that sum might not be
mathematically substituted by an integral always for free [15]. One (historically older) approach has its
roots in classical mechanics and it prescribes that one must divide the total phase space hypervolume
into small elementary hypervolumes. They become the units to be counted, conditioned to the X values.
It must be noted that, when X = (E, V, N), i.e., energy, volume and particles’ number, there is still an
ongoing debate concerning whether the microstates to be counted should be those compatible with
the total energy E falling between a vanishingly thin hypershell around the spherical E-equisurface,
or those of any energy up to E [16–21]. In this work, we shall not assess this issue; however, we have
chosen to use the surface approach.

The quantum analogues of the classical calculations employ well-structured counting principles,
which in the case of non-interacting particles involve the single particles’ energy spectra, later on
identified by us by the symbols Λ and Λ+. As in this work we shall recall, they are perfectly suited to
account for the classical (ideal gas) results. The energy is given in integer units of some prescribed ε0.
Each disposition is counted once, per the equal priors assumption. For example, all integers can be
allotted for photons or phonons, but only squares of integers can be allotted for particles. Call nk such
allowed integers. Then, a constraint on their sum ∑k nk = m must be satisfied, with the total energy
given by E = mε0.

In the present work, we try to broaden the impact of the works [4–8], who considered microcanonic
entropy calculations of ideal Bose gases in harmonic traps, by considering the complementary problem
of ideal gases of free particles caged in d-dimensional regions of space (with some more details given
in one dimension, however, we shall exclude two dimensions because of the many similarities with
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the one-dimensional harmonic traps). Furthermore, building on previous work [22], we investigate the
relative fluctuations of the ground state and excited states occupancy numbers, in the microcanonical
ensemble Bose–Einstein condensation theory, both in one and three dimensions. Given the rarity of
results in this area which are uniform both in the energy and in the particles’ number, our aim is also
to point to interesting open mathematical problems, with potential physical impact. Some of these
problems are tremendously complex from the mathematical point of view. To guide the reader in this
articulated scenario, we also show a few examples in which the mathematical results are satisfactorily
rich, so that some known traditional physical results are easily recovered, albeit in a scholarly less
expendable fashion.

To start with a more edible problem, consider a physical model in which the N elements are
treated as distinguishable. Each of them can take up from 0 to m integer units of energy ε0, but the
sum over the N elements’ ‘occupation numbers’ must equal m. Ωε0(n|N, m) is therefore given by the
number of ways that m items can be allotted into N distinct urns. This is one of the few cases in which
an explicit and compact formula is available for any N and m, namely

Ωε0(n|N, m) =

(
N + m− 1

m

)
. (2)

Of course, E = mε0 holds. One, however, has to be careful as to what the zero-reference value for the
energy is. Sometimes, we shall refer to E∗ when solely the system’s excitation energy is considered.

Other physical situations involve more elaborate partition sums, even for non-integracting
elements. At least two key modifications can be considered. One involves the case of indistinguishable
elements. As an illustrative example, set m = 9 and N = 3. Then,

1 + 2 + 6 = 9, 2 + 6 + 1 = 9 and 6 + 1 + 2 = 9 (3)

all contribute to determining Equation (2), while they contribute only one configuration when the
elements are indistinguishable. Concurrently, the sum 3 + 3 + 3 = 9 contributes only once both
in Equation (2) and in the case of indistinguishable elements. This is essentially the problem first
posed by Bose in physical terms [23], and the problem of partitions vs. compositions in mathematical
terms. It is also the partition problem considered in the works dealing with one-dimensional harmonic
traps [4–6,24].

The other modification concerns the set of allowed integers in each sum. Equation (2) is
a consequence of having chosen non-negative integers as summands. When the elements are
independent particles, each with given momenta, then the only allowed values are squares of
non-negative integers. For example, 1 + 1 + 4 = 12 + 12 + 22 = 6 becomes the only allowed partition
into squares of m = 6 with N = 3, for indistinguishable particles, while in turn it counts the only
three allowed compositions for distinguishable particles (by permuting the order).

Despite the simplicity of the formulations of the problems of such kind, not all of them have been
completely solved. We shall try to spell out some of their hidden subtleties. In some cases, we shall
consider the effect of substituting the partition sums by integrals, which at some stage is the most
common simplification adopted in calculations in the Physics community. This is already widely
covered even in textbooks on the subject, thus we only touch upon it. There are, however, plenty
of results in the mathematical community and in number theory dealing with asymptotic (mainly
large m) estimations of the number of partitions or compositions of an integer into a sequence of other
assigned integers [25–33], many of which have direct physical applications [4–8,34–36]. In the case of
partitions of m into integers, it was only in relatively recent times that decades-old mathematical result
have been exploited to calculate thermodynamic relations, namely for Bose–Einstein particles trapped
in a one-dimensional harmonic potential [4,5,24].

We have discovered an interesting result in number theory, dating back to more than 60 years
ago [37], which to our knowledge has not been discussed in the Physics community. It deals with
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the number of partitions of m into the sum of N squares of positive integers, when m is arbitrarily
large and N grows with m in some ways. We argue that it can be used to derive the entropy of a
Bose–Einstein gas of independent particles, caged in a one-dimensional line with hard walls. Therefore,
to derive the relation between energy and temperature, far deep into the quantum regime and, to some
extent, around the critical region. We use results in [37] also to find the entropy of a Bose–Einstein
gas contained in a three-dimensional box, confirming the correct asymptotic result. We then apply
the results in [22] to characterize the fluctuations of the excited states in all dimensions, finding how
they depend on the dimensionality. We stress that other interesting physical predictions might be
deduced using variations of the set of allowed integers in the partition sums. We do not suggest
that the physical regimes that would discriminate between our approach and others are comfortably
attainable experimentally. Nevertheless, some other, more foundational theoretical questions may be
attacked, exploiting some of our observations. We also suggest that there is a unique formal expression
for the entropy of a non-interacting gas, as derived from the microcanonical ensemble, which spans
the entire range of temperatures, from close to the ground state to the ideal classical gas. The result
depends on a intuitive mathematical conjecture that we propose.

In this article, we shall refer to O(x) for any quantity such that lim
x→∞

O(x)
x

= const 6= 0. We shall

refer to o(x) for any quantity such that lim
x→∞

o(x)
x

= 0. The symbol ∼ will stand for equalities which

are true at least to o-order of the quantity on the right-hand side, in the declared reference (asymptotic)
variable. The symbol ∝ will stand for ‘proportional to’.

2. Partitions and Compositions: The Case of Integers

We first need to formalize mathematically the (non-interacting) single-particle energy spectra.
Therefore, we denote with Λ+ any sequence of positive integers, 1 ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . ., and with
Λ the associated sequence of non-negative integers, 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . .. We call unrestricted
partition of m on Λ (or on Λ+) any sum such that

λk1 + λk2 + λk3 + · · ·+ λkr = m, with λk1 ≤ λk2 ≤ λk3 ≤ · · · ≤ λkr ∈ Λ (or ∈ Λ+). (4)

Given m, the total number of its unrestricted partitions is denoted by pΛ(m) (correspondingly pΛ+(m)).
Since unrestricted partitions can be viewed to contain an arbitrary number of zeros, it follows that

pΛ(m) = pΛ+(m). If additionally λk = k, the index is usually dropped and pΛ(m) = p(m) denotes
the number of partition of m into positive integers. Hardy and Ramanujan were the first to attack this
problem thoroughly [38]. Here, we report their well known asymptotic result:

p(m) ∼ e C
√

m

4m
√

3
, C = π

√
2
3

. (5)

This quantity was considered by various authors [4–6,15] as a starting point to deal with bosonic
quantum systems, specifically it is relevant for bosons in one-dimensional harmonic traps.

