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Abstract: Modern indoor positioning system services are important technologies that play vital
roles in modern life, providing many services such as recruiting emergency healthcare providers
and for security purposes. Several large companies, such as Microsoft, Apple, Nokia, and Google,
have researched location-based services. Wireless indoor localization is key for pervasive computing
applications and network optimization. Different approaches have been developed for this
technique using WiFi signals. WiFi fingerprinting-based indoor localization has been widely
used due to its simplicity, and algorithms that fingerprint WiFi signals at separate locations can
achieve accuracy within a few meters. However, a major drawback of WiFi fingerprinting is the
variance in received signal strength (RSS), as it fluctuates with time and changing environment.
As the signal changes, so does the fingerprint database, which can change the distribution of
the RSS (multimodal distribution). Thus, in this paper, we propose that symmetrical Hölder
divergence, which is a statistical model of entropy that encapsulates both the skew Bhattacharyya
divergence and Cauchy–Schwarz divergence that are closed-form formulas that can be used to
measure the statistical dissimilarities between the same exponential family for the signals that have
multivariate distributions. The Hölder divergence is asymmetric, so we used both left-sided and
right-sided data so the centroid can be symmetrized to obtain the minimizer of the proposed algorithm.
The experimental results showed that the symmetrized Hölder divergence consistently outperformed
the traditional k nearest neighbor and probability neural network. In addition, with the proposed
algorithm, the position error accuracy was about 1 m in buildings.

Keywords: information geometry; centroid; Bregman information; Hölder divergence;
indoor localization

1. Introduction

The global positioning system (GPS) is the world’s most utilized location system, but it cannot
be used to accurately identify indoor locations due to the lack of line-of-sight between GPS receivers
and satellites. Smartphones can provide location-based services in pervasive computing; they bring the
power of GPS inside buildings. A previous study [1] showed that the global indoor positioning market
is expected to grow from $935.05 million in 2014 to approximately $4.42 billion in 2019, corresponding to
compound annual growth rate of 36.5%. Many technologies have been used instead of GPS, such as
radiofrequency identification, Bluetooth, magnetic field variations, ultrasound, light-emitting diode
light bulbs, ZigBee, and WiFi signals, to create high-accuracy indoor localization-based systems.
These technologies are considered from a cost perspective.

With the widespread use of smart phones in the past decade, there has been an increasing demand
to use indoor positioning systems (IPSs) to determine the position of objects and people inside buildings.
In general, there are trade-offs between cost and an IPS technology. For example, ultrasonic technology
has high accuracy but is also costly due to the large installation required. Since deployment of the
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WiFi infrastructure, it has been widely used to estimate the position of an object. The received signal
strength (RSS) is a metric value that can be obtained from existing WiFi access points (APs) by any
device equipped with a WiFi network adapter. The WiFi infrastructure does not require installation
costs or specific hardware [2,3]. Nevertheless, IPSs face many challenges in indoor environments
due to the unique properties and transient phenomena such as multipath propagation and signal
attenuation. Signal attenuation is caused by people, furniture, and walls, which can limit the ability to
design an accurate positioning system [4,5].

IPSs can be classified into two main categories: fingerprint-based techniques and log-distance
propagation model algorithms, the latter of can be divided into angulation and lateration methods.
Lateration methods calculate the absolute or relative position of an object by measuring distances from
multiple reference points using geometry information such as angle of arrival, time of arrival, and time
difference of arrival from the signals of APs. However, lateration-based techniques suffer from inaccurate
location estimation; for example, it was reported in Reference [6] that the average localization distance
error is 24.73 ft with a width of 80 ft and a length of 200 ft in a typical office scenario. Such inaccurate
estimations occur for two reasons: non-line-of-sight propagation and inaccurate calculation of one or
more of the APs’ axes. Thus, fingerprinting-based localization has become the more dominant technique
in IPSs and has two major phases. First, the offline phase, in which the RSS value is recorded with their
coordinates at predetermined reference points (RPs) to generate a radio map database [7–9].

