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Abstract: Recent work has focused on the problem of nonparametric estimation of information
divergence functionals between two continuous random variables. Many existing approaches require
either restrictive assumptions about the density support set or difficult calculations at the support
set boundary which must be known a priori. The mean squared error (MSE) convergence rate of a
leave-one-out kernel density plug-in divergence functional estimator for general bounded density
support sets is derived where knowledge of the support boundary, and therefore, the boundary
correction is not required. The theory of optimally weighted ensemble estimation is generalized to
derive a divergence estimator that achieves the parametric rate when the densities are sufficiently
smooth. Guidelines for the tuning parameter selection and the asymptotic distribution of this
estimator are provided. Based on the theory, an empirical estimator of Rényi-α divergence is proposed
that greatly outperforms the standard kernel density plug-in estimator in terms of mean squared
error, especially in high dimensions. The estimator is shown to be robust to the choice of tuning
parameters. We show extensive simulation results that verify the theoretical results of our paper.
Finally, we apply the proposed estimator to estimate the bounds on the Bayes error rate of a cell
classification problem.

Keywords: divergence; differential entropy; nonparametric estimation; central limit theorem;
convergence rates; bayes error rate

1. Introduction

Information divergences are integral functionals of two probability distributions and have
many applications in the fields of information theory, statistics, signal processing, and machine
learning. Some applications of divergences include estimating the decay rates of error probabilities [1],
estimating bounds on the Bayes error [2–8] or the minimax error [9] for a classification
problem, extending machine learning algorithms to distributional features [10–13], testing
the hypothesis that two sets of samples come from the same probability distribution [14],
clustering [15–17], feature selection and classification [18–20], blind source separation [21,22],
image segmentation [23–25], and steganography [26]. For many more applications of divergence
measures, see reference [27]. There are many information divergence families including Alpha-
and Beta-divergences [28] as well as f -divergences [29,30]. In particular, the f -divergence family
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includes the well-known Kullback–Leibler (KL) divergence [31], the Rényi-α divergence integral [32],
the Hellinger–Bhattacharyya distance [33,34], the Chernoff-α divergence [5], the total variation distance,
and the Henze–Penrose divergence [6].

Despite the many applications of divergences between continuous random variables, there are
no nonparametric estimators of these functionals that achieve the parametric mean squared error
(MSE) convergence rate, are simple to implement, do not require knowledge of the boundary of the
density support set, and apply to a large set of divergence functionals. In this paper, we present the first
information divergence estimator that achieves all of the above. Specifically, we address the problem
of estimating divergence functionals when only a finite population of independent and identically
distributed (i.i.d.) samples is available from the two d-dimensional distributions that are unknown,
nonparametric, and smooth. Our contributions are as follows:

1. We propose the first information divergence estimator, referred to as EnDive, that is based on
ensemble methods. The ensemble estimator takes a weighted average of an ensemble of weak
kernel density plug-in estimators of divergence where the weights are chosen to improve the
MSE convergence rate. This ensemble construction makes it very easy to implement EnDive.

2. We prove that the proposed ensemble divergence estimator achieves the optimal parametric MSE
rate of O

(
1
N

)
, where N is the sample size when the densities are sufficiently smooth. In particular,

EnDive achieves these rates without explicitly performing boundary correction which is required
for most other estimators. Furthermore, we show that the convergence rates are uniform.

3. We prove that EnDive obeys a central limit theorem and thus, can be used to perform inference
tasks on the divergence such as testing that two populations have identical distributions or
constructing confidence intervals.

1.1. Related Work

Much work has focused on the problem of estimating the entropy and the information divergence
of discrete random variables [1,29,35–43]. However, the estimation problem for discrete random
variables differs significantly from the continuous case and thus employs different tools for both
estimation and analysis.

One approach to estimating the differential entropy and information divergence of continuous
random variables is to assume a parametric model for the underlying probability distributions [44–46].
However, these methods perform poorly when the parametric model does not fit the data well.
Unfortunately, the structure of the underlying data distribution is unknown for many applications,
and thus the chance for model misspecification is high. Thus, in many of these applications,
parametric methods are insufficient, and nonparametric estimators must be used.

While several nonparametric estimators of divergence functionals between continuous random
variables have been previously defined, the convergence rates are known for only a few of them.
Furthermore, the asymptotic distributions of these estimators are unknown for nearly all of them.
For example, Póczos and Schneider [10] established a weak consistency for a bias-corrected k- nearest
neighbor (nn) estimator for Rényi-α and other divergences of a similar form where k was fixed.
Li et al. [47] examined k-nn estimators of entropy and the KL divergence using hyperspherical data.
Wang et al. [48] provided a k-nn based estimator for KL divergence. Plug-in histogram estimators
of mutual information and divergence have been proven to be consistent [49–52]. Hero et al. [53]
provided a consistent estimator for Rényi-α divergence when one of the densities is known. However
none of these works studied the convergence rates or the asymptotic distribution of their estimators.

There has been recent interest in deriving convergence rates for divergence estimators for
continuous data [54–60]. The rates are typically derived in terms of a smoothness condition on
the densities, such as the Hölder condition [61]:
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Definition 1 (Hölder Class). Let X ⊂ Rd be a compact space. For r = (r1, . . . , rd), ri ∈ N,
define |r| = ∑d

i=1 ri and Dr = ∂|r|

∂x
r1
1 ...∂x

rd
d

. The Hölder class Σ(s, KH) of functions on L2(X ) consists of

the functions ( f ) that satisfy

|Dr f (x)− Dr f (y)| ≤ KH ‖x− y‖min(s−|r|,1) ,

for all x, y ∈ X and for all r s.t. |r| ≤ bsc.

From Definition 1, it is clear that if a function ( f ) belongs to Σ(s, KH), then f is continuously
differentiable up to order bsc. In this work, we show that EnDive achieves a parametric MSE convergence
rate of O(1/N) when s ≥ d and s > d

2 , depending on the specific form of the divergence function.
Nguyen et al. [56] proposed an f -divergence estimator that estimates the likelihood ratio of the two

densities by solving a convex optimization problem and then plugging it into the divergence formulas.
The authors proved that the minimax MSE convergence rate is parametric when the likelihood ratio is
a member of the bounded Hölder class Σ(s, KH) with s ≥ d/2. However, this estimator is restricted to
true f -divergences and may not apply to the broader class of divergence functionals that we consider
here (as an example, the L2

2 divergence is not an f -divergence). Additionally, solving the convex
problem of [56] has similar computational complexity to that of training a support vector machine
(SVM) (between O(N2) and O(N3)), which can be demanding when N is large. In contrast, the EnDive
estimator that we propose requires only the construction of simple density plug-in estimates and the
solution of an offline convex optimization problem. Therefore, the most computationally demanding
step in the EnDive estimator is the calculation of the density estimates, which has a computational
complexity no greater than O(N2).

Singh and Póczos [58,59] provided an estimator for Rényi-α divergences as well as general density
functionals that use a “mirror image” kernel density estimator. They proved that these estimators
obtain an MSE convergence rate of O

(
1
N

)
when s ≥ d for each of the densities. However their

approach requires several computations at each boundary of the support of the densities which is
difficult to implement as d gets large. Also, this computation requires knowledge of the support
(specifically, the boundaries) of the densities which is unknown in most practical settings. In contrast,
while our assumptions require the density support sets to be bounded and the boundaries to be smooth,
knowledge of the support is not required to implement EnDive.

The “linear” and “quadratic” estimators presented by Krishnamurthy et al. [57] estimate
divergence functionals that include the form

∫
f α
1 (x) f β

2 (x)dµ(x) for given α and β where f1 and
f2 are probability densities. These estimators achieve the parametric rate when s ≥ d/2 and
s ≥ d/4 for the linear and quadratic estimators, respectively. However, the latter estimator is
computationally infeasible for most functionals, and the former requires numerical integration for
some divergence functionals which can be computationally difficult. Additionally, while a suitable
α-β indexed sequence of divergence functionals of this form can be constructed that converge to the
KL divergence, this does not guarantee convergence of the corresponding sequence of divergence
estimators, as shown in reference [57]. In contrast, EnDive can be used to estimate the KL divergence
directly. Other important f -divergence functionals are also excluded from this form including some that
bound the Bayes error [2,4,6]. In contrast, our method applies to a large class of divergence functionals
and avoids numerical integration.

Finally, Kandasamy et al. [60] proposed influence function-based estimators of distributional
functionals including divergences that achieve the parametric rate when s ≥ d/2. While this method
can be applied to general functionals, the estimator requires numerical integration for some functionals.
Additionally, the estimators in both Kandasamy et al. [60] and Krishnamurthy et al. [57] require an
optimal kernel density estimator. This is difficult to construct when the density support is bounded as
it requires difficult computations at the density support set boundary and therefore, knowledge of the
density support set. In contrast, Endive does not require knowledge of the support boundary.



Entropy 2018, 20, 560 4 of 39

In addition to the MSE convergence rates, the asymptotic distribution of divergence estimators is of
interest. Asymptotic normality has been established for certain divergences between a specific density
estimator and the true density [62–64]. This differs from the problem we consider where we assume
that both densities are unknown. The asymptotic distributions of the estimators in references[56–59]
are currently unknown. Thus, it is difficult to use these estimators for hypothesis testing which is
crucial in many scientific applications. Kandasamy et al. [60] derived the asymptotic distribution of their
data-splitting estimator but did not prove similar results for their leave-one-out estimator. We establish a
central limit theorem for EnDive which greatly enhances its applicability in scientific settings.

Our ensemble divergence estimator reduces to an ensemble entropy estimator as a special
case when data from only one distribution is considered and the other density is set to a
uniform measure (see reference[28] for more on the relationship between entropy and information
divergence). The resultant entropy estimator differs from the ensemble entropy estimator proposed
by Sricharan et al. [65] in several important ways. First, the density support set must be known for
the estimator in reference [65] to perform the explicit boundary correction. In contrast, the EnDive
estimator does not require any boundary correction. To show this requires a significantly different
approach to prove the bias and variance rates of the EnDive estimator. Furthermore, the EnDive results
apply under more general assumptions for the densities and the kernel used in the weak estimators.
Finally, the central limit theorem applies to the EnDive estimator which is currently unknown for the
estimator in reference [65].

We also note that Berrett et al. [66] proposed a modification of the Kozachenko and Leonenko
estimator of entropy [67] that takes a weighted ensemble estimation approach. While their results
require stronger assumptions for the smoothness of the densities than ours do, they did obtain the
asymptotic distribution of their weighted estimator and they also showed that the asymptotic variance
of the estimator is not increased by taking a weighted average. This latter point is an important
selling point of the ensemble framework—we can improve the asymptotic bias of an estimator without
increasing the asymptotic variance.

1.2. Organization and Notation

The paper is organized as follows. We first derive the MSE convergence rates in Section 2 for a
weak divergence estimator, which is a kernel density plug-in divergence estimator. We then generalize
the theory of optimally weighted ensemble entropy estimation developed in reference [65] to obtain
the ensemble divergence estimator EnDive from an ensemble of weak estimators in Section 3. A central
limit theorem and uniform convergence rate for the ensemble estimator are also presented in Section 3.
In Section 4, we provide guidelines for selecting the tuning parameters based on experiments and the
theory derived in the previous sections. We then perform experiments in Section 4 that validate the
theory and establish the robustness of the proposed estimators to the tuning parameters.