We mention that the expected number of summands in p(m) is asymptotically given by [22]

r(m) = C−1√m log m + 2C−1
(

γ + log (2C−1)
)√

m +O(log m) . (6)

We define restricted partition of m a partition like the one in Equation (4), in which r (the number
of summands) is assigned. We denote it as pΛ(r, m) or pΛ+(r, m), depending on the assigned sequence.
Now pΛ(r, m) and pΛ+(r, m) differ, but pΛ(r, m) has the alternative interpretation of denoting the
number of partitions of m with up to r strictly positive summands. Additionally, when λk = k,
then pΛ(r, m) = pΛ+(r, m + r) := p∗(r, m), which denotes the number of partitions of m with up
to r positive integers as summands. The stated equality can be understood with some elementary
reasoning. Still, when λk = k, we further denote p(r, m) := pΛ+(r, m) = pΛ(r, m− r), the number of
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partitions of m with exactly r positive integers as summands. We present some asymptotic known
results, the first of which is due separately to Erdös and Lehner [39] and to Auluck, Chowla and
Gupta [40], albeit in slightly different forms, which we present here as

p∗(r, m) ∼ p(m), if r = C−1√m log m + x
√

m , (7)

p∗(r, m)

p(m)
∼ 0, if r = C−1√m log m− x

√
m , (8)

where x ∈ R+, x � 1 and ∼ refers to asymptotically in m. When x is any positive real, not necessarily
large m-independent number, Erdös and Lehner [39] report a more precise result as a function of every
x, which has been exploited by others [4–6,15,24] to predict the behavior of some Bosonic systems
at low temperature. The above result (7) and (8) predates that, in Equation (6); however, it can be
interpreted by comparison with Equation (6), if we suppose that, asymptotically in m, the distribution
of r values in the partitions counted by p(m) is sharply peaked around its maximum. Therefore,
r(m) defined in Equation (6) is proximate to the optimal number of summands. Thus, p(r, m) is
much smaller than p(m) if r is much less than optimal, while it is almost equal to p(m) if r is much
larger than optimal. The latter case may be realized, for example, when r = O(m). Finally, since
p(r, m) = p∗(r, m− r), then when r = O(m 1

2+ε), ε > 0,

p(r, m) ∼ p(m− r) ∼ e C
√

m−r

4(m− r)
√

3
, (9)

which, if r is not of order m, implies the leading correction in r to p(m) to be ∼ exp (− Cr
2m ). As we shall

see, the existence of a region in which the number of summands is optimal, for the partition of m of
physical interest, is what characterizes the critical region of many Bose–Einstein systems, whether or
not a genuine phase transition exists. It is the threshold for the energy below which a macroscopic
number of particles occupies the ground state. Essentially, the first moments calculated in [22] for
several partitions problems offer a straightforward recipe to identify those thresholds. In the case of
p(r, m), from [22], one can derive that the second central moment of r increases logarithmically with m,
a measure of the dispersion of r around the value r(m) in Equation (6) for the unrestricted partitions.

Not much is known beyond Equation (8) about p(r, m) and p∗(r, m), when r lies in the range
between being O(m 1

3 ) and O(m 1
2 ). However, the following holds when r = o(m

1
3 ) [40]:

p(r, m) ∼ 1
r!

(
m− 1
r− 1

)
. (10)

Below, we shall see that it is easy to convince oneself that the right-hand side of Equation (10) is a
lower bound for the left-hand side, for any r. The nontrivial result lies in the associated asymptotics.
Furthermore, to the leading order, the same expression was proved to hold with p(r, m) replaced by
p∗(r, m), i.e., [39]

p∗(r, m) ∼ 1
r!

(
m− 1
r− 1

)
. (11)

In fact, by using the dominant term in Stirling’s approximation, i.e., log k! ∼ k log k, and noticing that
Equation (10) also implies

p∗(r, m) ∼ 1
r!

(
m + r− 1

r− 1

)
, (12)

then Equations (10) and (11) are both consistent with

log p(r, m) ∼ log p∗(r, m) ∼ r log
m
r2 , (13)
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which we can also interpret to imply that, if r = o(m
1
3 ), then p∗(r, m) is dominated (asymptotically in

m) by the contribution of the partitions with exactly r summands, while partitions with less summands
can be neglected.

We conclude this first part by noticing that pΛ+(r, m) also represents the number of solutions of
the following Diophantine equation:{

x1 + x2 + . . . = r,

x1λ1 + x2λ2 + . . . = m ,
(14)

where xi’s are all non-negative integers. The sums have nominally infinite terms, but only finite and
upper-bounded positive terms.

When the order of summands is relevant, we define the homologous counting functions for
compositions, namely ρΛ(m), ρΛ+(m), ρΛ(r, m) and ρΛ+(r, m). In this work, we only consider the case
of restricted compositions. For λk = k, we naturally define the number of compositions of m into,
respectively, exactly r or at most r summands, by ρ(r, m) and ρ∗(r, m). Thus,

ρ(r, m) =

(
m− 1
r− 1

)
. (15)

Concurrently,

ρ∗(r, m) =

(
m + r− 1

m

)
=

(
m + r− 1

r− 1

)
, (16)

which is now an interpretation of Equation (2), with r = N.
To see that r!p(r, m) ≥ ρ(r, m), which we anticipated after stating Equation (10), simply consider

the best case scenario of a partition whose summands are all different. For that occurrence, the same
partition originates r! distinct compositions, so the equality stands. In all other partitions, r!p(r, m) is
an overestimation of the compositions adding up to m. The inequality tends to be strong when r is
very large, while it tends to be weak when r is suitably smaller than m. Similar considerations apply to
Equations (15) and (16), in the sense that they lead to essentially coincident asymptotic descriptions
only for moderately large values of r; otherwise, they differ considerably.

3. Partitions and Compositions with Integers: The Physics and a Comparison with Integrals

Arguably, the first physicist to conceive of the use of the Formulas (2)–(16) was Max Planck, in his
very first modern derivation of the emission spectrum of a black body [41], and it is still used today
to derive physical laws [42]. Incidentally, it did not involve a microcanonical ensemble, since Planck
was dealing with classical radiation of light. Rather, he considered the number of ways a collection
of emitters could radiate at a given frequency, to which he then assigned a Boltzmann distribution.
More generally, photons are not suitable for treatments in which the number of elements is fixed,
since their number fluctuates in a real context, even for closed systems. Nevertheless, as Planck
demonstrated, counting the number of realizations with both N and energy fixed can be incorporated
into the calculation at some stage. Phonons in one dimension can be treated in an equal manner.
However, the utility of the present analysis lies more in the simplicity of the calculations involved,
which help clarify some basic issues associated with the use of either discrete or continuous analysis.
It is in fact for this very reason that quantum mechanics entered into the scientific scene for the
first time.

We shall consider a closed system with N elements. Each element can have any number of energy
units ε0, from 0 to m, and the only restriction is that the sum of energy units over all the elements must

be equal to m. Then, Equation (2) can be used, which is also Equation (16) with r = N. m =
E
ε0

, where

E can be taken as the excitation energy, by simply defining its zero reference value to be in a one-to-one
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correspondence with that in which all the N particles have zero units of ε0. Both N and m are very
large, therefore Stirling’s approximation can be used and the entropy S/kB = log ρ∗(N, m) is

S/kB = (m + N) log (m + N)−m log m− N log N . (17)

Defining m = yN and S = Ns,

s/kB = (1 + y) log (1 + y)− y log y , y =
E

Nε0
. (18)

This is a well defined entropy, which can be approximated by

s/kB = 1 + log y if y� 1 (19)

and by
s/kB = y− y log y if 1� y . (20)

Calculating the entropy from an integral is permitted only via the definition of some dimensional
energy scale ε′0. First, one has to calculate the normalized hypervolume V comprising all states with
energy less than E, i.e.,

V =

∫ E

0
dε1

∫ E−ε1

0
dε2 · · ·

∫ E−ε1−...−εN−1

0
dεN

ε′ N
0

=
1

N!

( E
ε′0

)N
. (21)

Then, Ω is defined as the hypeshell of small thickness δε by first derivation of V :

Ω =
∂V
∂E

δε =
1

(N − 1)!

( E
ε′0

)N−1 δε

ε′0
. (22)

At this point, assumptions must be made. If the dimensional scale ε′0 and the infinitesimal
thickness δε should depend on N in some unknown manner, then the calculation is a futile exercise.
It is intuitive that E � ε′0 must hold. If ε′0 is also independent of N, then δε = ε′0 can be assumed
without too much loss of generality. By dropping the subtraction of 1, we can write

Ω ' 1
N!

( E
ε′0

)N
= V . (23)

If N! ε′ N
0 > EN , we arrive at the unphysical conclusion that there is less than one state available.

From Stirling’s approximation, this is equivalent to Nε′0 > E. For the method to hold in general,
the quantity ε′0 should be assumed ever so small that E� Nε′0 always holds, whatever the number N.
We arrive at

s/kB = log y′ = log y + log
ε′0
ε0

, y′ =
E

Nε′0
(y′ � 1) , (24)

which is consistent with the approximation (19). The limitation of the continuous approach is obvious,
since the trend represented in Equation (20) is inaccessible by this method of calculation. If the elements
are harmonic oscillators, ε0 = h̄ω sets a lower bound for ε′0.