The k nearest neighbor (kNN) is one simple way to estimate the location of an object by
using the Euclidean distance to estimate the dissimilarity between the offline and online phases.
The kNN algorithm has low accuracy and is easy to implement compared to other algorithms, such as
Bayesian modeling and statistical learning, which have been used to estimate the location of an object.
The localization distance error is one of the most fundamental metrics that determine the accuracy
and reliability of the system. Variation in WiFi signals is an important issue [10,11]. There are several
factors that affect WiFi signal propagation such as human bodies, radiofrequency (RF) equipment,
and physical obstructions. These factors cause multiple issues, such as multipath wave propagation
and signal attenuation, which can decrease the accuracy of the localization system [12].

The values stored in data maps represent the mean value of the RSS. Some approaches presume
that the RSS distribution is Gaussian [13], whereas others presume non-Gaussian distributions [14].
Nevertheless, WiFi-based indoor localization systems have many advantages such as low cost
and availability. Different hardware can significantly affect the accuracy of IPSs; for instance, it was
reported in Reference [12] that RSS values collected using different smartphones at the same time and
same location had different values. Furthermore, the orientation of the body can also contribute to the
variance of the RSS signal; thus, the human body can be a significant signal attenuator.

In this paper, we use the Hölder divergence, which generalizes the idea of divergence in
information geometry by smooth the non-metric of statistical distances in a way that are not
required to follow the law of indiscernibles. The inequality of log-ratio gap pseudo-divergence
is built to measure the statistical distance of two classes based on Hölder’s ordinary divergence.
By experiment, the WiFi signal suffers from multimodal distribution; nevertheless, the Hölder
divergence is considered the proper divergence to measure the dissimilarities between probability
densities since the Hölder divergence is a projective divergence that does not need the distribution be
normalized and allows the closed form expressions when the expansion family is an affine natural
space like multinomial distributions.

Hölder divergences encompass both the skew Bhattacharyya divergences and Cauchy–Schwarz
divergence and can be symmetrized, and the symmetrized Hölder divergence outperformed the
symmetrized Cauchy–Schwarz divergence over the dataset of Gaussians. Both Cauchy–Schwarz
divergences are part of a projective divergence distance family with a closed-form expression that
does not need to be normalized when considering closed-form expressions with an affine and conic
parameter space, such as multivariate or multinomial distributions.
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The fingerprinting-based localization has two phases, the off-line phase and the on-line phase.
In the off-line phase, we propose a procedure with a high characterization distribution. The RSS values
were taken from four different orientations (45◦, 135◦, 225◦, and 315◦) to prevent body-blocking effects,
with a scan performed for 100 s in each direction to reduce the effects of signal variation.

The fingerprinting radio-maps were decomposed into many clsuters using k-means-Bregman.
The symmetrized k-means-Bregman showed unique results; the left-side centroid is the same
Jensen–Shannon information radius as the right-side centroid that generalized the mean value of
the cluster. Nevertheless, the right-side centroid was independent and always coincided with the
center of the mass of the cluster point set. The symmetrized k-means-Bregman can be geometrically
interpreted as a unique intersection of the linking between the two-sided centroid and the mixed-type
bisector, and that generalized the two-sided centroid for a symmetrized k-means-Bregman.

2. Related Work

Most research on WiFi fingerprinting localization algorithms has focused on improvements in
collecting fingerprinting data, which can decrease localization distance error and improve accuracy.
Different algorithms have been proposed, some of which use the propagation properties of the signal,
others that use ray tracing [15], and still others that use crowdsourcing-based inertial sensor data
and indoor WiFi signal propagation models. Fingerprint-based location methods suffer from time
variation between the offline and online phases. kNN is considered a pioneer algorithm that is
used in localization-based algorithms. It uses the Euclidean distance to measure the similarity and
dissimilarity between runtime and training data, after which the distance is sorted in increasing order.
Some researchers use clustering techniques to reduce the impact of time variation by clustering the
fingerprinting radio map into multi-partitions, after that the cluster that has lowest RSS-based distance
will be chosen [15].

The cluster filtered kNN method was proposed in Reference [16] to partition the fingerprint radio
map using hierarchical clustering; the proposed algorithm showed some improvement in the results.
To improve the accuracy of the positioning system, Altintas and Serif [17] replaced the k-means
algorithm with hierarchical clustering, which led to some improvement in the localization distance
error. Likewise, it was proposed to incorporate kNN information into the fuzzy c-means clustering
algorithm, so that a cluster could be chosen that matches an object’s location to estimate its location;
the proposed algorithm resulted in little improvement in localization distance error within 2 m [18].
In Reference [19], affinity propagation was proposed with the coarse positioning algorithm to cluster
the off-line of the database; the coarse algorithm works within one or more clusters to estimate the
location of the object.