Bold face type is used for random variables and random vectors. The conditional expectation
given a random variable Z is denoted as EZ. The variance of a random variable is denoted as V,
and the bias of an estimator is denoted as B.

2. The Divergence Functional Weak Estimator

This paper focuses on estimating functionals of the form

G ( f1, f2) =
∫

g ( f1(x), f2(x)) f2(x)dx, , (1)

where g(x, y) is a smooth functional, and f1 and f2 are smooth d-dimensional probability densities.
If g ( f1(x), f2(x)) = g

(
f1(x)
f2(x)

)
, g is convex, and g(1) = 0, then G ( f1, f2) defines the family of

f -divergences. Some common divergences that belong to this family include the KL divergence
(g(t) = − ln t) and the total variation distance (g(t) = |t− 1|). In this work, we consider a broader class
of functionals than the f -divergences, since g is allowed to be very general.
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To estimate G ( f1, f2), we first define a weak plug-in estimator based on kernel density estimators
(KDEs), that is, a simple estimator that converges slowly to the true value G ( f1, f2) in terms of MSE.
We then derive the bias and variance expressions for this weak estimator as a function of sample
size and bandwidth. We then use the resulting bias and variance expressions to derive an ensemble
estimator that takes a weighted average of weak estimators with different bandwidths and achieves
superior MSE performance.

2.1. The Kernel Density Plug-in Estimator

We use a kernel density plug-in estimator of the divergence functional in (1) as the weak estimator.
Assume that N1 i.i.d. realizations

{
Y1, . . . , YN1

}
are available from f1 and N2 i.i.d. realizations{

X1, . . . , XN2

}
are available from f2. Let hi > 0 be the kernel bandwidth for the density estimator of fi.

For simplicity of presentation, assume that N1 = N2 = N and h1 = h2 = h. The results for the more
general case of differing sample sizes and bandwidths are given in Appendix C. Let K(·) be a kernel
function with

∫
K(x)dx = 1 and ||K||∞ < ∞ where ‖K‖∞ is the `∞ norm of the kernel (K). The KDEs

for f1 and f2 are, respectively,

f̃1,h(Xj) =
1

Nhd

N

∑
i=1

K
(Xj − Yi

h

)
,

f̃2,h(Xj) =
1

Mhd

N

∑
i=1
i 6=j

K
(Xj − Xi

h

)
,

where M = N− 1. G ( f1, f2) is then approximated as

G̃h =
1
N

N

∑
i=1

g
(
f̃1,h (Xi) , f̃2,h (Xi)

)
. (2)

2.2. Convergence Rates

For many estimators, MSE convergence rates are typically provided in the form of upper
(or sometimes lower) bounds on the bias and the variance. Therefore, only the slowest converging
terms (as a function of the sample size (N)) are presented in these cases. However, to apply our
generalized ensemble theory to obtain estimators that guarantee the parametric MSE rate, we required
explicit expressions for the bias of the weak estimators in terms of the sample size (N) and the kernel
bandwidth (h). Thus, an upper bound was insufficient for our work. Furthermore, to guarantee
the parametric rate, we required explicit expressions of all bias terms that converge to zero slower
than O

(
1/
√

N
)

.
To obtain bias expressions, we required multiple assumptions on the densities f1 and f2,

the functional g, and the kernel K. Similar to reference [7,54,65], the principal assumptions we make
were that (1) f1, f2, and g are smooth; (2) f1 and f2 have common bounded support sets S ; and (3) f1

and f2 are strictly lower bounded on S . We also assume (4) that the density support set is smooth with
respect to the kernel (K(u)). The full technical assumptions and a discussion of them are contained in
Appendix A. Given these assumptions, we have the following result on the bias of G̃h:

Theorem 1. For a general g, the bias of the plug-in estimator G̃h is given by

B
[
G̃h
]
=
bsc

∑
j=1

c10,jhj + c11
1

Nhd +O
(

hs +
1

Nhd

)
. (3)
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To apply our generalized ensemble theory to the KDE plug-in estimator (G̃h), we required only
an upper bound on its variance. The following variance result required much less strict assumptions
than the bias results in Theorem 1:

Theorem 2. Assume that the functional g in (1) is Lipschitz continuous in both of its arguments with the
Lipschitz constant (Cg). Then, the variance of the plug-in estimator (G̃h) is bounded by

V
[
G̃h
]
≤ C2

g||K||2∞
11
N

.

From Theorems 1 and 2, we observe that h→ 0 and Nhd → ∞ are required for G̃h to be unbiased,
while the variance of the plug-in estimator depends primarily on the sample size (N). Note that the
constants depend on the densities f1 and f2 and their derivatives which are often unknown.

2.3. Optimal MSE Rate

From Theorem 1, the dominating terms in the bias are observed to be Θ (h) and Θ
(

1
Nhd

)
. If no

bias correction is performed, the optimal choice of h that minimizes MSE is

h∗ = Θ
(

N
−1

d+1

)
.

This results in a dominant bias term of order Θ
(

N
−1

d+1

)
. Note that this differs from the standard

result for the optimal KDE bandwidth for minimum MSE density estimation which is Θ
(

N−1/(d+4)
)

for a symmetric uniform kernel when the boundary bias is ignored [68].
Figure 1 shows a heatmap showing the leading bias term O (h) as a function of d and N when

h = N
−1

d+1 . The heatmap indicates that the bias of the plug-in estimator in (2) is small only for relatively
small values of d. This is consistent with the empirical results in reference [69] which examined the MSE
of multiple plug-in KDE and k-nn estimators. In the next section, we propose an ensemble estimator
that achieves a superior convergence rate regardless of the dimensions (d) as long as the density is
sufficiently smooth.

Sample Size N × 10
3

D
im

e
n
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io

n
d
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Figure 1. Heat map showing the predicted bias of the divergence functional plug-in estimator G̃h
based on Theorem 1 as a function of the dimensions (d) and sample size (N) when h = N

−1
d+1 . Note

that the phase transition in the bias as the dimensions (d) increase for a fixed sample size (N); the bias
remains small only for relatively small values of d. The proposed weighted ensemble estimator EnDive
eliminates this phase transition when the densities and the function g are sufficiently smooth.
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2.4. Proof Sketches of Theorems 1 and 2

To prove the bias expressions in Theorem 1, the bias is first decomposed into two parts by adding
and subtracting g

(
EZ f̃1,h(Z),EZ f̃2,h(Z)

)
within the expectation creating a “bias” term and a “variance”

term. Applying a Taylor series expansion on the bias and variance terms results in expressions that
depend on powers of BZ

[
f̃i,h(Z)

]
:= EZ f̃i,h(Z)− fi(Z) and ẽi,h(Z) := f̃i,h(Z)−EZ f̃i,h(Z), respectively.

Within the interior of the support, moment bounds can be derived from properties of the KDEs and a
Taylor series expansion of the densities. Near the boundary of the support, the smoothness assumption
on the boundary A.5 is required to obtain an expression of the bias in terms of the KDE bandwidth (h)
and the sample size (N). The full proof of Theorem 1 is given in Appendix E.

The proof of the variance result takes a different approach. The proof uses the Efron–Stein
inequality [70] which bounds the variance by analyzing the expected squared difference between
the plug-in estimator when one sample is allowed to differ. This approach provides a bound on the
variance under much less strict assumptions on the densities and the functional g than is required for
Theorem 1. The full proof of Theorem 2 is given in Appendix F.

3. Weighted Ensemble Estimation

From Theorem 1 and Figure 1, we can observe that the bias of the MSE-optimal plug-in estimator
G̃h decreases very slowly as a function of the sample size (N) when the data dimensions (d) are not
small, resulting in a large MSE. However, by applying the theory of optimally weighted ensemble
estimation, we can obtain an estimator with improved performance by taking a weighted sum of an
ensemble of weak estimators where the weights are chosen to significantly reduce the bias.

The ensemble of weak estimators is formed by choosing different values of the bandwidth parameter
h as follows. Set L = {l1, . . . , lL} to be real positive numbers that index h(li). Thus, the parameter l
indexes over different neighborhood sizes for the KDEs. Define the weight w := {w (l1) , . . . , w (lL)}
and G̃w := ∑l∈L w(l)G̃h(l). That is, for each estimator G̃h(l) there is a corresponding weight value (w(l)).
The key to reducing the MSE is to choose the weight vector (w) to reduce the lower order terms in the
bias while minimizing the impact of the weighted average on the variance.

3.1. Finding the Optimal Weight

The theory of optimally weighted ensemble estimation is a general theory that is applicable to any
estimation problem as long as the bias and variance of the estimator can be expressed in a specific way.
An early version of this theory was presented in reference [65]. We now generalize this theory so that
it can be applied to a wider variety of estimation problems. Let N be the number of available samples
and let L = {l1, . . . , lL} be a set of index values. Given an indexed ensemble of estimators

{
Êl
}

l∈L of
some parameter (E), the weighted ensemble estimator with weights w = {w (l1) , . . . , w (lL)} satisfying
∑l∈L w(l) = 1 is defined as

Êw = ∑
l∈L

w (l) Êl.

Êw is asymptotically unbiased as long as the estimators
{

Êl
}

l∈L are asymptotically unbiased.
Consider the following conditions on

{
Êl
}

l∈L:

• C.1 The bias is expressible as

B
[
Êl
]
= ∑

i∈J
ciψi(l)φi,d(N) +O

(
1√
N

)
,

where ci are constants that depend on the underlying density and are independent of N and l,
J = {i1, . . . , iI} is a finite index set with I < L, and ψi(l) are basis functions depending only on
parameter l and not on the sample size (N).
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• C.2 The variance is expressible as

V
[
Êl
]
= cv

(
1
N

)
+ o

(
1
N

)
.

Theorem 3. Assume conditions C.1 and C.2 hold for an ensemble of estimators
{

Êl
}

l∈L. Then, there exists a
weight vector (w0) such that the MSE of the weighted ensemble estimator attains the parametric rate of convergence:

E
[(

Êw0 − E
)2
]
= O

(
1
N

)
.

The weight vector (w0) is the solution to the following convex optimization problem:

minw ||w||2
subject to ∑l∈L w(l) = 1,

γw(i) = ∑l∈L w(l)ψi(l) = 0, i ∈ J.
(4)

Proof. From condition C.1, we can write the bias of the weighted estimator as

B
[
Êw
]
= ∑

i∈J
ciγw(i)φi,d(N) +O

(√
L||w||2√

N

)
.

The variance of the weighted estimator is bounded as

V
[
Êw
]
≤

L||w||22
N

. (5)

The optimization problem in (4) zeroes out the lower-order bias terms and limits the `2 norm of the
weight vector (w) to prevent the variance from exploding. This results in an MSE rate of O(1/N) when
the dimensions (d) are fixed and when L is fixed independently of the sample size (N). Furthermore,
a solution to (4) is guaranteed to exist if L > I and the vectors ai = [ψi(l1), . . . , ψi(lL)] are linearly
independent. This completes our sketch of the proof of Theorem 3.

3.2. The EnDive Estimator

The parametric rate of O (1/N) in MSE convergence can be achieved without requiring
γw(i) = 0, i ∈ J. This can be accomplished by solving the following convex optimization problem in
place of the optimization problem in Theorem 3:

minw ε

subject to ∑l∈L w(l) = 1,∣∣∣γw(i)N
1
2 φi,d(N)

∣∣∣ ≤ ε, i ∈ J,

‖w‖2
2 ≤ ηε,

(6)

where the parameter η is chosen to achieve a trade-off between bias and variance. Instead of forcing
γw(i) = 0, the relaxed optimization problem uses the weights to decrease the bias terms at a rate
of O

(
1/
√

N
)

, yielding an MSE convergence rate of O(1/N). In fact, it was shown in reference [71]
that the optimization problem in (6) guarantees the parametric MSE rate as long as the conditions of
Theorem 3 are satisfied and a solution to the optimization problem in (4) exists (the conditions for this
existence are given in the proof of Theorem 3).