So far, we have treated the N elements as distinguishable. If they are not, we shall assume a
boson-like behavior. Then, N = r and we can take advantage of either Equation (7) or Equation (11),
as appropriate according to the context. m designates the units of excitation energy, E∗ = mε0 and
S/kB = log p∗(N, m). By virtue of the asymptotic equation (7), N �

√
m implies

S/kB = C
(

E∗

ε0

) 1
2

− log
E∗

ε0
, (25)
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which is independent of N. By adding the estimated (weak) dependence on N, this approach can be
improved to calculate the entropy of a closed system of exactly N bosons trapped in a one-dimensional
harmonic potential, with ε0 = h̄ω [4]. The critical interest in this approach stemmed from the study
of mesoscopic systems, since the often used alternative approach of employing the grand canonical
ensemble suffers from the standard underlying assumption that the energy, the size and the number
of particles approach infinity, with equal rates [14]. In fact, the finite-size effects can be thoroughly
investigated in the grand canonical ensemble [7,8]. In the microcanonical ensemble, the number of
particles is the independent variable and through number theory it is possible to compute the finite
size (or finite-N) effects and to compare them with other ensembles [6].

We mention that, from Equation (6), with r(m) reinterpreted as Nc(E) (the critical number of
particles which dominates the partition measure), together with Equations (7) and (8) and the physical
entropic interpretation (25), it is possible to define a critical threshold temperature, Tc, below which a
macroscopic number of particles is expected to occupy the ground state. We mention this here because
we shall often recur to such arguments in the next sections. To simplify things, we shall adopt standard
first derivations rather than finite-difference equations.

We shall momentarily drop the dimensional constants. From Nc ∝ E
1
2 log E, and since

T−1 = kB
dS
dE

= kB
dS

dE∗
, then when N � Nc Equation (25) informs us that E∗ ∝ T2. It is straightforward

to obtain Nc ∝ T log T. The leading factor for the critical (crossover) temperature is therefore

Tc ∝
N

log N
.

The next computable region with exact results available is when m � N3, in which case the
asymptotic identity (11) holds. Use of the approximation (13) is legitimate here and, with y defined in
alongside Equation (18), it implies:

s/kB = log y− log N . (26)

Clearly, we are dealing with systems not restrained by the requirement of the entropy being

extensive. Nevertheless, since y =
m
N
� N2, the − log N term might be unimportant. We also have to

be reminded that m� N3 is a condition between integer numbers, and one is not forced to rule out
that as long as it is satisfied, the entropy as a function of y is a legitimate quantity.

As for the case of distinguishable elements, in this ‘high energy’ region, we arrive at the same
conclusions via simple integration. We substitute the integral (21) with one that has the additional
constraint that the energies are ordered in an increasing fashion. To do so, first we define

H(x1, x2, . . . , xN) =

1, if x1 ≤ x2 ≤ . . . ≤ xN ,

0, otherwise,
(27)

and then

V =

∫ E

0
dε1

∫ E−ε1

0
dε2 · · ·

∫ E−ε1−...−εN−1

0
dεN H(ε1, ε2, . . . , εN)

ε′ N
0

=
1

(N!)2

( E
ε′0

)N
. (28)

From here, one can easily verify that ε′o = ε0 implies Equation (26). We see the emergence of an
additional Gibbs-like N! in the denominator. Contrary to conventional situations, this factor does not
‘fix’ the extensivity of entropy, rather it impedes it in the ‘classical’ regime. One may argue that, since
the energy is very large, then at least the length-scale of the container must be considered at some
point, and the classical limit remains abstract. We shall see that this situation is different when massive
non-interacting particles or bosons are considered, leaving some room open to the prospect of having
a unique entropy expression, spanning the whole range of energy, and consistent with both classical
and quantum physics.
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4. Partitions and Compositions: The Case of Squares of Integers

More than 60 years ago, Haselgorve and Temperley studied [37], among others, the problem of
calculating the number of partitions of an integer m into the sum of r positive squares, solving the
problem asymptotic in m (with r growing in some way with m). This is equivalent to solving the
system (14), with λk = k2. We shall use the subscript s, to symbolize ‘squares’, to indicate the partitions
and compositions of interest. Thus, ps(r, m) is the number of restricted partitions of m with exactly r
positive integer squares as summands, ps(m) the number of unrestricted partitions of m into squares,
p∗s (r, m) the number of partitions with up to r positive integer squares as summands (or equivalently,
with exactly r non-negative integer squares). The solution of the corresponding unrestricted problem
was also proposed by Hardy and Ramanujan [38], taken up by Wright [43] and thoroughly investigated
by Vaughan [32]. Haselgrove and Temperley [37] considered sets Λ+ that satisfied specific conditions,
among which that the sum ∑k λ−2

k be convergent. They used the generating function

g(x, z) =
∞

∏
k=1

(1− xzλk )−1 =
∞

∑
r=0

∞

∑
m=0

pΛ+(r, m)xrzm , (29)

and for λk = k2 obtained:
log ps(m) ∼ 3Am

1
3 , (30)

ps(r, m) ∼ Am−
2
3 f
(
r Am−

2
3
)

ps(m), (31)

f (x) =


2

∞
∑

k=1
(−1)k+1 k2 e−x k2

, if x > 0 ,

0, if x ≤ 0 ,

(32)

A =

[
1
2

Γ
(3

2

)
ζ
(3

2

)] 2
3

= 1.102 . . . . (33)

Γ is Euler’s gamma and ζ in Riemann zeta. The function f (x), seen as a distribution, has a maximum
smaller than its mean. When r is of the order of m

2
3 , the quantity m

2
3 ps(r, m) is of the order of ps(m).

When f ’s argument x is moderately larger than 1, ps(r, m) becomes (in r) exponentially smaller than

ps(m). If x � 1, we can approximate f
(
r Am−

2
3
)

with 2 e−r Am−
2
3 , and we obtain:

log ps(r, m) ∼ 3Am
1
3 − r Am−

2
3 + log m−

2
3 + log (2A) . (34)

We must caution the reader that this result is not consistent with the requirement that ps(m, m) = 1.
It suffices to substitute r = m in Equation (34) to verify it. In fact, the calculation leading to Equation (31)
is asymptotic in m, namely it neglects contributions of the type o

(
m−

2
3 ps(m)

)
, which may become

important when r approaches values comparable with m. Equation (31) can be matched with iterated
difference equations in r and m. It will be useful for our purposes to recall the following ones:

ps(r, m)− ps(r, m− 1) ∼ A2m−
4
3 f
(
r Am−

2
3
)

ps(m) , (35)

ps(r, m)− ps(r− 1, m) ∼ A2m−
4
3 f ′
(
r Am−

2
3
)

ps(m) , (36)

which are again valid provided, respectively, that f and f ′ are not o(1) in m, where f ′ is the first
derivative of f with respect to its argument.
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Another striking result of Haselgorve and Temperlay [37] is that they derived partial results in
more generality, for any sequence of the type λk = k δ, δ > 1, then, if q = δ + 1,

pΛ+(m) ∼ q Aδ m
1
q , Aδ =

[
1
δ

Γ
( q

δ

)
ζ
( q

δ

)] δ
q

, (37)

which is thoroughly examined also in [33]. Haselgrove and Temperley also offer hints on how to
estimate pΛ+(r, m) for such sequences. Their analysis is less articulated than for the case δ = 2 just
presented above. Conversely, it is slightly more general because, in fact, they considered sequences such
that N ∼ λ

1
δ , where N (λ) is the number of terms in the succession Λ+ that are ≤ λ. The distribution

f in the asymptotic identity (31) is substituted by a function with similar properties, which has a

maximum around r = O(m
δ
q ).

For reasons that will be clear in the next section, here we are interested in considering the
following sequence:

λk = k2 + 2k, i.e., Λ+ = {3, 8, 15, 24, . . .} (38)

for which we shall use the conventions that pσ(·) = pΛ+(·) and p∗σ(·) = p∗Λ+(·). Notice that the
sequence in Definition (38) can be obtained from the usual sequence of squares of positive integers,
by simply shifting its elements one place to the left, and then subtracting 1 from each element.
This leads to

ps(r, m) = p∗σ(r, m− r) . (39)

Since asymptotically the sequence (38) satisfies N (λ) ∼ λ
1
2 , following [37], we conjecture that,

similarly to Equation (31), and with ps(m) given in Equation (30),

pσ(r, m) ∼ Am−
2
3 g
(
r Am−

2
3
)

ps(m), (40)

where the function g(x) is a distribution which differs from f (x), but shares its main properties, i.e.,
it has a maximum different from its average, both of which are in the vicinity of unity. Now, suppose
that r � m

2
3+ε for positive ε, then by integrating the function g(x) in its range, we coherently

conjecture that
p∗σ(r, m) ∼ ps(m). (41)

Thus, while, for integers, p(r, m) = p∗(r, m − r) holds for any r and m, here, in view of
Equation (39) and the conjecture (41), we are positing that asymptotically in m (and r appropriately
large),

ps(r, m) ∼ ps(m− r) . (42)

As we shall mention in the next section, the above result is closely related to the physical
assumption that the result of counting the microstates of a system of independent particles caged in a
line of length L does not change if different energy eigenfunctions are chosen. More specifically, it is
independent on whether Dirichlet or Neumann boundary conditions are satisfied.