A new idea was proposed in Reference [20] by using a probabilistic distribution measurement,
using a Bayesian network as a probabilistic framework to estimate the object’s location. The authors in
Reference [21] proposed a modified probability neural network to estimate the location of the object,
and this method outperformed the lateration technique. The authors in Reference [22] used a
histogram of the RSS as a kernel method to estimate the object’s location. In Reference [23],
the Kullback–Leibler divergence (KLD) algorithm was proposed to estimate the probability density
function (PDF) as a composite hypothesis test between the test point and fingerprinting radio map,
whereas in Reference [24], to estimate the location of the object, the authors assumed that the RSS had
a multivariate Gaussian and used the KLD algorithm to estimate the PDF impact of the test point
on the fingerprinting radio map. In Reference [25], a low energy RSS-based Bluetooth technique
was proposed to create a radio map for fingerprinting, after which probabilistic kernel regression
based on the KLD was used to estimate the location of the object. The localization distance error was
approximately 1 m in an office environment.



Entropy 2018, 20, 639 4 of 14

3. Overall Structure of the IPS

A typical WiFi fingerprint-based localization scenario was performed, in which a person held a
smartphone device that had WiFi access, which was used to collect RSS measurements from different
APs at various locations within the College of Engineering and Applied Sciences (CEAS) at Western
Michigan University (WMU). As mentioned in Reference [26], an RSS distribution from multiple APs
as a multimodal distribution commonly occurs. In our study, the signal-to-noise ratio was recorded
for 35 min in a long corridor for a single AP. The mobile robot would stop every five minutes at each
location and move 4 m further, and these steps were repeated for seven locations. We noticed values
that differed by as much as 10 dBm, as shown in Figure 1.Entropy 2018, 20, x 4 of 14 
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There are many parameters that can affect the distribution of a signal such as diffraction, reflection,
and pedestrian traffic [27]. We looked for a scenario that would lead to a better distribution of the
AP signals. During the offline phase, a realistic scenario was performed that took signal variation
into account. Because the human body can be an obstacle for signals, including the person holding
the phone and the pedestrian in traffic, the fingerprint radio map was recorded from four different
directions (45◦, 135◦, 225◦, and 315◦). At each RP, the RSS data were collected within the time sample,
which was denoted as {q(

◦)
i,j (τ), τ = 1, · · · , t, t = 100}, where (◦) is the orientation direction and t

represents the number of time samples. The covariance matrix and average of the RSS were calculated
from four different directions, and 10 scans were used to create the radio map of the fingerprinting
database, as represented by Q(◦) [28]:
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where ∆(◦)
i,j is the variance for AP i at RP j with orientation (◦); thus, the database table of the radio

map is (xj, yj,q
(◦)
j , ∆(◦)

j ) with q(
◦)

j defined as:

q(
◦)

j = bq(
◦)

1,j , q(
◦)

2,j , q(
◦)

3,j , . . . .q(
◦)

L,j c (4)

During the online phase, the RSS measurement is denoted as:

pr = bp1,r, p2,r, p3,r,....... pL,rc (5)

4. Bregman Divergence Algorithm Formulation

The heterogeneity of RSS data makes it difficult to design IPSs with high accuracy that are
dependent on fingerprinting-based locations. Indeed, the Lp-norm and usual Euclidean distance do
not always lead to IPSs with the highest accuracy, especially for systems with various histograms
and other geometric features. It has been shown that using the information-theoretic relative entropy,
known as the KLD, can lead to better results [29]. Bregman divergence has become a more attractive
method for measuring similarity/dissimilarity between classes because it encapsulates the geometric
Euclidean distance and information-theoretic relative entropy. The Bregman divergence DF between
two sets of data, p = (p1, . . . , pd) and q = (q1, . . . , qd), and that associated with F (defined as a strictly
convex function) can be defined as:

DF(p, q ) = F(p)− F(q)− 〈∇F(p), p− q〉 (6)

where 〈..,..〉 denotes the dot product:

〈p, q〉 = ∑ d
i=1 p(i)q(i) = pTq (7)

and ∇F(p) denotes the gradient decent operator:

∇F(p) =
[

∂F
∂p1

. . . .
∂F
∂pd

]T
(8)

The Bregman distance unifies the KLD with the Euclidean distance by defining dissimilarity
measurements as follows:

• The squared Euclidean distance is measured by substituting the convex fucntion of the Bregman
as F(p) = ∑d

i=1 p2
i = 〈p, q〉, as shown in Figure 2.