We now construct a divergence ensemble estimator from an ensemble of plug-in KDE divergence
estimators. Consider first the bias result in (3) where g is general, and assume that s ≥ d. In this case, the
bias contains a O

(
1

hdN

)
term. To guarantee the parametric MSE rate, any remaining lower-order bias
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terms in the ensemble estimator must be no slower than O
(

1/
√

N
)

. Let h(l) = lN−1/(2d) where l ∈ L.

Then O
(

1
h(l)dN

)
= O

(
1

ld
√

N

)
. We therefore obtain an ensemble of plug-in estimators

{
G̃h(l)

}
l∈L

and a

weighted ensemble estimator G̃w = ∑l∈L w(l)G̃h(l). The bias of each estimator in the ensemble satisfies
the condition C.1 with ψi(l) = li and φi,d(N) = N−i/(2d) for i = 1, . . . , d. To obtain a uniform bound
on the bias with respect to w and L, we also include the function ψd+1(l) = l−d with corresponding
φd+1,d(N) = N−1/2. The variance also satisfies the condition C.2. The optimal weight (w0) is found by
using (6) to obtain an optimally weighted plug-in divergence functional estimator G̃w0 with an MSE

convergence rate of O
(

1
N

)
as long as s ≥ d and L ≥ d. Otherwise, if s < d, we can only guarantee the

MSE rate up to O
(

1
Ns/d

)
. We refer to this estimator as the Ensemble Divergence (EnDive) estimator

and denote it as G̃EnDive.
We note that for some functionals (g) (including the KL divergence and the Renyi-α divergence

integral), we can modify the EnDive estimator to obtain the parametric rate under the less strict
assumption that s > d/2. For details on this approach, see Appendix B.

3.3. Central Limit Theorem

The following theorem shows that an appropriately normalized ensemble estimator G̃w converges
in distribution to a normal random variable under rather general conditions. Thus, the same
result applies to the EnDive estimator G̃EnDive. This enables us to perform hypothesis testing on
the divergence functional which is very useful in many scientific applications. The proof is based on
the Efron–Stein inequality and an application of Slutsky’s Theorem (Appendix G).

Theorem 4. Assume that the functional g is Lipschitz in both arguments with the Lipschitz constant Cg.
Further assume that h(l) = o(1), N → ∞, and Nh(l)d → ∞ for each l ∈ L. Then, for a fixed L, the asymptotic
distribution of the weighted ensemble estimator G̃w is

Pr
((

G̃w −E
[
G̃w
])

/
√
V
[
G̃w
]
≤ t
)
→ Pr(S ≤ t),

where S is a standard normal random variable.

3.4. Uniform Convergence Rates

Here, we show that the optimally weighted ensemble estimators achieve the parametric MSE
convergence rate uniformly. Denote the subset of Σ (s, KH) with densities bounded between ε0 and ε∞

as Σ (s, KH, ε0, ε∞).

Theorem 5. Let G̃EnDive be the EnDive estimator of the functional

G(p, q) =
∫

g (p(x), q(x)) q(x)dx,

where p and q are d-dimensional probability densities. Additionally, let r = d and assume that s > r. Then,

sup
p,q∈Σ(s,KH ,ε0,ε∞)

E
[(

G̃w0 −G(p, q)
)2
]
≤ C

N
, (7)

where C is a constant.

The proof decomposes the MSE into the variance plus the square of the bias. The variance is
bounded easily by using Theorem 2. To bound the bias, we show that the constants in the bias terms
are continuous with respect to the densities p and q under an appropriate norm. We then show
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that Σ (s, KH, ε0, ε∞) is compact with respect to this norm and then apply an extreme value theorem.
Details are given in Appendix H.

4. Experimental Results

In this section, we discuss the choice of tuning parameters and validate the EnDive estimator’s
convergence rates and the central limit theorem. We then use the EnDive estimator to estimate bounds
on the Bayes error for a single-cell bone marrow data classification problem.

4.1. Tuning Parameter Selection

The optimization problem in (6) has parameters η, L, and L. By applying (6), and the resulting
MSE of the ensemble estimator is

O
(

ε2/N
)
+O

(
Lη2ε2/N

)
, (8)

where each term in the sum comes from the bias and variance, respectively. From this expression
and (6), we see that the parameter η provides a tradeoff between bias and variance. Increasing η

enables the norm of the weight vector to be larger. This means the feasible region for the variable w
increases in size as η increases which can result in decreased bias. However, as η contributes to the
variance term, increasing η may result in increased variance.

If all of the constants in (3) and an exact expression for the variance of the ensemble estimator
were known, then η could be chosen to optimize this tradeoff in bias and variance and thus minimize
the MSE. Since these constants are unknown, we can only choose η based on the asymptotic results.
From (8), this would suggest setting η = 1/

√
L. In practice, we find that for finite sample sizes,

the variance in the ensemble estimator is less than the upper bound of Lη2ε2/N. Thus, setting
η = 1/

√
L is unnecessarily restrictive. We find that, in practice, setting η = 1 works well.

Upon first glance, it appears that for fixed L, the set L that parameterizes the kernel widths
can, in theory, be chosen by minimizing ε in (6) over L in addition to w. However, adding this
constraint results in a non-convex optimization problem since w does not lie in the non-negative
orthant. A parameter search over possible values for L is another possibility. However, this may not
be practical as ε generally decreases as the size and spread of L increases. In addition, for finite sample
sizes, decreasing ε does not always directly correspond to a decrease in MSE, as very high or very low
values of h(l) can lead to inaccurate density estimates, resulting in a larger MSE.

Given these limitations, we provide the following recommendations for L. Denote the value of
the minimum value of l such that f̃i,h(lmin)

(Xj) > 0 ∀i = 1, 2 as lmin and the diameter of the support S as
D. To ensure the KDEs are bounded away from zero, we require that min(L) ≥ lmin. As demonstrated
in Figure 2, the weights in w0 are generally largest for the smallest values of L. This indicates that
min(L) should also be sufficiently larger than lmin to render an adequate density estimate. Similarly,
max(L) should be sufficiently smaller than the diamter (D) as high bandwidth values can lead to high
bias in the KDEs. Once these values are chosen, all other L values can then be chosen to be equally
spaced between min(L) and max(L).
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Figure 2. The optimal weights from (6) when d = 4, N = 3100, L = 50, and l are uniformly spaced
between 1.5 and 3. The lowest values of l are given the highest weight. Thus, the minimum value of
bandwidth parameters L should be sufficiently large to render an adequate estimate.

An efficient way to choose lmin and lmax is to select the integers kmin and kmax and compute the
kmin and kmax nearest neighbor distances of all the data points. The bandwidths h(lmin) and h(lmax)

can then be chosen to be the maximums of these corresponding distances. The parameters lmin and
lmax can then be computed from the expression h(l) = lN−

1
2d . This choice ensures that a minimum of

kmin points are within the kernel bandwidth for the density estimates at all points and that a maximum
of kmax points are within the kernel bandwidth for the density estimates at one of the points.

Once min(L) and max(L) have been chosen, the similarity of bandwidth values h(l) and basis
functions ψi,d(l) increases as L increases, resulting in a negligible decrease in the bias. Hence, L should
be chosen to be large enough for sufficient bias but small enough so that the bandwidth values h(l) are
sufficiently distinct. In our experiments, we found 30 ≤ L ≤ 60 to be sufficient.

4.2. Convergence Rates Validation: Rényi-α Divergence

To validate our theoretical convergence rate results, we estimated the Rényi-α divergence integral
between two truncated multivariate Gaussian distributions with varying dimension and sample sizes.
The densities had means of µ̄1 = 0.7× 1̄d, µ̄2 = 0.3× 1̄d and covariance matrices of 0.4× Id, where 1̄d
is a d-dimensional vector of ones, and Id is a d× d identity matrix. We restricted the Gaussians to the
unit cube and used α = 0.5.

The left plots in Figure 3 show the MSE (200 trials) of the standard plug-in estimator implemented
with a uniform kernel and the proposed optimally weighted estimator EnDive for various dimensions
and sample sizes. The parameter set L was selected based on a range of k-nearest neighbor distances.

The bandwidth used for the standard plug-in estimator was selected by setting h f ixed(l∗) = l∗N−
1

d+1 ,
where l∗ was chosen from L to minimize the MSE of the plug-in estimator. For all dimensions
and sample sizes, EnDive outperformed the plug-in estimator in terms of MSE. EnDive was also
less biased than the plug-in estimator and even had lower variance at smaller sample sizes (e.g.,
N = 100). This reflects the strength of ensemble estimators—the weighted sum of a set of relatively poor
estimators can result in a very good estimator. Note also that for the larger values of N, the ensemble
estimator MSE rates approached the theoretical rate based on the estimated log–log slope given in
Table 1.
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Table 1. Negative log–log slope of the EnDive mean squared error (MSE) as a function of the sample
size for various dimensions. The slope was calculated beginning at Nstart. The negative slope was
closer to 1 with Nstart = 102.375 than for Nstart = 102 indicating that the asymptotic rate had not yet
taken effect at Nstart = 102.

Estimator d = 5 d = 10 d = 15

Nstart = 102 0.85 0.84 0.80
Nstart = 102.375 0.96 0.96 0.95

To illustrate the difference between the problems of density estimation and divergence functional
estimation, we estimated the average pointwise squared error between the KDE f̃1,h and f1 in the
previous experiment. We used exactly the same bandwidth and kernel as the standard plug-in
estimators in Figure 3 and calculated the pointwise error at 10,000 points sampled from f1. The results
are shown in Figure 4. From these results, we see that the KDEs performed worse as the dimension of
the densities increased. Additionally, we observe by comparing Figures 3 and 4, the average pointwise
squared error decreased at a much slower rate as a function of the sample size (N) than the MSE of the
plug-in divergence estimators, especially for larger dimensions (d).
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Figure 3. (Left) Log–log plot of MSE of the uniform kernel plug-in (“Kernel”) and the optimally
weighted EnDive estimator for various dimensions and sample sizes. (Right) Plot of the true
values being estimated compared to the average values of the same estimators with standard error
bars. The proposed weighted ensemble estimator approaches the theoretical rate (see Table 1),
performed better than the plug-in estimator in terms of MSE and was less biased.
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Figure 4. Log–log plot of the average pointwise squared error between the KDE f̃1,h and f1 for various
dimensions and sample sizes using the same bandwidth and kernel as the standard plug-in estimators
in Figure 3. The KDE and the density were compared at 10,000 points sampled from f1.

Our experiments indicated that the proposed ensemble estimator is not sensitive to the tuning
parameters. See reference [72] for more details.

4.3. Central Limit Theorem Validation: KL Divergence

To verify the central limit theorem of the EnDive estimator, we estimated the KL divergence
between two truncated Gaussian densities, again restricted to the unit cube. We conducted two
experiments where (1) the densities were different with means of µ̄1 = 0.7× 1̄d, µ̄2 = 0.3× 1̄d and
covariances of matrices σi × Id, σ1 = 0.1, σ2 = 0.3; and where (2) the densities were the same with
means of 0.3× 1̄d and covariance matrices of 0.3× Id. For both experiments, we chose d = 6 and four
different sample sizes (N). We found that the correspondence between the quantiles of the standard
normal distribution and the quantiles of the centered and scaled EnDive estimator was very high
under all settings (see Table 2 and Figure 5) which validates Theorem 4.