Another natural conjecture concerns the question: does a rational h < 2
3 exist such that,

for r = o(mh), then

ps(r, m) ∼ ρs(r, m)

r!
? (43)

Here, we have used the obvious convention that ρs(·) and ρ∗s (·) stand for the number of compositions
following the choice λk = k2. It is straightforward to notice that r!ps(r, m) ≥ ρs(r, m), therefore another
bound is needed to prove Statement (43). This conjecture is inspired by the validity of the analogous
result (10), connecting partitions and compositions with integer values for r = o(m

1
3 ).
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We conclude this analysis of the partitions generated by the sequence λk = k2, k > 0, mentioning
the asymptotic results of [22]. For the expected number of summands for the unrestricted partition
ps(m), from their Corollary 8-(i),

r(m) =

∞
∑

r=0
r ps(r, m)

∞
∑

r=0
ps(r, m)

=
1

ps(m)

m

∑
r=1

r ps(r, m) =
ζ(2)m

2
3

A
+ o(m

2
3 ) . (44)

We have used the identity ps(r, m) = 0, which holds for r = 0 and for r > m. This result is entirely

consistent with Equation (31), since the distribution f (x) has mean ζ(2) =
π2

6
. From Corollary 7-(iii)

on the second moment of the same variable, defined as,

r2(m) :=
1

ps(m)

m

∑
r=1

r2 ps(r, m), (45)

it is then possible to obtain, for the central second moment,

r2(m)− r(m)2 ∼ ζ(4)m
4
3

A2 . (46)

Notably, it grows even faster than m, in absolute terms. Thus, we see that the square root of the
quadratic dispersion is of the same order as the mean. The counting function ps(m) is therefore
indeed dominated by partitions with O(m2/3) summands; however, their spread is relatively wide.
By dividing the asymptotic identity (46) by r(m)2, we obtain a constant, i.e., a finite relative fluctuation.
This denotes the low-temperature regime expectation for excited states, as we shall see, for a
one-dimensional gas.

Until now, we have considered sequences Λ+, representing single particles’ energy spectra in
one dimension. In more than one dimension, the sequences are notoriously more complex and many
terms are repeated. We shall not consider two-dimensional models, since they share many similarities
with the sequence λk = k. In three dimensions, the number of repetitions of each term tend to grow
in advancing the sequence, despite there being a finite fraction of absent integers [26]. We shall refer
to such sequence simply as Σ+. It is a sequence of non-decreasing positive integers, whereby the
multiplicity of each term in the sequence coincides with the number of its compositions as the sum of
three squares. The first terms of the series are

Σ+ = {1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 8, 8, 8, . . .} . (47)

To start our survey, we preliminarily mention the following result. The total number of
compositions of all integers which are less than or equal to λ, written as the sum of three squares of
non-negative integers, is asymptotically given by [26],

N (λ) =
λ

∑
k=1

ρ∗s (3, k) ∼ π

6
λ

3
2 . (48)

This is the number of terms of the sequence Σ+ less or equal than λ for large values of λ. In the
above example, N (8) = 22. Sequences of the family N (λ) ∼ bλβ, with 1 < β < 2, were also briefly

considered in [37], without all the necessary proofs. For β =
3
2

, which interests us here, we have,

log pΣ+(m) ∼ 5
3

B m
3
5 , (49)
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B =

[
π

4
Γ
(5

2

)
ζ
(5

2

)] 2
5

. (50)

The authors of [37] also considered pΣ+(r, m), which is essentially pΣ+(m) multiplied by distribution,
not given explicitly. However, from [37], it transpires that the argument of such distribution is r m−

3
5 ,

multiplied by a constant. That was calculated as the expected number of summands in [22]. They both
agree on

r(m) ∼
2 ζ
( 3

2
)

3 ζ
( 5

2
) B m

3
5 . (51)

One striking result of [22] (Corollary 17) is that the k-th moments satisfy

rk(m) ∼ ckm
3 k
5 , (52)

with the constant c explicitly given. It follows that, to the leading order,

r2(m)− r(m)2 = o(1) . (53)

This is a very sharp result, and it applies to partitions in which the number of summands can be
up to m. As we shall see, this corresponds to ultra-low temperature regimes, where the mean number
of particles in an excited state virtually does not fluctuate. We are not aware of analogous results for
the mean number of summands for partitions with a maximum assigned number of summands. If N
is that maximum, the said number would formally read as

r(N, m) =

N
∑

r=1
r pΛ+(r, m)

N
∑

r=1
pΛ+(r, m)

. (54)

Finally, we point out that the analogous of the conjecture (43) for the above described sequence
Λ+ entails hypothesizing the existence of h < 3

5 such that, for r = o(mh), then

pΣ+(r, m) ∼ ρs(3r, m)

r!
. (55)

To complete our survey, we next report on results concerning the number of compositions of
m as a sum of an arbitrary number of squares of integers, i.e., λk = k2 and k ∈ Z, or as the sum of
squares of non-null integers, i.e., λk = k2 and k ∈ Z\{0}. We shall call them τ∗s (r, m) and τs(r, m),
respectively. These sets differ from the previous sets in that, until now, we had only considered the
case of non-negative integers. However, the following simple relation holds:

τs(r, m) = 2rρs(r, m) , (56)

which can be understood noticing that each summand k 2
i in ρs(r, m) is counted twice in τs(r, m), first as

k 2
i and then as (−ki)

2. For the same reason, the following also holds:

τ∗s (r, m) ≤ 2rρ∗s (r, m) ≤ 2rτ∗s (r, m) , (57)

or
1
2r τ∗s (r, m) ≤ ρ∗s (r, m) ≤ τ∗s (r, m) , (58)

where the first inequality holds since the factor 2r produces an overcounting of the null terms, while the
second is straightforward.
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The inequality (58) is not very informative for generic values of r, m; however, it is useful in
entropy calculations, for r fixed and asymptotically in m. In such case, we have [26]

τ∗s (r, m) ∼ gm

( r
2

)
+O(mr/4) , gm(x) =

πxmx−1

Γ(x)
. (59)

For sufficiently large values of r � 1, using Stirling’s approximation and dropping the less important
terms asymptotic in m:

log τ∗s (r, m) ∼ r
2

log
2 e π m

r
. (60)

By direct use of the inequalities (58), it follows that in the same range

log ρ∗s (r, m) ∼ r
2

log
m
r
+O

(
r
)

. (61)

We deem that a much more refined result would be available, possibly implying 2rρ∗s (r, m) ∼
τ∗s (r, m), but we do not pursue this proof here. It is however a reasonable conjecture, since for very
large values of m, compositions with O(r) zeros are expected to be in subdominant proportions,
leading us to hypothesize,

log ρ∗s (r, m) ∼ r
2

log
e π m

2r
. (62)

It is to be noted that the leading term in Equation (59), and therefore (60), does not convey τ∗s (r, m)

uniformly in r and m. For Equation (60) to be viable, however large, r should be considered fixed, and m
arbitrarily large. In fact, the leading term in m of Equation (59) would predict that τ∗s (r, m) ∼ 0 as soon
as r � m� 1. The corrective term O(mr/4) signals the presence of other dominant terms. A simple
lower bound can be found for τ∗s (r, m) in that range, by considering the subclass of compositions in
which each summand takes only the values 0 or 1, i.e.,

τ∗s (r, m) ≥ 2m
(

r
m

)
, ρ∗s (r, m) ≥

(
r
m

)
; r ≥ m , (63)

log τ∗s (r, m) & m log
2 r
m

, log ρ∗s (r, m) & m log
r
m

; r � m� 1 . (64)

We now present a loose estimate of ρ∗s (m, m), which is however very straightforward. We specialize

for the case
(m

2

)1/2
∈ Z+, but a generalization is a fairly technical endevour. First, we have

the obvious,
ρ∗s (r, m) ≤ ρ∗(r, m) . (65)