• The Bregman divergence will lead to the KLD if the strictly convex function used is
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F(p) = ∑d
i=1 pilogpi, which is defined as negative Shannon entropy. The KLD is defined as:

KL(p||q) = ∑s p(S = s ) log(
p(S = s)
q(S = s)

) (9)

In information-theoretic relative entropy, the Shannon entropy measures the uncertainty of a
random variable by:

H(p) = plog
1
p

(10)

The KLD is equal to the cross-entropy of two discrete distributions minus the Shannon differential
entropy [30]:

KL(p||q) = ∑s Hx(p(s) ||q(s))−H(p(s)) (11)

where Hx is the cross-entropy:

Hx(p(s) ||q(s)) = ∑s p(s)log
1

q(s)
(12)

Such a KLD has two major drawbacks. First, the output is undefined if q = 0 and p 6= 0; and second,
the KLD is not bound by terms of metric distance. To avoid these drawbacks and avoid the log(0) or to
divide by 0, the authors in Reference [31] proposed a Jensen–Shannon divergence (JSD) dependent on
the KLD as follows:

JSD(p||q) = 1
2
(KL

(
p,

p + q
2

)
+ KL

(
q,

p + q
2

)
) (13)

The JSD can be defined, is bound by an L1-metric, and is finite. In the same vein, the Bregman
divergence (SDF) can be symmetrized as:

SDF(p||q) = 1
2 (DF

(
p, p+q

2

)
+ DF

(
q, p+q

2

)
)

=
F(p) +F(qj)

2 − F(
p+qj

2 )

(14)

where p represents the test point dataset, q represents the fingerprint dataset, and j represents the
number of APs that the smartphone has received. Because F is a strictly convex function, the SD(p||q)
equals zero if and only if p = q; the geometric interpretation for this is represented in Figure 3. For a
positive definite matrix, the JBD is known as the Mahalanobis distance.

SD(p, q) = F(p)+F(q)
2 − F

(
p+q

2

)
= 2〈Qp,p〉+2〈Qq,q〉−2〈Q(p,q),p+q〉

4

= 1
4 (〈Qp, p〉+ 〈Qq, q〉 − 2〈Qp, q〉)

= 1
4 〈Q(p− q)− p− q〉

= 1
4 ||p− q ||2Q

Due to RSS variation and the hardware variance problem, the fingerprinting database of the offline
phase was clustered by using a clustering algorithms technique. The k-means algorithm was proposed
by Lloyd in 1957 [32], who is considered a pioneer in clustering methods. In general, the k-means
was used to solve the vector quantization problem. k-means is an iterative clustering algorithm that
works by choosing random data points (seeds) to be the initial centroid (cluster center); the points of
each cluster are associated with the closest cluster center. Each cluster center is updated and reiterated
until the difference between any successive calculation goes below the “loss function” or convergence
is met. The squared Euclidean distance is used to minimize the intra-cluster distance that leads to the
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centroids. Lloyd [32] further proved that the iterative k-means algorithm monotonically converges
to a local optima of the quadratic function loss (minimum variance loss). The cluster Ci’s center ci is
defined as follows:

ci = argmin ∑
pjεci

‖pj − ci‖ (15)

= argmin AVGL2
2
(Ci, c) (16)

ci =
1
|Ci | ∑

pjεci

pj (17)

where ci denotes the center of the cluster Ci, and |Ci| denotes the cardinality of Ci. In 2004, Reference [33]
proposed a new clustering algorithm method, in which the k-means algorithm is modified by using
the symmetric Bregman divergence. The minimum distance of the centroid of the point set has been
defined as:

c = argpmin =
1
n ∑ iSDF(p, pi) (18)

cF
R = argc∈RPmin

1
n

n

∑
i=1

SDF(pi||c) (19)

cF
L = argc∈RPmin

1
n

n

∑
i=1

SDF(c||pi) (20)

cF = argc∈RPmin
1
n

n

∑
i=1

SDF(c||pi) + SDF(c||pi)