Entropy 2018, 20, 560 14 of 39

–4 –2 0 2 4

Standard Normal Quantiles

–4

–2

0

2

4

Q
u
a
n
ti
le

s
 o

f 
In

p
u
t 
S

a
m

p
le

N =100, Same Distributions

–4 –2 0 2 4

Standard Normal Quantiles

–4

–2

0

2

4

6

Q
u
a
n
ti
le

s
 o

f 
In

p
u
t 
S

a
m

p
le

N =100, Different Distributions

–4 –2 0 2 4

Standard Normal Quantiles

–4

–2

0

2

4

Q
u
a
n
ti
le

s
 o

f 
In

p
u
t 
S

a
m

p
le

N =1000, Same Distributions

–4 –2 0 2 4

Standard Normal Quantiles

–4

–2

0

2

4

6

Q
u
a
n
ti
le

s
 o

f 
In

p
u
t 
S

a
m

p
le

N =1000, Different Distributions

Figure 5. QQ-plots comparing the quantiles of a standard normal random variable and the quantiles of
the centered and scaled EnDive estimator applied to the Kullback–Leibler (KL) divergence when the
distributions were the same and different. Quantiles were computed from 10,000 trials. These plots
correspond to the same experiments as in Table 2 when N = 100 and N = 1000. The correspondence
between quantiles is high for all cases.

Table 2. Comparison between quantiles of a standard normal random variable and the quantiles
of the centered and scaled EnDive estimator applied to the KL divergence when the distributions
were the same and different. Quantiles were computed from 10,000 trials. The parameter ρ gives the
correlation coefficient between the quantiles, while β is the estimated slope between the quantiles.
The correspondence between quantiles was very high for all cases.

N
Same Different

1 − ρ β 1 − ρ β

100 2.35× 10−4 1.014 9.97× 10−4 0.993
500 9.48× 10−5 1.007 5.06× 10−4 0.999

1000 8.27× 10−5 0.996 4.30× 10−4 0.988
5000 8.59× 10−5 0.995 4.47× 10−4 1.005

4.4. Bayes Error Rate Estimation on Single-Cell Data

Using the EnDive estimator, we estimated bounds on the Bayes error rate (BER) of a classification
problem involving MARS-seq single-cell RNA-sequencing (scRNA-seq) data measured from developing
mouse bone marrow cells enriched for the myeloid and erythroid lineages [73]. However, we first
demonstrated the ability of EnDive to estimate the bounds on the BER of a simulated problem. In this
simulation, the data were drawn from two classes where each class distribution was a d = 10 dimensional
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Gaussian distribution with different means and the identity covariance matrix. We considered two cases,
namely, the distance between the means was 1 or 3. The BER was calculated in both cases. We then
estimated upper and lower bounds on the BER by estimating the Henze–Penrose (HP) divergence [4,6].
Figure 6 shows the average estimated upper and lower bounds on the BER with standard error bars
for both cases. For all tested sample sizes, the BER was within one standard deviation of the estimated
lower bound. The lower bound was also closer, on average, to the BER for most of the tested sample sizes
(lower sample sizes with smaller distances between means were the exceptions). Generally, these resuls
indicate that the true BER is relatively close to the estimated lower bound, on average.
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Figure 6. Estimated upper (UB) and lower bounds (LB) on the Bayes error rate (BER) based on
estimating the HP divergence between two 10-dimensional Gaussian distributions with identity
covariance matrices and distances between means of 1 (left) and 3 (right), respectively. Estimates were
calculated using EnDive, with error bars indicating the standard deviation from 400 trials. The upper
bound was closer, on average, to the true BER when N was small (≈100–300) and the distance between
the means was small. The lower bound was closer, on average, in all other cases.

We then estimated similar bounds on the scRNA-seq classification problem using EnDive.
We considered the three most common cell types within the data: erythrocytes (eryth.),
monocytes (mono.), and basophils (baso.) (N = 1095, 559, 300, respectively). We estimated the
upper and lower bounds on the pairwise BER between these classes using different combinations of
genes selected from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with
the hematopoietic cell lineage [74–76]. Each collection of genes contained 11–14 genes. The upper and
lower bounds on the BER were estimated using the Henze–Penrose divergence [4,6]. The standard
deviations of the bounds for the KEGG-based genes were estimated via 1000 bootstrap iterations.
The KEGG-based bounds were compared to BER bounds obtained from 1000 random selections of 12
genes. In all cases, we compared the bounds to the performance of a quadratic discriminant analysis
classifier (QDA) with 10-fold cross validation. Note that to correct for undersampling in scRNA-seq
data, we first imputed the undersampled data using MAGIC [77].

All results are given in Table 3. From these results, we note that erythrocytes are relatively easy to
distinguish from the other two cell types as the BER lower bounds were within nearly two standard
deviations of zero when using genes associated with platelet, erythrocyte, and neutrophil development
as well as a random selection of 12 genes. This is corroborated by the QDA cross-validated results
which were all within two standard deviations of either the upper or lower bound for these gene sets.
In contrast, the macrophage-associated genes seem to be less useful for distinguishing erythrocytes
than the other gene sets.
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Table 3. Misclassification rate of a quadratic discriminant analysis classifier (QDA) classifier and
estimated upper bounds (UB) and lower bounds (LB) of the pairwise BER between mouse bone
marrow cell types using the Henze–Penrose divergence applied to different combinations of genes
selected from the KEGG pathways associated with the hematopoietic cell lineage. Results are presented
as percentages in the form of mean ± standard deviation. Based on these results, erythrocytes are
relatively easy to distinguish from the other two cell types using these gene sets.

Platelets Erythrocytes Neutrophils Macrophages Random

Eryth. vs. Mono., LB 2.8± 1.5 1.2± 0.6 0.6± 0.6 8.5± 1.2 14.4± 8.4
Eryth. vs. Mono., UB 5.3± 2.9 2.4± 1.3 1.2± 1.3 15.5± 1.9 23.2± 12.3
Eryth. vs. Mono., Prob. Error 0.9 0.4 1.3 3.4 7.2± 5.4
Eryth. vs. Baso., LB 0.5± 0.6 0.05± 0.12 0.6± 0.5 5.1± 0.9 11.9± 5.5
Eryth. vs. Baso., UB 1.0± 1.1 0.1± 0.2 1.1± 0.9 9.6± 1.6 20.3± 8.8
Eryth. vs. Baso., Prob. Error 1.2 0.3 1.9 3.6 6.8± 5.0
Baso. vs. Mono., LB 31.1± 1.8 27.8± 3.1 27.1± 2.6 31.6± 1.3 32.1± 2.6
Baso. vs. Mono., UB 42.8± 1.4 39.9± 2.8 39.4± 2.4 43.2± 1.0 43.5± 1.2
Baso. vs. Mono., Prob. Error 28.8 30.9 23.9 22.4 29.7± 5.7

We also found that basophils are difficult to distinguish from monocytes using these gene sets.
Assuming the relative abundance of each cell type is representative of the population, a trivial upper
bound on the BER is 300/(300 + 559) ≈ 0.35 which is between all of the estimated lower and upper
bounds. The QDA results were also relatively high (and may be overfitting the data in some cases
based on the estimated BER bounds), suggesting that different genes should be explored for this
classification problem.

5. Conclusions

We derived the MSE convergence rates for a kernel density plug-in estimator for a large class
of divergence functionals. We generalized the theory of optimally weighted ensemble estimation
and derived an ensemble divergence estimator EnDive that achieves the parametric rate when the
densities are more than d times differentiable. The estimator we derived can be applied to general
bounded density support sets and can be implemented without knowledge of the support, which is a
distinct advantage over other competing estimators. We also derived the asymptotic distribution of
the estimator, provided some guidelines for tuning parameter selection, and experimentally validated
the theoretical convergence rates for the case of empirical estimation of the Rényi-α divergence
integral. We then performed experiments to examine the estimator’s robustness to the choice of tuning
parameters, validated the central limit theorem for KL divergence estimation, and estimated bounds
on the Bayes error rate for a single cell classification problem.

We note that based on the proof techniques employed in our work, our weighted ensemble
estimators are easily extended beyond divergence estimation to more general distributional functionals
which may be integral functionals of any number of probability distributions. We also show in
Appendix B that EnDive can be easily modified to obtain an estimator that achieves the parametric
rate when the densities are more than d/2 times differentiable and the functional g has a specific
form that includes the Rényi and KL divergences. Future work includes extending this modification
to functionals with more general forms. An important divergence of interest in this context is the
Henze–Penrose divergence that we used to bound the Bayes error. Further future work will focus
on extending this work on divergence estimation to k-nn based estimators where knowledge of the
support is, again, not required. This will improve the computational burden, as k-nn estimators require
fewer computations than standard KDEs.
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HP Henze–Penrose

Appendix A. Bias Assumptions

Our full assumptions to prove the bias expressions for the estimator G̃h were as follows:

• (A.0): Assume that the kernel K is symmetric, is a product kernel, and has bounded support in
each dimension.

• (A.1): Assume there exist constants ε0, ε∞, such that 0 < ε0 ≤ fi(x) ≤ ε∞ < ∞, ∀x ∈ S.
• (A.2): Assume that the densities are fi ∈ Σ(s, KH) in the interior of S with s ≥ 2.
• (A.3): Assume that g has an infinite number of mixed derivatives.
• (A.4): Assume that

∣∣∣ ∂k+l g(x,y)
∂xk∂yl

∣∣∣, k, l = 0, 1, . . . are strictly upper bounded for ε0 ≤ x, y ≤ ε∞.

• (A.5): Assume the following boundary smoothness condition: Let px(u) : Rd → R be a
polynomial in u of order q ≤ r = bsc whose coefficients are a function of x and are r − q
times differentiable. Then, assume that

∫
x∈S

(∫
u:K(u)>0, x+uh/∈S

K(u)px(u)du
)t

dx = vt(h),

where vt(h) admits the expansion

vt(h) =
r−q

∑
i=1

ei,q,thi + o
(
hr−q) ,

for some constants ei,q,t.

We focused on finite support kernels for simplicity in the proofs, although it is likely that our
results extend to some infinitely supported kernels as well. We assumed relatively strong conditions
on the smoothness of g in A.3 to enable us to obtain an estimator that achieves good convergence rates
without knowledge of the boundary of the support set. While this smoothness condition may seem
restrictive, in practice, nearly all divergence and entropy functionals of interest satisfy this condition.
Functionals of interest that do not satisfy this assumption (e.g., the total variation distance) typically
have at least one point that is not differentiable which violates the assumptions of all competing
estimators [54,57–60,65]. We also note that to obtain simply an upper bound on the bias for the plug-in
estimator, much less restrictive assumptions on the functional g are sufficient.

Assumption A.5 requires the boundary of the density support set to be smooth with respect to
the kernel (K(u)) in the sense that the expectation of the area outside of S with respect to any random
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variable u with smooth distribution is a smooth function of the bandwidth (h). Note that we do
not require knowledge of the support of the unknown densities to actually implement the estimator
(G̃h). As long as assumptions A.0–A.5 are satisfied, then the bias results we obtain are valid, and
therefore, we can obtain the parametric rate with the EnDive estimator. This is in contrast to many
other estimators of information theoretic measures such as those presented in references [59,60,65]. In
these cases, the boundary of the support set must be known precisely to perform boundary correction
to obtain the parametric rate, since the boundary correction is an explicit step in these estimators. In
contrast, we do not need to explicitly perform a boundary correction.