By virtue of Equation (16), also following the steps (17) or (18),

log ρ∗s (m, m) . 2m log 2 . (66)

Then, we consider the m compositions in which one summand is m/2 and the remaining m − 1
summands are either 0 or 1. They total up to

m
(

m− 1
m/2

)
,

so that it also holds that,
log ρ∗s (m, m) & m log 2 + log m . (67)

Therefore, for large values of m,

m log 2 . log ρ∗s (m, m) . 2m log 2 . (68)
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5. The Physics of Partitions and Compositions with Squares of Integers in One Dimension

We start by considering the well known problem of a gas of noninteracting identical massive
particles (mass µ) with fixed energy in a reflective box, treated as a quasi classical system, in the sense
that the statistics is classical, but the states are quantized. Counting the states is possible knowing the
energy eigenvalues of the wave functions of N particles. In fact, given the hypothesis that the particles
do not interact, the eigenfunction of every individual particle is that which solves the problem of a free
particle caged in a d-dimensional box (in this section, we specialize for the case of a one-dimensional
line, while, in the next section, we shall consider a three-dimensional box of sides L and volume
V = L3). We therefore know the total (fixed) energy of the system as the sum of the energy eigenvalues
of all the particles, which are well known [14]. They can also be expressed in terms of momenta for the
n-th particle. In one dimension, one has:

p 2
n

2µ
= En = n2 ε0 , (69a) ε0 =

h̄2π2

2µL2 . (69b)

In this work, we shall consider both Dirichlet (70a) and Neumann (70b) boundary conditions:

n ∈ Z+ ; (70a) n ∈ Z . (70b)

In the classical regime, the proof that the results do not depend on the choice between (c) and (c’) can
be made rigorous. Here, we choose Neumann boundary conditions, and it is not a difficult exercise
to verify the analogous steps for Dirichlet boundary conditions. In the quantum regime, we shall
instead use both the Dirichlet and the Neumann boundary conditions, according to convenience.
To be more specific, we shall first interpret the mathematical results on partitions of the previous
section in the context of Dirichlet boundary conditions, but the results on the momenta and in three
dimensions (see next section), i.e., from Equation(44) to Equation (53) are best interpreted in the context
of Neumann boundary conditions. We shall point out, however, when and why in the quantum regime
this freedom must be approached with care.

The total energy is the sum over all the N particles. Suppose then that such total be given by,

E = mε0 , m =
2µEL2

h̄2π2
, (71)

where E is the total energy. The number Ω is therefore the number of compositions of m into r = N
squares of non-negative integers. By considering the compositions of m, we are still formally treating
the particles as distinguishable. We consider the case m� N, i.e., standard classical assumptions apply.
In fact, the parameter m should satisfy m � N

3
2+x, with x ∈ R+ that we have not yet determined.

From Equations (60) and (62), after dividing for the usual N! factor to fix the distinguishability issue
(and in accordance with the conjecture (43)), the entropy up to order N reads

S/kB ∼
N
2

log
e µEL2

Nπ h̄2 + N − N log N = N log
[

L
N

(
µE

Nπ h̄2

) 1
2
]
+

3N
2

, E� h̄2π2N
2µL2 . (72)

The Gibbs factor is indispensable to regain the L/N term correctly; however, the E/N term is
accounted for by counting the compositions. We suspect that some confusion may surround this
point, thus we now consider the problem of a monoatomic Bose gas in a one-dimensional square-well.
The key to our reasoning resides in part in the validity of the conjecture (43), for sufficiently high
energy regimes. We must also assume that ρ∗s (r, m) ' ρs(r, m) for large enough m.

In the classical (high energy per particle) scenario, we have apparently two main routes. One has
been just outlined, leading from Equations (62)–(72). Notice that in one dimension the momenta can
be well ordered in a one-to-one match with each particle. As already noticed, in such a situation,
the condition of indistinguishability may be approached formally in two ways: either we divide the
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total number of states by the Gibbs factor, or we sum (or integrate) over a well-ordered sequence of
momenta. This is a similar approach to the one that led to the calculation (28), but for an appropriate
replacement of the individual energies with the squares of the momenta:

V =

∫ √2µE

0
dp1

∫ √2µE−p2
1

0
dp2 · · ·

∫ √2µE−p2
1−...−p2

N−1

0
dpN H(p2

1, p2
2, . . . , p2

N)

(2µ ε′0)
N/2 . (73)

This second route leads again to Equation (72).
We stress the importance of the condition ρ∗s (r, m) ' ρs(r, m), and especially of the conjecture (43)

(in three dimensions, the conjecture (55)). From further mathematical developments, one would indeed
obtain the critical value of E/L2, for any N, at which the ‘classical’ way of counting, aided by division
by N!, becomes consistent with the traditional quantum procedure of counting the occupation rates of
the energy levels. In other words, a proof of Equations (43) and/or (55) would imply the correctness
of the Gibbs factor for sufficiently high energy. Ideally, log ps(r, m) would provide the entropy of the
noninteracting gas across the entire range, from deepest in the quantum regime to arbitrarily high
energies. This constitutes a slight shift of perspective compared to traditional views, which see the
entropy as requiring distinct counting procedures.

Once granted the importance of log ps(r, m), let us derive some rigorous results. To our knowledge,
they have not been pointed out before, in the microcanonical ensemble formalism. For the bosonic gas
in a line, r = N, with the usual quantum constraint that

p2
n =

h̄2π2

2µL2 n2, m =
2µEL2

h̄2π2
. (74)

Here, we assume Dirichlet bounday conditions, i.e., n ∈ Z+. We want to use Equation (42). We point
out that the ground state has an energy E0 such that,

E0 =
h̄2π2N
2µL2 , (75)

m− N =
2µ(E− E0)L2

h̄2π2
=

2µE∗L2

h̄2π2
, (76)

where E∗ = E− E0 is the excitation energy.
Via the asymptotic result (30), in close proximity to the ground state, we arrive at:

S/kB ∼ 3A
(

2µ E∗L2

h̄2π2

) 1
3

, (77)

T =

(
∂S

∂E∗

)−1

∼ (kB A)−1
(

h̄2π2E∗2

2µ L2

) 1
3

, E∗ ∼
√

2µ L
h̄π

(A kBT)3/2 . (78)

An alternative route to the same relation in the critical region exploits the finite difference
Equation (35), with E = mε0 and the definition (69b) intended, which we propose in the weaker form,

ps(N, m)− ps(N, m− 1) ∼ Am−
2
3 ps(N, m) . (79)

By taking,
1
T

=
S(N, m)− S(N, m− 1)

ε0
, (80)

we get
ε0

kBT
= log

ps(N, m)

ps(N, m− 1)
' − log

(
1− Am−

2
3

)
, (81)
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m
2
3 = A

[
1− exp

(
− ε0

kBT

)]−1
. (82)

One can verify that this expression is quite inaccurate in the zero temperature limit, giving,

E(T ∼ 0+) = A
3
2 ε0 , (83)

which is the counterpart to the inaccurate Equation (34). Notice that the difference Equation (80) has
little meaning very close to the ground state.

For larger temperatures, we obtain,

E = ε
− 1

2
0
(

A kBT
) 3

2 , (84)

which confronts favourably with the result (78), since we are exploring the region N = O(m2/3) and
therefore E ∼ E∗.

Equation (78) lacks an explicit dependence on N, which is mathematically an open question.
However, such dependence is very weak, for large N and down to N = O(m2/3) (see the discussion
leading up to and following Equation (31)). A sharp decline of the rate of increase of entropy with
energy is encountered, as soon as the number of particles (the summands) becomes less than ‘typical’
for that value of the integer m. From both Equations (31) and (44), this critical point satisfies

2µ Ec L2

h̄2π2

[ ζ(2)
A

] 3
2
= N

3
2 , Ec =

h̄2π2 N3/2

2µ L2

[ A
ζ(2)

] 3
2
= E∗c +

h̄2 π2 N
2µ L2 ' E∗c ; (85)

or roughly

kBTc '
h̄2 π2 N

2ζ(2)µ L2 =
3 h̄2 N
µ L2 . (86)

In one dimension, there is no phase transition [14]; however, Tc marks an approximate temperature
at which a macroscopic number of particles occupies the ground state. The mathematical explanation
is that, well below Tc, the number of particles is so large as to be redundant, with respect to the
‘optimal’ number for the available partitions of the total energy. Therefore, many particles can occupy
the ground state almost ‘for free’. However, from the estimate (86), it transpires that, differently from
higher dimensions, Tc approaches zero when the size of the system, L, and N approach infinity with
equal rates.