2
(21)

where cF
R and cF

L represent the right- and left-sided centroid, the centroid cF stands for the symmetrized
Bregman divergence centroid, and n stands for the number of cells of the off-line database in
each cluster.
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5. Overall Structure of Proposed Positioning Algorithm

Designing an IPS by depending on fingerprinting-based locations is difficult because the
environment suffers from inference and discrimination, which can lead to a heterogeneous RSS.
As a result, depending on Lp-norm or square Euclidean distance algorithms do not always lead to
systems with high accuracy. For example, it was proved in Reference [7] that the concave-convex
procedure can obtain higher accuracy than algorithms that depend on the square Euclidean distance
such as the kNN and probabilistic neural network (PNN). In this section, we introduce the symmetric
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Hölder divergence. To measure the similarity between p and q, where rhs and lhs denote the
right-hand side and left-hand side, respectively, one can use bi-parametric inequalities, i.e., one can
use lhs(p,q) ≤ rhs(p,q), and a similarity can be measured by using the log-ratio gap:

D(p : q ) = − log(
lhs(p, q)
rhs(p, q)

) = log(
rhs(p, q)
lhs(p, q)

) ≥ 0 (22)

The Hölder divergence between two values p(x) and q(x) is:

DH(p : q ) = − log(

∫
p(x)γ/αq(x)γ/βdx(∫

p(x)γdx
)1/α(∫ q(x)γdx

)1/β
) (23)

where γ represents the power of the absolute value Lebesgue integrable, α, β represents the conjugate
exponents, and p(x) and q(x) are positive measures as scalar values. Hölder divergence suffers from the
law of the identity of indiscernible (self-distance is not equal to zero if p(x) = q(x)), the triangle-inequality,
and the symmetry. The Hölder divergence encapsulates both the one-parameter family of skew
Bhattacharyya divergence and Cauchy–Schwarz divergence [34]. The Hölder divergence yields to the
Cauchy–Schwarz divergence if we set γ, α, β = 2:

DH
2,2 (p : q) = CS(p : q) := − log(

∫
p(x)q(x)dx(∫

p(x)2dx
)1/2(∫

q(x)2dx
)1/2 ) (24)

The Hölder divergence will yield to the skew Bhattacharyya divergence if we set γ=1:

DH
α,1 (p : q) = B1/α(p : q) := − log (

∫
p(x)1/αq(x)1/βdx) (25)

The relationship between the divergence families is illustrated in Figure 4.
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Similarly, for conjugate exponents β and α, the Hölder divergence satisfies:

DH
α,γ(p : q) = DH

β,γ(p : q) (26)

The symmetrized Hölder divergence is:

DH
α,1(p : q) =

1
2

(
DH

α,γ(p : q) + DH
α,γ(q : p)

)
(27)

=
1
2

[
F(γp) + F(γq)− F

(
γ

α
p +

γ

β
q
)
− F(

γ

β
p +

γ

α
q)
]

(28)
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To improve the accuracy of the IPS, we proposed that sided and symmetrized Bregman centroids
incorporate the symmetrized Hölder divergence. Furthermore, we introduce three different approaches
to define the APs that will be used in the proposed algorithm, as shown in Figure 5.
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• Strongest APs (MaxMean) [35]

Previous studies have proposed that the RSS be chosen based on the signal strength in the
online phase, and that the same set of APs from the fingerprinting radio map be used in the calculations,
with the assumption that the APs with the highest signal provide the highest coverage over time.
However, the strongest AP scheme may not render a good criterion in our calculation.

• Fisher Criterion:

The Fisher criterion is a metric that is used to quantify the discrimination ability of APs across a
fingerprinting radio map in four different orientations. The statistical properties of the RPs are used
to determine the APs that will be used based on their performance. A score is pointed to each AP
separately as [36]:

ξi =
∑N

j=1

(
qi(o)

j − qi

)2

∑N
j=1 ∆i(o)

j

(29)

qi =
1
N ∑N

j=1 qi
j (30)

The Fisher criterion proposes that APs with higher variance are less reliable to use in IPS
calculations; the APs will be sorted with respect to their score, and those with high scores will
be much more likely to be selected. However, Fisher criterion discrimination is only used in offline
fingerprinting based-localization. If one or more APs are not available in the online phase, the Fisher
criterion is not suitable to use.