It is not necessary for the boundary of S to have smooth contours with no edges or corners as
assumption A.5 is satisfied by the following case:

Theorem A1. Assumption A.5 is satisfied when S = [−1, 1]d and when K is the uniform rectangular kernel;
that is, K(x) = 1 for all x : ||x||1 ≤ 1/2.

The proof is given in Appendix D. The methods used to prove this can be easily extended to
show that A.5 is satisfied with the uniform rectangular kernel and other similar supports with flat
surfaces and corners. Furthermore, we showed in reference [78] that A.5 is satisfied using the uniform
spherical kernel with a density support set equal to the unit cube. Note that assumption A.0 is trivially
satisfied by the uniform rectangular kernel as well. Again, this is easily extended to more complicated
density support sets that have boundaries that contain flat surfaces and corners. Determining other
combinations of kernels and density support sets that satisfy A.5 is left for future work.

Densities for which assumptions A.1–A.2 hold include the truncated Gaussian distribution
and the beta distribution on the unit cube. Functions for which assumptions A.3–A.4 hold include

g(x, y) = − ln
(

x
y

)
and g(x, y) =

(
x
y

)α
.

Appendix B. Modified EnDive

If the functional g has a specific form, we can modify the EnDive estimator to obtain an estimator
that achieves the parametric rate when s > d/2. Specifically, we have the following theorem:

Theorem A2. Assume that assumptions A.0–A.5 hold. Furthermore, if g(x, y) has k, l-th order mixed

derivatives ∂k+l g(x,y)
∂xk∂yl that depend on x, y only through xαyβ for some α, β ∈ R, then for any positive integer

λ ≥ 2, the bias of G̃h is

B
[
G̃h
]

=
bsc

∑
j=1

c10,jhj +
λ/2

∑
q=1

bsc

∑
j=0

c11,q,j
hj(

Nhd
)q

+O

hs +
1(

Nhd
) λ

2

 . (A1)

Divergence functionals that satisfy the mixed derivatives condition required for (A1) include the
KL divergence and the Rényi-α divergence. Obtaining similar terms for other divergence functionals
requires us to separate the dependence on h of the derivatives of g evaluated at EZ f̃i,h(Z). This is left
for future work. See Appendix E for details.

As compared to (3), there are many more terms in (A1). These terms enable us to modify the
EnDive estimator to achieve the parametric MSE convergence rate when s > d/2 for an appropriate
choice of bandwidths, whereas the terms in (3) requires s ≥ d to achieve the same rate. This is
accomplished by letting h(l) decrease at a faster rate, as follows.
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Let δ > 0 and h(l) = lN
−1

d+δ where l ∈ L. The bias of each estimator in the resulting ensemble

has terms proportional to l j−dqN−
j+q
d+δ , where j, q ≥ 0 and j + q > 0. Then, the bias of G̃h(l) satisfies

condition C.1 if φj,q,d(N) = N−
j+q
d+δ , ψj,q(l) = l j−dq, and

J = {{j, q} : 0 < j + q < (d + 1)/2, q ∈ {0, 1, 2, . . . , λ/2}, j ∈ {0, 1, 2, . . . , bsc}} , (A2)

as long as L > |J| = I. The variance also satisfies condition C.2. The optimal weight (w0) is found by
using (6) to obtain an optimally weighted plug-in divergence functional estimator G̃w0 that achieves the
parametric convergence rate if λ ≥ d/δ+ 1 and if s ≥ (d+ δ)/2. Otherwise, if s < (d+ δ)/2, we can only
guarantee the MSE rate up to O

(
1

N2s/(d+δ)

)
. We refer to this estimator as the modified EnDive estimator

and denote it as G̃Mod. The ensemble estimator G̃Mod is summarized in Algorithm A1 when δ = 1.

Algorithm A1: The Modified EnDive Estimator
Input: η, L positive real numbers L, samples {Y1, . . . , YN} from f1, samples {X1, . . . , XN} from f2,

dimension d, function g, kernel K
Output: The modified EnDive estimator G̃Mod

1: Solve for w0 using (6) with φj,q,d(N) = N−
j+q
d+1 and basis functions ψj,q(l) = l j−dq, l ∈ l̄, and

{i, j} ∈ J defined in (A2)
2: for all l ∈ l̄ do

3: h(l)← lN
−1

d+1

4: for i = 1 to N do

5: f̃1,h(l)(Xi)← 1
Nh(l)d ∑N

j=1 K
(Xi−Yj

h(l)

)
, f̃2,h(l)(Xi)← 1

(N−1)h(l)d ∑N
j=1
j 6=i

K
(Xi−Xj

h(l)

)
6: end for
7: G̃h(l) ← 1

N ∑N
i=1 g

(
f̃1,h(l)(Xi), f̃2,h(l)(Xi)

)
8: end for
9: G̃Mod ← ∑l∈L w0(l)G̃h(l)

The parametric rate can be achieved with G̃Mod under less strict assumptions on the smoothness
of the densities than those required for G̃EnDive. Since δ > 0 can be arbitrary, it is theoretically possible
to achieve the parametric rate with the modified estimator as long as s > d/2. This is consistent
with the rate achieved by the more complex estimators proposed in reference [57]. We also note
that the central limit theorem applies and that the convergence is uniform as Theorem 5 applies for
s > b(d + δ)/2c and s ≥ (d + δ)/2.

These rate improvements come at a cost for the number of parameters (L) required to implement
the weighted ensemble estimator. If s ≥ d+δ

2 , then the size of J for G̃Mod is in the order of d2

8δ . This may
lead to increased variance in the ensemble estimator as indicated by (5).

So far, G̃Mod can only be applied to functionals (g(x, y)) with mixed derivatives of the form of
xαyβ. Future work is required to extend this estimator to other functionals of interest.
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Appendix C. General Results

Here we present the generalized forms of Theorems 1 and 2 where the sample sizes and
bandwidths of the two datasets are allowed to differ. In this case, the KDEs are

f̃1,h1(Xj) =
1

N1hd
1

N1

∑
i=1

K
(Xj − Yi

h1

)
,

f̃2,h2(Xj) =
1

M2hd
2

N2

∑
i=1
i 6=j

K
(Xj − Xi

h2

)
,

where M2 = N2 − 1. G ( f1, f2) is then approximated as

G̃h1,h2 =
1

N2

N2

∑
i=1

g
(
f̃1,h1 (Xi) , f̃2,h2 (Xi)

)
. (A3)

We also generalize the bias result to the case where the kernel (K) has the order ν which means
that the j-th moment of the kernel Ki defined as

∫
tjKi(t)dt is zero for all j = 1, . . . , ν− 1 and i = 1, . . . , d

where Ki is the kernel in the i-th coordinate. Note that symmetric product kernels have the order ν ≥ 2.
The following theorem on the bias follows under assumptions A.0–A.5:

Theorem A3. For general g, the bias of the plug-in estimator (G̃h1,h2) is of the form

B
[
G̃h1,h2

]
=

r

∑
j=1

(
c4,1,jh

j
1 + c4,2,jh

j
2

)
+

r

∑
j=1

r

∑
i=1

c5,i,jh
j
1hi

2 +O (hs
1 + hs

2)

+c9,1
1

N1hd
1
+ c9,2

1
N2hd

2
+ o

(
1

N1hd
1
+

1
N2hd

2

)
. (A4)

Furthermore, if g(x, y) has k, l-th order mixed derivatives ∂k+l g(x,y)
∂xk∂yl that depend on x, y only through xαyβ

for some α, β ∈ R, then for any positive integer λ ≥ 2, the bias is of the form

B
[
G̃h1,h2

]
=

r

∑
j=1

(
c4,1,jh

j
1 + c4,2,jh

j
2

)
+

r

∑
j=1

r

∑
i=1

c5,i,jh
j
1hi

2 +O (hs
1 + hs

2)

λ/2

∑
j=1

r

∑
m=0

(
c9,1,j,m

hm
1(

N1hd
1
)j + c9,2,j,m

hm
2(

N2hd
2
)j

)

+
λ/2

∑
j=1

r

∑
m=0

λ/2

∑
i=1

r

∑
n=0

c9,j,i,m,n
hm

1 hn
2(

N1hd
1
)j (N2hd

2
)i

+O

 1(
N1hd

1
) λ

2
+

1(
N2hd

2
) λ

2

 . (A5)

Note that the bandwidth and sample size terms do not depend on the order of the kernel (ν).
Thus, using a higher-order kernel does not provide any benefit to the convergence rates. This lack
of improvement is due to the bias of the density estimators at the boundary of the density support
sets. To obtain better convergence rates using higher-order kernels, boundary correction would be
necessary [57,60]. In contrast, we improve the convergence rates by using a weighted ensemble that
does not require boundary correction.

The variance result requires much less strict assumptions than the bias results:
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Theorem A4. Assume that the functional g in (1) is Lipschitz continuous in both of its arguments with the
Lipschitz constant Cg. Then, the variance of the plug-in estimator (G̃h1,h2) is bounded by

V
[
G̃h1,h2

]
≤ C2

g||K||2∞

(
10
N2

+
N1

N2
2

)
.

The proofs of these theorems are in Appendices E and F. Theorems 1 and 2 then follow.

Appendix D. Proof of Theorem A1 (Boundary Conditions)

Consider a uniform rectangular kernel K(x) that satisfies K(x) = 1 for all x, such that ||x||1 ≤ 1/2.
Also, consider the family of probability densities ( f ) with rectangular support S = [−1, 1]d. We prove
Theorem A1 which is that that S satisfies the following smoothness condition (A.5): for any polynomial
px(u) : Rd → R of order q ≤ r = bscwith coefficients that are r− q times differentiable wrt x,

∫
x∈S

(∫
u:||u||1≤ 1

2 , x+uh/∈S
px(u)du

)t
dx = vt(h), (A6)

where vt(h) has the expansion

vt(h) =
r−q

∑
i=1

ei,q,thi + o
(
hr−q) .

Note that the inner integral forces the xs under consideration to be boundary points via the
constraint x + uh /∈ S .

Appendix D.1. Single Coordinate Boundary Point

We begin by focusing on points x that are boundary points by virtue of a single coordinate xi,
such that xi + uih /∈ S . Without loss of generality, assume that xi + uih > 1. The inner integral in
(A6) can then be evaluated first with respect to (wrt) all coordinates other than i. Since all of these
coordinates lie within the support, the inner integral over these coordinates will amount to integration
of the polynomial px(u) over a symmetric d− 1 dimensional rectangular region

∣∣uj
∣∣ ≤ 1

2 for all j 6= i.
This yields a function ∑

q
m=1 p̃m(x)um

i where the coefficients p̃m(x) are each r− q times differentiable
wrt x.