Also notice that, below Tc, the probability that n0 particles occupy the ground state is
pσ(N − n0, m− N)

p ∗σ (N, m− N)
=

pσ(N − n0, m− N)

p ∗s (N, m)
, which is asymptotically proportional to the ratio

pσ(N − n0, m− N)

ps(m− N)
. From the asymptotic form (40), this quantity is approximately proportional

to the function g, and therefore it has a maximum when N − n0 = O[(m− N)2/3], with m− N the
units of excitation energy E∗/ε0 (see [4] for an analogous result for one-dimensional harmonic traps,
which also applies to two-dimensional ideal Bose gases).

We now deepen three related questions: how to characterize the region closely around Tc, which
states the particles occupy below Tc; finally, what are the typical number fluctuations deeper into the
quantum regime.

To get a flavor of the dependence on N at the boundary of the critical region N = O(m2/3), i.e.,
around Tc, we observe that the function f can be simplified for either small or large arguments.
The entropy is taken from Equations (30) and (31), with the rightmost term below bearing the
N-dependence,

S/kB = log ps(N, m) ∼ 3Am
1
3 − 2

3
log m + log (A) + log f (N A m−

2
3 ) . (87)
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When the argument of f is large (but finite), i.e., just below Tc, we inherit the expression of Equation (34),
and by deriving with respect to E,

ε0

kBT
∼ 3 Am

1
3 − 2 + 2A Nm−

2
3

3m
' Am−

2
3

(
1 +

2
3

N
m

)
. (88)

Since N/m is small,

A3
( kBT

ε0

)3
∼ m

(
m− 2N

)
, (89)

which corrects Equations (78) and (84) to

E ∼
√

2µ L
h̄π

(A kBT)3/2 +
h̄2π2 N
2µ L2 +

1
2

h̄5π5

(2µ)5/2 L5
N2

(AkT)3/2 = E∗ + E0 + corr , (90)

if N ∼ γ

(
2µ L2 E

h̄2π2

)2/3

and γ large but finite.

Notice that the ground state energy has emerged quite naturally, and it is the first signature imprinted
by N, while the corrective term is short-lived and should not be considered at very low temperatures.

At the other end of the boundary of the region N = O(m2/3), i.e., just above Tc, we can use [37]

log f (x) ∼ −π2

4x
(x ∼ 0+), and for the entropy and its energy derivative,

S/kB = log ps(N, m) ∼ 3Am
1
3 − 2

3
log m + log (A)− π2 m

2
3

4NA
, (91)

ε0

kBT
∼ 3 Am

1
3 − 2

3m
− π2

6ANm
1
3
' Am−

2
3

(
1− π2

6A
m

1
3

N

)
, (92)

which now corrects Equations (78) and (84) to

E ∼
√

2µ L
h̄π

(A kBT)3/2 − kBT π2

4 A N
, (93)

if N ∼ γ

(
2µ L2 E

h̄2π2

)2/3

and γ is small but finite.

Eventually, the negative correction in the energy’s asymptotic expression (93) will balance the positive
leading term for some small (compared to E) N, but the emerging functional form E(N, L, T) is not
known from combinatorics theorems. Ultimately in the classical limit, E will become proportional
to T. By first derivation of both estimates (90) and (93) with respect to T, one can easily obtain the
specific heat. In both cases, the term proportional to

√
T is the dominant term and there is no change

of convexity (absence of a transition).
Below Tc, E∗ < E∗c , and the excitation energy must be shared by the ‘typical’ number of summands

of the unrestricted partitions counted by pσ(m− N) (recall that pσ shares the same astmptotics of ps).
This typical number is the mean number of particles in an excited state, which we call N∗. Therefore,
the following must hold, at least approximately,

N∗ ' ζ(2)
A

[2µ E∗ L2

h̄2π2

] 2
3 ' NT

Tc
. (94)

Therefore, when T < Tc, the fraction of particles in excited states is circa
N∗

N
' T

Tc
and 1− T

Tc
the

fraction of particles in the ground state.
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As we have said, Equations (44)–(46) are more effectively interpreted assuming Neumann
boundary conditions, i.e., the ground state has energy zero and ε0 is the energy of the first excited
state. In order for the definition (44) to be rigorously applicabile, after the identification r = N∗ and
m = m∗ (the units of excitation energy), we must assume that N ≥ m∗ holds, since otherwise the upper
limit of the sums should be N (in which case, we lack rigorous mathematical results). In other words,
Equations (44)–(46) are exact predictions for N∗ if N ≥ m∗, and are only approximately valid in the
region for N between m∗2/3 and m∗. Therefore, the result (46) implies that

N∗2 − N∗2 ∼ ζ(4)
A2

(
2µ L2E∗

h̄2 π2

) 4
3

∼ ζ(4)
(

2µ L2 kBT
h̄2 π2

)2

=
ζ(4)
ζ(2)2

N2 T2

T2
c

, (95)

which is rigorous if E∗ ≤ E0 = O
( E∗c√

N

)
, or T ≤ O

( Tc

N1/3

)
. After dividing this quantity by N∗2,

we find that the relative fluctuations are constant. This result is rigorously valid deep into the
quantum regime. However, it may still hold approximately, somewhat closer to Tc, although further
investigations would be needed. In summary,

N∗2 − N∗2

N∗2 ∼ ζ(4)
ζ(2)2 . (96)

It is informative that, since n0 = N − N∗, where n0 is the number of particles in the ground state,
and, since N is fixed, then Equation (95) also immediately defines n2

0 − n0
2. However, for n0

2, we have,

n0
2 = N − N∗ 2

= N2
(

1− T
Tc

)2
, (97)

and, consequently,
n2

o − n0
2

n0
2 ∼ ζ(4)

ζ(2)2
T2

(Tc − T)2 . (98)

Well inside the quantum regime, below E0, where the mesoscopic system presents overpopulation
of the ground state, the above equation is rigorous and the relative fluctuations of the ground state
tend to vanish. Approaching Tc, granted the validity of the above equations, those fluctuations tend to
grow more than linearly in temperature, although their apparent divergence is possibly an artefact of
our assumptions. More specifically, although weak in the range between E0 and Ec, we have altogether
omitted the precise dependence of the partitions on the number of summands. This issue may be
addressed by resolving the mathematical open problem stated in Equation (54).

We mention that the freedom of choice of boundary conditions should be approached critically.
The results of [37], insofar as they barely discriminate between two different single-particle spectra
that share the same asymptotic N (λ), are very powerful results. This is clear in the steps from
Equations (38)–(42). Thus, the inclusion or exclusion of the zero from the energy eigenvalues does not
change the emerging physics, since it just results in a shift of one place in the sequence Λ. In mesoscopic
systems, this should not be taken entirely for granted. There certainly exists a region of parameters
space where surface effects might become important [14]. At that point, the physics at the boundary
should be thoroughly considered. In the language of partitions, this entails that m is not yet large
enough to lie in the asymptotic regime.

We have seen that the problem of entropy of a one-dimensional boson gas can be reduced to
counting how many ways an integer m can be written as the sum of non decreasing squares of positive
integers. For each choice of m, there is an optimal number of summands (the particles) around the
region N = O(m2/3), to which it corresponds a critical temperature. Therefore, the entropy is ‘large’
and almost independent of the particles, when the particles exceed that number. For smaller values
of N, there is an abrupt decrease in entropy because N becomes a limiting factor for the number of
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partitions. For larger values, we enter deep into a quantum regime, whose fluctuations of excitation
numbers have been characterized.

6. The Three-Dimensional Boson Gas and Open Problems

We first briefly consider a classical gas of noninteracting identical massive particles inside a
reflective cubic box of side L (volume V = L3), with fixed energy. The energy eigenvalues are now
expressed as

p 2
nx ,ny ,nz

2µ
= Enx ,ny ,nz = (n2

x + n2
y + n2

z) ε0 , (99a) ε0 =
h̄2π2

2µL2 . (99b)

The Dirichlet (100a) and Neumann (100b) boundary conditions are spelled out as:

nx, ny, nz ∈ Z+ ; (100a) nx, ny, nz ∈ Z . (100b)

In this section, only the Neumann boundary conditions will be considered. Thus, rather than using the
definitions (71), it is more practical to define m directly in terms of the excitation energy E∗, since the
zero of the energy now coincides with the global ground-state energy. We thus define

E∗ = mε0 , m =
2µE∗L2

h̄2π2
. (101)

The number Ω is now the number of compositions of m into r = 3N squares of non negative integers,
with m� 3N. In fact, the parameter m should satisfy m� N

5
3+y, with y ∈ R+ that we have not yet

determined. Similarly to the one-dimensional case, we can use Equations (60) and (62). One must then
divide the composition number by N! and substitute V = L3, which leads us to the following entropy
up to order N,

S/kB ∼
3N
2

log
e µEL2

3Nπ h̄2 + N − N log N = N log
[

V
N

(
µE

3Nπ h̄2

) 3
2
]
+

5N
2

, E� h̄2π2N
2µL2 , (102)

which is the well-known Sackur–Tetrode equation [13], here obtained via the counting of
integer quantities.