• Random Selection

Unlike the above schemes, in which APs are selected based on some criteria, in random selection,
the APs are selected arbitrarily without considering AP performance. This scheme has less computational
complexity, as the matrix of the APs needs to be generated at different runs and does not need the variance
to be calculated, as with the Fisher criterion.
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6. Simulation and Implementation Results

This section provides details on the proposed algorithms outlined in subsequent subsections.
The RSS data were collected on the first floor of the CEAS at WMU with an area of interest map,
as shown in Figure 6. A Samsung smartphone with operating system 4.4.2 (S5, Samsung Company,
Suwon, Korea) was used to collect the RSS data. Furthermore, the proposed algorithms were
implemented on an HP Laptop using Java software (HP, Beijing, China) with an Eclipse framework
(Photon, IBM, NY, USA). Cisco Linksys E2500 Simultaneous Dual-Band Routers were used for the area
of interest. The RSS value and MAC address of the WiFi APs were collected within a time frame of
1 s for 100 s over 84 RPs within an average grid of 1 m. At each RP, a total of 47 APs were detected
throughout the area of interest.Entropy 2018, 20, x 10 of 14 
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To evaluate the performance, online phase data were collected in varying environments on
different days in 65 unknown locations with four repetitions as test points. The localization distance
error was measured by calculating the Euclidean distance between the actual location of the testing
point and the location that was estimated by the proposed algorithms. To reduce the RSS time variation,
the k-means-Bregman divergence was used on the fingerprinting radio map to cluster the offline data.
Figure 7 illustrates the effects of the clustering algorithms on localization distance error with the
number of APs when five NNs are used. As shown in Figure 7, the localization distance error was
decreased as the numbers of cluster increased, which reduced the area of interest that could improve
object localization.

Figure 8 shows the localization distance error when a different AP selection scheme was used
with the symmetrized Hölder divergence and k-mean-Bregman divergence, where the y-axis is the
localization distance error and the x-axis is the number of APs. The Fisher criterion had the highest
accuracy when the APs were less than 18, and the proposed random scheme achieved the next highest
performance. The strongest AP scheme had a lower accuracy than the other schemes. In general,
using more APs may not necessarily yield the lowest localization error. As shown in Figure 8,
the best performance occurred when 22 APs were used; as the number of APs increased after that,
the performance of the proposed systems decreased. Thus, we conclude that not only the number but
also the selection scheme of APs can affect the IPS performance.
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Comparison to Prior Work

The proposed fingerprint based-localization method is compared with prior fingerprinting
approaches such as the kernel-based localization method, kNN. Figure 9 illustrates the corresponding
cumulative probability distributions of the localization error for the three methods. In particular,
the median error for the k-means-BD-HD was 0.92 m, 0.97 m for k-means-PNN, and 1.23 m
for k-means-kNN.
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As noticed, the proposed k-means-BD-HD method provides a 90th percentile error of 0.92 m,
while for k-means-PNN it was 0.97 m, and for k-means-kNN it was 1.23 m.

7. Conclusions

IPSs incorporate the power of GPS and indoor mapping and have many potential applications
that make them very important in modern life. For example, they can be used for healthcare
services such as aiding people with impaired vision, and navigating unfamiliar buildings (e.g.,
malls, airports, subways). Several large companies, such as Apple, Google, and Microsoft, started
a fund to initiate research on IPSs. Cluster methods can be used to reduce the impact of time
variation by clustering the fingerprinting radio map into multiple partitions and then choosing
the cluster that has the lowest distance error. A radio map fingerprint was developed in CEAS to
investigate different localization algorithms and compare different approaches such as kNN and PNN.
We proposed a symmetrical Hölder divergence, which uses statistical entropy that encapsulates both
skew Bhattacharyya divergence and Cauchy–Schwarz divergence, and assessed their performance
with different AP selection schemes. The results were quite adequate for the indoor environment
with an average error of less than 1 m. the symmetrical Hölder divergence that incorporated the
k-means-Bregman divergence had the highest accuracy when 25 clusters were used with 22 APs.

We are currently in the process of investigating the user position inside smaller clusters/areas
and position prediction error distributions and quantifying the localization variation of WiFi signals
distributed in space.
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