With respect to the ui coordinate, the inner integral will have limits from 1−xi
h to 1

2 for some
1 > xi > 1− h

2 . Consider the p̃q(x)u
q
i monomial term. The inner integral wrt this term yields

q

∑
m=1

p̃m(x)
∫ 1

2

1−xi
h

um
i dui =

q

∑
m=1

p̃m(x)
1

m + 1

(
1

2m+1 −
(

1− xi
h

)m+1
)

. (A7)

Raising the right-hand-side of (A7) to the power of t results in an expression of the form

qt

∑
j=0

p̌j(x)
(

1− xi
h

)j
, (A8)

where the coefficients p̌j(x) are r− q times differentiable wrt x. Integrating (A8) over all the coordinates
in x other than xi results in an expression of the form

qt

∑
j=0

p̄j(xi)

(
1− xi

h

)j
, (A9)

where, again, the coefficientsp̄j(xi) are r − q times differentiable wrt xi. Note that since the other
coordinates of x other than xi are far away from the boundary, the coefficients p̄j(xi) are independent
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of h. To evaluate the integral of (A9), consider the r− q term Taylor series expansion of p̄j(xi) around
xi = 1. This will yield terms of the form

∫ 1

1−h/2

(1− xi)
j+k

hk dxi = − (1− xi)
j+k+1

hk(j + k + 1)

∣∣∣∣∣
xi=1

xi=1−h/2

=
hj+1

(j + k + 1)2j+k+1 ,

for 0 ≤ j ≤ r− q, and 0 ≤ k ≤ qt. Combining terms results in the expansion vt(h) = ∑
r−q
i=1 ei,q,thi + o (hr−q).

Appendix D.2. Multiple Coordinate Boundary Point

The case where multiple coordinates of point x are near the boundary is a straightforward
extension of the single boundary point case, so we only sketch the main ideas here. As an example,
consider the case where two of the coordinates are near the boundary. Assume for notational ease
that they are x1 and x2 and that x1 + u1h > 1 and x2 + u2h > 1. The inner integral in (A6) can again
be evaluated first wrt all coordinates other than 1 and 2. This yields a function ∑

q
m,j=1 p̃m,j(x)um

1 uj
2

where the coefficients p̃m,j(x) are each r− q times differentiable wrt x. Integrating this wrt x1 and x2

and then raising the result to the power of t yields a double sum similar to (A8). Integrating this over
all the coordinates in x other than x1 and x2 gives a double sum similar to (A9). Then, a Taylor series
expansion of the coefficients and integration over x1 and x2 yields the result.

Appendix E. Proof of Theorem A3 (Bias)

In this appendix, we prove the bias results in Theorem A3. The bias of the base kernel density
plug-in estimator G̃h1,h2 can be expressed as

B
[
G̃h1,h2

]
= E

[
g
(
f̃1,h1(Z), f̃2,h2(Z)

)
− g ( f1(Z), f2(Z))

]
= E

[
g
(
f̃1,h1(Z), f̃2,h2(Z)

)
− g

(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)]
(A10)

+E
[
g
(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)
− g ( f1(Z), f2(Z))

]
,

where Z is drawn from f2. The first term is the “variance” term, while the second is the “bias”
term. We bound these terms using Taylor series expansions under the assumption that g is infinitely
differentiable. The Taylor series expansion of the variance term in (A11) will depend on variance-like
terms of the KDEs, while the Taylor series expansion of the bias term in (A11) will depend on the bias
of the KDEs.

The Taylor series expansion of g
(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)
around f1(Z) and f2(Z) is

g
(
EZf̃1,h1(Z),EZf̃2,h2(Z)

)
=

∞

∑
i=0

∞

∑
j=0

 ∂i+jg(x, y)
∂xi∂yj

∣∣∣∣x= f1(Z)
y= f2(Z)

 Bi
Z
[
f̃1,h1(Z)

]
Bj

Z
[
f̃2,h2(Z)

]
i!j!

, (A11)

where Bj
Z
[
f̃i,hi

(Z)
]
=
(
EZf̃i,hi

(Z)− fi(Z)
)j is the bias of f̃i,hi

at the point Z raised to the power of j.
This expansion can be used to control the second term (the bias term) in (A11). To accomplish this,
we require an expression for EZf̃i,hi

(Z)− fi(Z) = BZ
[
f̃i,hi

(Z)
]
.

To obtain an expression for BZ
[
f̃i,hi

(Z)
]
, we separately consider the cases when Z is in the interior

of the support S or when Z is near the boundary of the support. A point X ∈ S is defined to be in
the interior of S if for all Y /∈ S , K

(
X−Y

hi

)
= 0. A point X ∈ S is near the boundary of the support if

it is not in the interior. Denote the region in the interior and near the boundary wrt hi as SIi and SBi ,
respectively. We will need the following:
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Lemma A1. Let Z be a realization of the density f2 independent of f̃i,hi
for i = 1, 2. Assume that the densities

f1 and f2 belong to Σ(s, L). Then, for Z ∈ SIi ,

EZ
[
f̃i,hi

(Z)
]
= fi(Z) +

bs/2c

∑
j=ν/2

ci,j(Z)h
2j
i +O (hs

i ) . (A12)

Proof. Obtaining the lower order terms in (A12) is a common result in kernel density estimation.
However, since we also require the higher order terms, we present the proof here. Additionally,
some of the results in this proof will be useful later. From the linearity of the KDE, we have that if X is
drawn from fi and is independent of Z, then

EZf̃i,hi
(Z) = EZ

[
1
hd

i
K
(

X−Z
hi

)]

=
∫ 1

hd
i

K
(

x−Z
hi

)
fi(x)dx

=
∫

K (t) fi(thi + Z)dt, (A13)

where the last step follows on from the substitution t = x−Z
hi

. Since the density ( fi) belongs to Σ(s, K),
by using multi-index notation we can expand it to

fi(thi + Z) = fi(Z) + ∑
0<|α|≤bsc

Dα fi(Z)
α!

(thi)
α +O

(
‖thi‖s) , (A14)

where α! = α1!α2! . . . αd! and Yα = Yα1
1 Yα2

2 . . . Yαd
d . Combining (A13) and (A14) gives

EZf̃i,hi
(Z) = fi(Z) + ∑

0<|α|≤bsc

Dα fi(Z)
α!

h|α|i

∫
tαK(t)dt +O(hs

i )

= fi(Z) +
bs/2c

∑
j=ν/2

ci,j(Z)h
2j
i +O(hs

i ),

where the last step follows from the fact that K is symmetric and of order ν.

To obtain a similar result for the case when Z is near the boundary of S , we use the assumptionA.5.

Lemma A2. Let γ(x, y) be an arbitrary function satisfying supx,y |γ(x, y)| < ∞. Let S satisfy the boundary
smoothness conditions of Assumption A.5. Assume that the densities f1 and f2 belong to Σ(s, L), and let Z be a
realization of the f2 density independently of f̃i,hi

for i = 1, 2. Let h
′
= min (h1, h2). Then,

E
[
1{Z∈SBi}γ ( f1(Z), f2(Z))Bt

Z
[
f̃i,hi

(Z)
]]

=
r

∑
j=1

c4,i,j,th
j
i + o (hr

i ) (A15)

E
[
1{Z∈SB1∩SB2}γ ( f1(Z), f2(Z))Bt

Z
[
f̃1,h1

(Z)
]
Bq

Z
[
f̃2,h2 (Z)

]]
=

r−1

∑
j=0

r−1

∑
i=0

c4,j,i,q,th
j
1hi

2h
′
+ o

((
h
′
)r)

(A16)
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Proof. For a fixed X near the boundary of S , we have

E
[
f̃i,hi

(X)
]
− fi(X) =

1
hd

i

∫
Y:Y∈S

K
(

X−Y
hi

)
fi(Y)dY− fi(X)

=

[
1
hd

i

∫
Y:K

(
X−Y

hi

)
>0

K
(

X−Y
hi

)
fi(Y)dY− fi(X)

]

−
[

1
hd

i

∫
Y:Y/∈S

K
(

X−Y
hi

)
fi(Y)dY

]
= T1,i(X)− T2,i(X).

Note that, in T1,i(X), we are extending the integral beyond the support of the fi density. However,
by using the same Taylor series expansion method as in the proof of Lemma A1, we always evaluate fi
and its derivatives at point X which is within the support of fi. Thus, it does not matter how we define
an extension of fi since the Taylor series will remain the same. Thus, T1,i(X) results in an identical
expression to that obtained from (A12).

For the T2,i(X) term, we expand it using multi-index notation as

T2,i(X) =
1
hd

i

∫
Y:Y/∈S

K
(

X−Y
hi

)
fi(Y)dY

=
∫

u:hiu+X/∈S ,K(u)>0
K (u) fi(X + hiu)du

= ∑
|α|≤r

h|α|i
α!

∫
u:hiu+X/∈S ,K(u)>0

K (u) Dα fi(X)uαdu + o (hr
i ) .

Recognizing that the |α|th derivative of fi is r− |α| times differentiable, we can apply assumption
A.5 to obtain the expectation of T2,i(X) wrt X:

E [T2,i(X)] =
1
hd

i

∫
X

∫
Y:Y/∈S

K
(

X−Y
hi

)
fi(Y)dY f2(X)dx

= ∑
|α|≤r

h|α|i
α!

∫
X

∫
u:hiu+X/∈S ,K(u)>0

K (u) Dα fi(X)uαdu f2(X)dX + o (hr
i )

= ∑
|α|≤r

h|α|i
α!

 ∑
1≤|β|≤r−|α|

eβ,r−|α|h
|β|
i + o

(
hr−|α|

i

)+ o (hr
i )

=
r

∑
j=1

ejh
j
i + o (hr

i ) .

Similarly, we find that

E
[
(T2,i(X))

t
]

=
1

hdt
i

∫
X

(∫
Y:Y/∈S

K
(

X−Y
hi

)
fi(Y)dY

)t
f2(X)dx

=
∫

X

 ∑
|α|≤r

h|α|i
α!

∫
u:hiu+X/∈S ,K(u)>0

K (u) Dα fi(X)uαdu

t

f2(X)dX

=
r

∑
j=1

ej,th
j
i + o (hr

i ) .
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Combining these results gives

E
[
1{Z∈SB}γ ( f1(Z), f2(Z))

(
EZ
[
f̃i,hi

(Z)
]
− fi(Z)

)t
]

= E
[
γ ( f1(Z), f2(Z))

(
T1,i(Z)− T2,i(Z)

)t
]

= E

γ ( f1(Z), f2(Z))
t

∑
j=0

(
t
j

) (
T1,i(Z)

)j (−T2,i(Z)
)t−j


=

r

∑
j=1

c4,i,j,th
j
i + o (hr

i ) ,

where the constants are functionals of the kernel γ and the densities.
The expression in (A16) can be proved in a similar manner.

Applying Lemmas A1 and A2 to (A11) gives

E
[
g
(
EZ f̃1,h1 (Z),EZ f̃2,h2 (Z)

)
− g ( f1(Z), f2(Z))

]
=

r

∑
j=1

(
c4,1,jh

j
1 + c4,2,jh

j
2

)
+

r−1

∑
j=0

r−1

∑
i=0

c5,i,jh
j
1hi

2h
′
+ o (hr

1 + hr
2) . (A17)

For the variance term (the first term) in (A11), the truncated Taylor series expansion of
g
(
f̃1,h1(Z), f̃2,h2(Z)

)
around EZ f̃1,h1(Z) and EZ f̃2,h2(Z) gives

g
(
f̃1,h1 (Z), f̃2,h2 (Z)

)
=

λ

∑
i=0

λ

∑
j=0

 ∂i+jg(x, y)
∂xi∂yj

∣∣∣∣x=EZ f̃1,h1
(Z)

y=EZ f̃2,h2
(Z)

 ẽi
1,h1

(Z)ẽj
2,h2

(Z)

i!j!
+ o

(
ẽλ

1,h1
(Z) + ẽλ

2,h2
(Z)
)

(A18)

where ẽi,hi
(Z) := f̃i,hi

(Z) − EZ f̃i,hi
(Z). To control the variance term in (A11), we thus require

expressions for EZ

[
ẽj

i,hi
(Z)
]
.