The Gibbs factor now fixes the V/N term correctly, again, with the E/N term accounted for by
counting the compositions. Division by N! might not be regarded as ad hoc assumption, should the
conjecture (55) be proved correct.

The single-particle spectrum of excitation energy is given by the sequence Σ+ of Section 4, if each
term is multiplied by ε0. The quantity Ω is given by p∗Σ+(N, m), the number of partitions on Σ+ with
up to N summands. Clearly, p∗Σ+(m, m) = p∗Σ+(m). In the low energy/temperature quantum regime,
i.e., m not too much larger than N, the partitions pΣ+(N, m) cannot be described by the guess (55), since
it is incompatible with the correct asymptotics, Equation (49). When N ≥ m, up to m particles (but
no more) can occupy an excited state, and the rest N −m particles must be in their ground state (the
triplet (0, 0, 0)). In this situation, the asymptotic result (49) holds rigorously. Furthermore, the mean
number N∗ of excited particles is given by Equation (51). From [37], but also in accordance with [22],
first, we have

S/kB ∼
5
3

B
(2µ L2 E∗

h̄2π2

) 3
5

, (103)

and, therefore,

kBT ∼ E∗
2
5

B

( h̄2π2

2µ L2

) 3
5

; E∗ ∼
(2µ L2

h̄2π2

) 3
2 (

B kB T
) 5

2 =
Γ
( 5

2
)

ζ
( 5

2
)

µ
3
2 V

√
2 h̄3π2

(
kBT

) 5
2 . (104)
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The latter formula is standard from quantum statistical mechanics [14].
Next, we find that p∗Σ+(N, m) is still very well approximated by p∗Σ+(m) for values of N that are

larger than O(m 3
5 ). This is the condensed phase, with an extremely weak dependence on N. Once that

threshold is crossed, m cannot be partitioned any more into its optimal number of summands, and a
marked dependence on N for p∗Σ+(N, m) develops. The condensed phase disappears. From the
functional relation (51), we find the optimal number of summands in correspondence with its associated
critical excitation energy E∗c ,

2µ E∗c L2

h̄2π2

[2 B ζ
( 3

2
)

3 ζ
( 5

2
) ] 5

3
= N

5
3 , E∗c =

h̄2π2 N5/3

2µ L2

[ 3 ζ
( 5

2
)

2 B ζ
( 3

2
) ] 5

3
, (105)

and via the relations (104), the temperature Tc:

kBTc =
2π h̄2

µ

[ N
ζ
( 3

2
)
V

] 2
3

. (106)

Unlike the one-dimensional case, this temperature is finite in the thermodynamic (bulk) limit,
V/N → const.

For lower temperatures, the latter formula can be inverted to give the average number of particles
in the excited state N∗, as a function of temperature (see also previous section). According to the
definition (51), the formula is exact for N ≥ m, but it is a valid approximation up to the critical
point. Thus,

N∗

N
'
(

T
Tc

) 3
2

. (107)

Arguing similarly to the one-dimensional case, we also find that, below Tc, the conditional
probability that the excitation energy is E∗ = mε0 when N0 particles occupy the ground state has a
maximum for N − N0 = O(m 3

5 ).
The result (53) informs us that, below Tc,

N∗2 − N∗2 ' 0 , (108)

where the equality holds rigorously for N ≥ m, or

kBT ≤ h̄2π2

2 B µ L2 N
2
5 .

The number of particles occupying the ground state is N− N∗, so it also has no fluctuations well below
the critical point. This result contradicts analogous results in the grand canonical ensemble, which
predicts non-vanishing fluctuations, but it confirms the findings of the canonical ensemble [14].

We lack a detailed description at the wings of the critical regions of condensation. A much
richer characterization of the quantities pΣ+(N, m) and p∗Σ+(N, m) would be needed, especially for
detailing the N dependence accurately. This may turn crucial, following the mentioned remarks in [15]
concerning the mathematical foundations of the grand canonical ensemble and the possibility to find
different results in the microcanonical ensemble.

7. Some References to the Grand Canonical Ensemble

We shall consider mainly the one-dimensional model in the grand canonical ensemble, mentioning
some results in three dimensions. We recall the following way to link the theory of partitions, defining
the microcanonical ensemble approach, to the grand canonical ensemble, in the case of non-interacting
identical bosons. The grand canonical partition is a function ZG = ZG(µc, V, T), where µc is the
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chemical potential. For practicality, we shall use instead the negative of the chemical potential,
χ = −µc. Set ν and η such that χ = −kBT log ν and ε0 = −kBT log η. Then,

ZG = g(ν, η) , (109)

where g(x, z) is defined in Equation (29). It follows from the definitions that

ZG =
∞

∑
n=0

∞

∑
m=0

exp
[
− n χ + m ε0

kBT
+

S(n, V, m ε0)

kB

]
, (110)

and under the assumption Ld = O(N), E = O(N), N → ∞ the thermodynamics do not differ from
the microcanonical ensemble. More explicitly, the thermodynamic potential G is G = −kBT log ZG,
therefore the product decomposition in (29) is useful. In the one-dimensional case with λk = k2, in fact,

G = kBT
∞

∑
k=1

log
(
1− νηλk

)
= kBT

∞

∑
k=1

log
(
1− ν ηk2)

= kBT
∞

∑
k=1

log
(
1− e−(χ+k2ε0)/(kBT)) , (111)

for Dirichlet boundary conditions, and

G = kBT
∞

∑
k=0

log
(
1− νηλk

)
= kBT

∞

∑
k=0

log
(
1− ν ηk2)

= kBT
∞

∑
k=0

log
(
1− e−(χ+k2ε0)/(kBT)) , (112)

for Neumann boundary conditions. We assume the latter, in which case χ > 0 must hold.
Average thermodynamics quantities can be obtained through proper derivations. The mean

occupation number of the k-th state with energy εk = λk ε0 is given by nk = −
∂G
∂εk

; therefore,

nk =
(
ν−1η−k2 − 1

)−1
=
(
e (k

2ε0+χ)/(kBT) − 1
)−1 . (113)

The average excitation energy can be computed more directly from E = ∑ εknk,

E∗ = ε0

∞

∑
k=0

k2

e (k2ε0+χ)/(kBT) − 1
. (114)

This sum is usually approximated by an integral (see [15] for a critical analysis of this step),

E∗ ' ε0

∞∫
0

z2 dz
e (z2ε0+χ)/(kBT) − 1

=
1
2
(kBT)

3
2

√
ε0

∞∫
0

z
1
2 dz

eχ/(kBT)+z − 1
=

1
2
(kBT)

3
2

√
ε0

Γ
( 3

2
)

g 3
2

( χ
kBT
)

, (115)

with gn(x) the so-called Bose function of order n,

gn(x) =
1

Γ(n)

∞∫
0

z n−1 dz
e x+z − 1

=
∞

∑
k=1

e−kx

k n .

In the low temperature regime, χ ∼ 0+, and, since g3/2(0) = ζ(3/2), then at low temperatures,

E∗ ∼ 1
2

Γ
( 3

2
)

ζ
( 3

2
) (kBT)

3
2

√
ε0

, (116)

in accordance with Equation (78).
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The average number of particles in the ground state, n0, and in the excited state, N∗,
are respectively given by,

n0 =
(
eχ/(kBT) − 1)−1 =

ν

1− ν
, (117)

N∗ = N − n0 =
∞

∑
k=1

1
e (k2ε0+χ)/(kBT) − 1

' 1
2

Γ
( 1

2
)

g 1
2

( χ
kBT
)( kBT

ε0

) 1
2

. (118)

Dividing the latter by L, and recalling the definition of ε0,

N∗

L
' 1

h̄
g 1

2

( χ
kBT
)(µ kBT

2π

) 1
2

. (119)

We look for solutions in the thermodynamic limit, therefore for a finite ratio N∗/L. Since g1/2
is monotonic and unbounded, then χ exists that solves the equation for any finite N∗/L, at any
temperature. Decreasing T, g1/2 must approach a large number. Since g 1

2
(x) grows as Γ

( 1
2
)
x−1/2 for

small x, then, at a low temperature, χ must be much smaller than kBT, and, more concisely,

N∗

L
∼
√

µ

h̄
√

2
kBT√

χ
. (120)

From the identity (117), we also have

χ

kBT
= log (1 + n0)− log n0 = log

(
1 +

1
n0

)
, (121)

which in the low temperature regime gives

n0 '
kBT

χ
∼ N∗

L
h̄
√

2
√

µ χ
. (122)

By division over L, Equation (118) can thus be recast,

N
L
∼ N∗

L

(
1 +

h̄
L

√
2

µ χ

)
, (123)

which shows the absence of condensation when L→ ∞ at any finite χ (and therefore T).
For finite size, there is a critical temperature Tc at which n0 becomes of the order of N∗, through

the expression (120), which is simply obtained by equating in (123)

h̄
L

√
2

µ χ
= 1 ,

i.e., via relation (120),

kBTc '
2 h̄2 N∗

µ L2 , (124)

which is in some agreement with the estimate (86). We shall further comment on the region below Tc.
In the grand canonical ensemble, the relative fluctuations in all dimensions obey [13,14]

n2
k − nk

2

nk
2 = 1 +

1
nk

. (125)

Thus, they are large for states scarcely populated. Less obvious, even well within the condensed phase,
when n0 is very large, the relative fluctuation of the ground state are still of order unity. Our results
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from (94) to (98) offer a much richer phenomenology for the one-dimensional mesoscopic gas in the
microcanonical approach. At ultra low temperatures, where the formulas given are exact, the relative
fluctuations of the ground state tend to vanish quadratically in T, where the putative condensed
state (not a phase) is firmly established. However, fluctuations grow markedly when the temperature
approaches the critical value. This is also the region where the approximations adopted are no longer
valid. As we have commented, the divergence may be an artefact of the missing subdominant terms,
but the initial growth of the fluctuations may have been correctly captured.

In three dimensions, we have seen that the microcanonical approach offer different results from
the grand canonical, apart from the general results from (104) to (107). From Equation (108), we see
that the fluctuations of the ground state occupancy, which in absolute terms are given by the same
formula, vanish. This is an exact result in the ultra-low temperature region, but it is also approximately
verified when approaching the critical temperature from below. Again, the mathematical analysis is
incomplete to describe what happens very near the critical region. It is not a novelty that the limits of
the grand canonical ensemble in properly capturing the fluctuations of a finite system are discussed
[4–8,13,14].

8. Conclusions

The mathematics of partitions and compositions are notoriously rich. Even trivially formulated
questions have found often non-trivial, sometimes limited answers. Concurrently, microcanonical
ensemble calculations in statistical mechanics are comparatively resilient to full exact solutions, even in
the simple case of non-interacting particles. These difficulties have led most physicists to often prefer
other ensembles, since the asymptotic limits have been implicitly executed beforehand, and in a
physically consistent manner. For non-interacting particles, the grand canonical ensemble focuses the
computational burden solely on the single-particle energy spectra. Nevertheless, mathematicians do
have made significant and insightful progress in partitions theory over several decades, which are not
always encompassed in the traditional overviews of statistical mechanics. There are exceptions [34–36],
and in fact a growing interest has accompanied the need to describe mesoscopic quantum systems
within microcanonical ensemble theory [4–8]. Following those steps, we have tried to exploit a
small but significant subset of results in partition theory [22,37] to incorporate them in statistical
mechanics. More explicitly, we have considered the case of a mesoscopic one-dimensional system,
constituted by non-interacting bosons. To give an encompassing picture, we have considered also
classical limits, while pointing out the partial lack of rigorous mathematical results applicable in the
intermediate regions. We have characterized the behavior of the one-dimensional (mesoscopic) Bose
gas behavior around the critical temperature, which marks the cross-over to a condensed region, even
without a phase transition. We have found that at ultra-low temperatures, the relative fluctuations
of the growing ground state occupation number vanish, which is more akin to canonical ensemble
predictions than to grand canonical ensemble predictions. Approaching the critical temperature from
below, those fluctuations grow markedly, possibly only apparently without bound (due to the limits of
applicability of the mathematical theory). The apparent divergence of the relative fluctuations at Tc of
Equation (98) may be explained with the extrapolation of a formula, which is only rigorously valid at
lower temperatures. The solution of the open problem stated in Equation (54) might clarify this point
in the future.

In three dimensions, after recovering correctly the bulk limits at and below the condensation
temperature, we have found that in the condensed region the microcanonical ensemble predicts null
fluctuations of the ground state occupation number, again much alike in the canonical ensemble theory
and in contrast to grand canonical ensemble predictions. In that case, the result seems to extend even
on approaching the critical temperature from below. Other results in the thermodynamic (bulk) limit
conform to the predictions of the grand canonical ensemble.



Entropy 2018, 20, 645 24 of 26

Beyond such significant results, albeit not yet fully matching the simplicity and breadth of
applicability provided by calculations in the grand canonical ensemble, we have covered a wider range
of parameters space to complete our survey. This part could stimulate more interest.

How would one guess the number of unrestricted partitions of m into compositions of d
integer squares? Trusting the extensivity of the microcanonical entropy, guessing that, for free
bosonic particles S/kB ∝ (E L2)α, and since V = Ld, then α = (1 + 2/d)−1 in order for S to
grow as either E or V in the thermodynamic limit. The lack of explicit dependence on N echoes
that S/kB must be approximately the logarithm of the unrestricted partitions of m ∝ E L2 into

squares of integers. Thus, log p(d)s (m) ∼ m
d

2+d . This crude reasoning could be formally enriched,
assuming that the available results in the canonical and grand canonical ensemble are valid also
(in the bulk limit) in the microcanonical ensemble. Thus, the average of particles in the excited state
and the energy vs. temperature relations could be framed to reconstruct the number of unrestricted
partitions and the expected number of summands in those partitions. These mathematical results are
obtained with very sophisticated calculations, which would often go beyond the immediate interest
of physicists, but familiarity with standard statistical mechanics results could provide a good key for
their interpretation.

Another key mathematical question is the characterization of the entropy across the full spectrum
of values of N. The results available are somewhat narrow. Furthermore, while the asymptotic idenity
(10) relates partitions and compositions with integer values, the analogous guesses (43) and (55) are
open problems. Additionally, there seems to be little interest in the mathematical community about
the problem of counting the partitions involving r squares, adding up to any integer number ≤ m.
The distinction between adding up to exactly m, or to ≤ m is somewhat equivalent to the distinction
between counting the states inside the volume of phase space and inside a shell of infinitesimal
thickness. A result here may shed some light into the related question of negative temperatures [16–21].

A word of caution is in order here. In reviewing some of the mathematical proofs, we have
noticed how crucial the asymptotic limit in m is. For example, in the proof of Erdös and Lehmer [39],
we have noticed that there are terms that are neglected as being o(1) in m. However, they are as
large as 1015 at their maximum, where m is around 1012. They are still as large as 1013 when m is
approximately 1015. It takes m to be circa 1018 before unity is approached. Those and many other terms
are routinely neglected because they eventually converge to zero for large m. This ‘finite size’ effect is
partly mitigated by the fact that the entropy is logarithmic in the total number of partitions. At the
same time, many proofs require that a tremendous number of such terms are neglected. For the physics
of quantum systems of small size, there could be new insights emerging which could be traceable to
such mathematical subtleties. For classical systems, one is often content with Stirling’s formula, which
is a much less troubling approximation.

For massive bosons, we have thus pointed out that there must be a special threshold at which the
number of particles (N) is of the order of the energy quanta (m) to the power of 2/3 (one dimension)
or 3/5 (three dimensions). This is the ‘optimal’ number of particles that maximizes the number of
partitions to obtain exactly m quanta. We have characterized the entropy and the fluctuations near that
region. It is only when the number of particles is smaller than such order that the entropy becomes
more concisely N-dependent, since N is now a genuine limiting factor. We have found foreseeable
limitations. For example, the entropy as an explicit function of both the energy and of N is not
available, in a uniform sense, i.e., without focusing on very small (N, m) regions. There could be
problems concerning small systems that may not be attackable with the traditional approach, for
example starting from the grand canonical ensemble. In fact, both the canonical and grand canonical
ensembles may hide subtleties originating in the finiteness of m and N. This could be a problem even
in ‘equilibrium’ systems, of mesoscopic size, or for weakly perturbed systems.
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