Lemma A3. Let Z be a realization of the f2 density that is in the interior of the support and is independent of
f̃i,hi

for i = 1, 2. Let n(q) be the set of integer divisors of q including 1 but excluding q. Then,

EZ

[
ẽq

i,hi
(Z)
]

=


∑j∈n(q)

1

(N2hd
2)

q−j ∑
bs/2c
m=0 c6,i,q,j,m(Z)h2m

i + O
(

1
Ni

)
, q ≥ 2

0, q = 1,
(A19)

EZ

[
ẽq

1,h1
(Z)ẽl

2,h2
(Z)
]

=



(
∑i∈n(q)

1

(N1hd
1)

q−i ∑
bs/2c
m=0 c6,1,q,i,m(Z)h2m

1

)
× q, l ≥ 2(

∑j∈n(l)
1

(N2hd
2)

l−j ∑
bs/2c
t=0 c6,2,l,j,t(Z)h2t

2

)
+ O

(
1

N1
+ 1

N2

)
,

0, q = 1 or l = 1

(A20)

where c6,i,q,j,m is a functional of f1 and f2.

Proof. Define the random variable Vi(Z) = K
(

Xi−Z
h2

)
−EZK

(
Xi−Z

h2

)
. This gives

ẽ2,h2(Z) = f̃2,h2(Z)−EZ f̃2,h2(Z)

=
1

N2hd
2

N2

∑
i=1

Vi(Z).
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Clearly, EZVi(Z) = 0. From (A13), we have for integer j ≥ 1

EZ

[
K j
(

Xi − Z
h2

)]
=

∫
K j (t) f2(th2 + Z)dt

= hd
2

bs/2c

∑
m=0

c3,2,j,m(Z)h2m
2 ,

where the constants c3,2,j,m depend on density f2, its derivatives, and the moments of kernel Kj. Note that
since K is symmetric, the odd moments of Kj are zero for Z in the interior of the support. However,
all even moments may now be non-zero since Kj may now be non-negative. In accordance with the
binomial theorem,

EZ

[
Vj

i(Z)
]

=
j

∑
k=0

(
j
k

)
EZ

[
Kk
(

Xi −Z
h2

)]
EZ

[
K
(

Xi −Z
h2

)]j−k

=
j

∑
k=0

(
j
k

)
hd

2O
(

hd(j−k)
2

) bs/2c

∑
m=0

c3,2,k,m(Z)h2m
2

= hd
2

bs/2c

∑
m=0

c3,2,j,m(Z)h2m
2 +O

(
h2d
)

.

We can use these expressions to simplify EZ

[
ẽq

2,h2
(Z)
]
. As an example, let q = 2. Then, since the

Xis are independent,

EZ

[
ẽ2

2,h2
(Z)
]

=
1

N2h2d
2
EZV2

i (Z)

=
1

N2hd
2

bs/2c

∑
m=0

c3,2,2,m(Z)h2m
2 +O

(
1

N2

)
.

Similarly, we find that

EZ

[
ẽ3

2,h2
(Z)
]

=
1

N2
2 h3d

2
EZV3

i (Z)

=
1(

N2hd
2
)2

bs/2c

∑
m=0

c3,2,3,m(Z)h2m
2 + o

(
1

N2

)
.

For q = 4, we have

EZ

[
ẽ4

2,h2
(Z)
]

=
1

N3
2 h4d

2
EZV4

i (Z) +
N2− 1
N3

2 h4d
2

(
EZV2

i (Z)
)2

=
1(

N2hd
2
)3

bs/2c

∑
m=0

c3,2,4,m(Z)h2m
2 +

1(
N2hd

2
)2

bs/2c

∑
m=0

c6,2,2,m(Z)h2m
2 + o

(
1

N2

)
.

The pattern for q ≥ 2 is then,

EZ

[
ẽq

2,h2
(Z)
]
= ∑

i∈n(q)

1(
N2hd

2
)q−i

bs/2c

∑
m=0

c6,2,q,i,m(Z)h2m
2 +O

(
1

N2

)
.

For any integer (q), the largest possible factor is q/2. Thus, for a given q, the smallest possible
exponent on the N2hd

2 term is q/2. This increases as q increases. A similar expression holds for

EZ

[
ẽq

1,h1
(Z)
]
, except the Xis are replaced with Yi, f2 is replaced with f1, and N2 and h2 are replaced
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with N1 and h1, respectively, all resulting in different constants. Then, since ẽ1,h1(Z) and ẽ2,h2(Z) are
conditionally independent given Z,

EZ

[
ẽq

1,h1
(Z)ẽl

2,h2
(Z)
]

=

 ∑
i∈n(q)

1(
N1hd

1

)q−i

bs/2c

∑
m=0

c6,1,q,i,m(Z)h2m
1


 ∑

j∈n(l)

1(
N2hd

2

)l−j

bs/2c

∑
t=0

c6,2,l,j,t(Z)h
2t
2


+O

(
1

N1
+

1
N2

)
.

Applying Lemma A3 to (A18) when taking the conditional expectation given Z in the interior
gives an expression of the form

λ/2

∑
j=1

bs/2c

∑
m=0

c7,1,j,m
(
EZ f̃1,h1

(Z),EZ f̃2,h2 (Z)
) h2m

1(
N1hd

1

)j + c7,2,j,m
(
EZ f̃2,h2 (Z),EZ f̃2,h2 (Z)

) h2m
2(

N2hd
2

)j


+

λ/2

∑
j=1

bs/2c

∑
m=0

λ/2

∑
i=1

bs/2c

∑
n=0

c7,j,i,m,n
(
EZ f̃2,h2 (Z),EZ f̃2,h2 (Z)

) h2m
1 h2n

2(
N1hd

1

)j (
N2hd

2

)i (A21)

+O

 1(
N1hd

1

) λ
2

+
1(

N2hd
2

) λ
2

 .

Note that the functionals c7,i,j,m and c7,j,i,m,n depend on the derivatives of g and EZ f̃i,hi
(Z) which

depend on hi. To apply an ensemble estimation, we need to separate the dependence on hi from
the constants. If we use ODin1, then it is sufficient to note that in the interior of the support,
EZ f̃i,hi

(Z) = fi(Z) + o(1) and therefore, c
(
EZ f̃1,h1(Z),EZ f̃2,h2(Z)

)
= c ( f1(Z), f2(Z)) + o(1) for some

functional c. The terms in (A22) reduce to

c7,1,1,0 ( f1(Z), f2(Z))
1

N1hd
1
+ c7,2,1,0 ( f1(Z), f2(Z))

1
N2hd

2
+ o

(
1

N1hd
1
+

1
N2hd

2

)
.

For ODin2, we need the higher order terms. To separate the dependence on hi from the constants,
we need more information about the functional g and its derivatives. Consider a special case where
the functional g(x, y) has derivatives of the form of xαyβ with α, β < 0. This includes the important
cases of the KL divergence and the Renyi divergence. The generalized binomial theorem states that if
(α

m) := α(α−1)...(α−m+1)
m! and if q and t are real numbers with |q| > |t|, then for any complex number (α),

(q + t)α =
∞

∑
m=0

(
α

m

)
qα−mtm. (A22)

Since the densities are bounded away from zero, for sufficiently small hi, we have
fi(Z) >

∣∣∣∑bs/2c
j=ν/2 ci,j(Z)h

2j
i + O

(
hs

i
)∣∣∣ . Applying the generalized binomial theorem and Lemma A1 gives

(
EZ f̃1,h1(Z)

)α
=

∞

∑
m=0

(
α

m

)
f α−m
i (Z)

( bs/2c

∑
j=ν/2

ci,j(Z)h
2j
i + O (hs

i )

)m

.
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Since m is an integer, the exponents of the hi terms are also integers. Thus, (A22) gives, in this case,

EZ
[
g
(
f̃1,h1 (Z), f̃2,h2 (Z)

)
− g

(
EZ f̃1,h1 (Z),EZ f̃2,h2 (Z)

)]
=

λ/2

∑
j=1

bs/2c

∑
m=0

(
c8,1,j,m (Z)

h2m
1(

N1hd
1
)j + c8,2,j,m (Z)

h2m
2(

N2hd
2
)j

)

+
λ/2

∑
j=1

bs/2c

∑
m=0

λ/2

∑
i=1

bs/2c

∑
n=0

c8,j,i,m,n (Z)
h2m

1 h2n
2(

N1hd
1
)j (N2hd

2
)i (A23)

+O

 1(
N1hd

1
) λ

2
+

1(
N2hd

2
) λ

2
+ hs

1 + hs
2

 .

As before, the case for Z close to the boundary of the support is more complicated. However,
by using a similar technique to the proof of Lemma A2 for Z at the boundary and combining with
previous results, we find that for general g,

E
[
g
(
f̃1,h1

(Z), f̃2,h2 (Z)
)
− g

(
EZ f̃1,h1

(Z),EZ f̃2,h2 (Z)
)]

= c9,1
1

N1hd
1
+ c9,2

1
N2hd

2
+ o

(
1

N1hd
1
+

1
N2hd

2

)
. (A24)

If g(x, y) has derivatives of the form of xαyβ with α, β < 0, then we can similarly obtain

E
[
g
(
f̃1,h1

(Z), f̃2,h2 (Z)
)
− g

(
EZ f̃1,h1

(Z),EZ f̃2,h2 (Z)
)]

=
λ/2

∑
j=1

r

∑
m=0

c9,1,j,m
hm

1(
N1hd

1

)j + c9,2,j,m
hm

2(
N2hd

2

)j


+

λ/2

∑
j=1

r

∑
m=0

λ/2

∑
i=1

r

∑
n=0

c9,j,i,m,n
hm

1 hn
2(

N1hd
1

)j (
N2hd

2

)i (A25)

+O

 1(
N1hd

1

) λ
2

+
1(

N2hd
2

) λ
2

+ hs
1 + hs

2

 .

Combining (A17) with either (A24) or (A26) completes the proof.

Appendix F. Proof of Theorem A4 (Variance)

To bound the variance of the plug-in estimator G̃h1,h2 , we use the Efron–Stein inequality [70]:

Lemma A4 (Efron–Stein Inequality). Let X1, . . . , Xn, X
′
1, . . . , X

′
n be independent random variables on the

space S . Then, if f : S × · · · × S → R, we have

V [ f (X1, . . . , Xn)] ≤
1
2

n

∑
i=1

E
[(

f (X1, . . . , Xn)− f (X1, . . . , X
′
i, . . . , Xn)

)2
]

.

Suppose we have samples
{

X1, . . . , XN2 , Y1, . . . , YN1

}
and

{
X
′
1, . . . , XN2 , Y1, . . . , YN1

}
and denote

the respective estimators as G̃h1,h2 and G̃
′
h1,h2

. We have

∣∣∣G̃h1,h2 − G̃
′
h1,h2

∣∣∣ ≤ 1
N2

∣∣∣g (f̃1,h1(X1), f̃2,h2(X1)
)
− g

(
f̃1,h1(X

′
1), f̃2,h2(X

′
1)
)∣∣∣

+
1

N2

N2

∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′
2,h2

(Xj)
)∣∣∣ . (A26)

Since g is Lipschitz continuous with the constant Cg, we have

∣∣∣g (f̃1,h1 (X1), f̃2,h2 (X1)
)
− g

(
f̃1,h1 (X

′
1), f̃2,h2 (X

′
1)
)∣∣∣ ≤ Cg

(∣∣∣f̃1,h1 (X1)− f̃1,h1 (X
′
1)
∣∣∣+ ∣∣∣f̃2,h2 (X1)− f̃2,h2 (X

′
1)
∣∣∣) , (A27)
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∣∣∣f̃1,h1
(X1)− f̃1,h1

(X
′
1)
∣∣∣ =

1
N1hd

1

∣∣∣∣∣ N1

∑
i=1

(
K
(

X1 − Yi
h1

)
− K

(
X
′
1 − Yi

h1

))∣∣∣∣∣
≤ 1

N1hd
1

N1

∑
i=1

∣∣∣∣∣K
(

X1 − Yi
h1

)
− K

(
X
′
1 − Yi

h1

)∣∣∣∣∣ (A28)

=⇒ E
[∣∣∣f̃1,h1

(X1)− f̃1,h1
(X
′
1)
∣∣∣2] ≤ 1

N1h2d
1

N1

∑
i=1

E

(K
(

X1 − Yi
h1

)
− K

(
X
′
1 − Yi

h1

))2
 ,

where the last step follows from Jensen’s inequality. By making the substitutions ui =
X1−Yi

h1
and

u
′
i =

X
′
1−Yi
h1

, this gives

1
h2d

1
E

(K
(

X1 − Yi
h1

)
− K

(
X
′
1 − Yi

h1

))2
 =

1
h2d

∫ (
K
(

X1 − Yi
h1

)
− K

(
X
′
1 − Yi

h1

))2

×

f2(X1) f2(X
′
1) f1(Yi)dX1dX

′
1dYi

≤ 2||K||2∞.

Combining this with (A29) gives

E
[∣∣∣f̃1,h1(X1)− f̃1,h1(X

′
1)
∣∣∣2] ≤ 2||K||2∞.

Similarly,

E
[∣∣∣f̃2,h2(X1)− f̃2,h2(X

′
1)
∣∣∣2] ≤ 2||K||2∞.

Combining these results with (A27) gives

E
[(

g
(
f̃1,h1(X1), f̃2,h2(X1)

)
− g

(
f̃1,h1(X

′
1), f̃2,h2(X

′
1)
))2

]
≤ 8C2

g||K||2∞. (A29)

The second term in (A26) is controlled in a similar way. From the Lipschitz condition,∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′
2,h2

(Xj)
)∣∣∣2 ≤ C2

g

∣∣∣f̃2,h2(Xj)− f̃
′
2,h2

(Xj)
∣∣∣2

=
C2

g

M2
2h2d

2

(
K
(Xj − X1

h

)
− K

(
Xj − X

′
1

h

))2

.

The h2d
2 terms are eliminated by making the substitutions of uj =

Xj−X1
h2

and u
′
j =

Xj−X
′
1

h2
within

the expectation to obtain

E
[∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃1,h1(Xj), f̃

′
2,h2

(Xj)
)∣∣∣2] ≤

2C2
g||K||2∞
M2

2
(A30)

=⇒ E

( N2

∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′
2,h2

(Xj)
)∣∣∣)2
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=
N2

∑
j=2

N2

∑
i=2

E
[∣∣∣g (f̃1,h1 (Xj), f̃2,h2 (Xj)

)
− g

(
f̃1,h1 (Xj), f̃

′
2,h2

(Xj)
)∣∣∣ ∣∣∣g (f̃1,h1 (Xi), f̃2,h2 (Xi)

)
− g

(
f̃1,h1 (Xi), f̃

′
2,h2

(Xi)
)∣∣∣]

≤ M2
2E
[∣∣∣g (f̃1,h1 (Xj), f̃2,h2 (Xj)

)
− g

(
f̃1,h1 (Xj), f̃

′
2,h2

(Xj)
)∣∣∣2] (A31)

≤ 2C2
g||K||2∞,

where we use the Cauchy Schwarz inequality to bound the expectation within each summand. Finally,
applying Jensen’s inequality and (A29) and (A32) gives

E
[∣∣∣G̃h1,h2 − G̃

′
h1,h2

∣∣∣2] ≤ 2
N2

2
E
[∣∣∣g (f̃1,h1(X1), f̃2,h2(X1)

)
− g

(
f̃1,h1(X

′
1), f̃2,h2(X

′
1)
)∣∣∣2]

+
2

N2
2
E

( N2

∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′
2,h2

(Xj)
)∣∣∣)2


≤

20C2
g||K||2∞
N2

2
.

Now, suppose we have samples
{

X1, . . . , XN2 , Y1, . . . , YN1

}
and

{
X1, . . . , XN2 , Y

′
1, . . . , YN1

}
and

denote the respective estimators as G̃h1,h2 and G̃
′
h1,h2

. Then,

∣∣∣g (f̃1,h1
(Xj), f̃2,h2 (Xj)

)
− g

(
f̃
′

1,h1
(Xj), f̃2,h2 (Xj)

)∣∣∣ ≤ Cg

∣∣∣f̃1,h1
(Xj)− f̃

′

1,h1
(Xj)

∣∣∣
=

Cg

N1hd
1

∣∣∣∣∣K
(Xj − Y1

h1

)
− K

(
Xj − Y

′
1

h1

)∣∣∣∣∣
=⇒ E

[∣∣∣g (f̃1,h1
(Xj), f̃2,h2 (Xj)

)
− g

(
f̃
′

1,h1
(Xj), f̃2,h2 (Xj)

)∣∣∣2] ≤
2C2

g||K||2∞
N2

1
.

Thus, using a similar argument as was used to obtain (A32),

E
[∣∣∣G̃h1,h2 − G̃

′
h1,h2

∣∣∣2] ≤ 1
N2

2
E

( N2

∑
j=1

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃
′
1,h1

(Xj), f̃2,h2(Xj)
)∣∣∣)2


≤

2C2
g||K||2∞
N2

2
.

Applying the Efron–Stein inequality gives

V
[
G̃h1,h2

]
≤

10C2
g||K||2∞
N2

+
C2

g||K||2∞N1

N2
2

.

Appendix G. Proof of Theorem 4 (CLT)

We are interested in the asymptotic distribution of

√
N2
(
G̃h1,h2 −E

[
G̃h1,h2

])
=

1√
N2

N2

∑
j=1

(
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)
−EXj

[
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)])

+
1√
N2

N2

∑
j=1

(
EXj

[
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)]
−E

[
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)])
.
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Note that in the standard central limit theorem [79], the second term converges in distribution to
a Gaussian random variable. If the first term converges in probability to a constant (specifically, 0),
then we can use Slutsky’s theorem [80] to find the asymptotic distribution. So, now, we focus on the
first term which we denote as VN2 .

To prove convergence in probability, we use Chebyshev’s inequality. Note that E
[
VN2

]
= 0. To

bound the variance of VN2 , we again use the Efron–Stein inequality. Let X
′
1 be drawn from f2 and

denote VN2 and V
′
N2

as the sequences using X1 and X
′
1, respectively. Then,

VN2 −V
′
N2

=
1√
N2

(
g
(
f̃1,h1(X1), f̃2,h2(X1)

)
−EX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)])
− 1√

N2

(
g
(

f̃1,h1(X
′
1), f̃2,h2(X

′
1)
)
−EX′1

[
g
(

f̃1,h1(X
′
1), f̃2,h2(X

′
1)
)])

(A32)

+
1√
N2

N2

∑
j=2

(
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃1,h1(Xj), f̃

′
2,h2

(Xj)
))

.

Note that

E
[(

g
(
f̃1,h1(X1), f̃2,h2(X1)

)
−EX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)])2
]
= E

[
VX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)]]
.

We use the Efron–Stein inequality to bound VX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)]
.

We do this by bounding the conditional expectation of the term∣∣∣g (f̃1,h1(X1), f̃2,h2(X1)
)
− g

(
f̃1,h1(X1), f̃

′
2,h2

(X1)
)∣∣∣ ,

where Xi is replaced with X
′
i in the KDEs for some i 6= 1. Using similar steps as in Appendix F, we have

EX1

[∣∣∣g (f̃1,h1(X1), f̃2,h2(X1)
)
− g

(
f̃1,h1(X1), f̃

′
2,h2

(X1)
)∣∣∣2] = O

(
1

N2
2

)
.

A similar result is obtained when Yi is replaced with Y
′
i. Then, based on the Efron–Stein inequality,

VX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)]
= O

(
1

N2
+ 1

N1

)
.

Therefore,

E
[

1
N2

(
g
(
f̃1,h1(X1), f̃2,h2(X1)

)
−EX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)])2
]
= O

(
1

N2
2
+

1
N1N2

)
.

A similar result holds for the g
(

f̃1,h1(X
′
1), f̃2,h2(X

′
1)
)

terms in (A33).
For the third term in (A33),

E

( N2

∑
j=2

∣∣∣g (f̃1,h1 (Xj), f̃2,h2 (Xj)
)
− g

(
f̃1,h1 (Xj), f̃

′
2,h2

(Xj)
)∣∣∣)2



=
N2

∑
j=2

N2

∑
i=2

E
[∣∣∣g (f̃1,h1 (Xj), f̃2,h2 (Xj)

)
− g

(
f̃1,h1 (Xj), f̃

′
2,h2

(Xj)
)∣∣∣ ∣∣∣g (f̃1,h1 (Xi), f̃2,h2 (Xi)

)
− g

(
f̃1,h1 (Xi), f̃

′
2,h2

(Xi)
)∣∣∣] .

There are M2 terms where i = j, and we have from Appendix F (see (A30)) that

E
[∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃1,h1(Xj), f̃

′
2,h2

(Xj)
)∣∣∣2] ≤ 2C2

g||K||2∞
M2

2
.
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Thus, these terms are O
(

1
M2

)
. There are M2

2 −M2 terms when i 6= j. In this case, we can do four

substitutions of the form uj =
Xj−X1

h2
to obtain

E
[∣∣∣g (f̃1,h1 (Xj), f̃2,h2 (Xj)

)
− g

(
f̃1,h1 (Xj), f̃

′
2,h2

(Xj)
)∣∣∣ ∣∣∣g (f̃1,h1 (Xi), f̃2,h2 (Xi)

)
− g

(
f̃1,h1 (Xi), f̃

′
2,h2

(Xi)
)∣∣∣] ≤ 4C2

g||K||2∞h2d
2

M2
2

.

Then, since hd
2 = o(1), we get

E

( N2

∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃1,h1(Xj), f̃

′
2,h2

(Xj)
)∣∣∣)2

 = o(1), (A33)

=⇒ E
[(

VN2 −V
′
N2

)2
]
≤ 3

N2
E
[(

g
(
f̃1,h1(X1), f̃2,h2(X1)

)
−EX1

[
g
(
f̃1,h1(X1), f̃2,h2(X1)

)])2
]

+
3

N2
E
[(

g
(

f̃1,h1(X
′
1), f̃2,h2(X

′
1)
)
−EX′1

[
g
(

f̃1,h1(X
′
1), f̃2,h2(X

′
1)
)])2

]

+
3

N2
E

( N2

∑
j=2

(
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃
′
1,h1

(Xj), f̃
′
2,h2

(Xj)
)))2


= o

(
1

N2

)
.

Now, consider samples
{

X1, . . . , XN2 , Y1, . . . , YN1

}
and

{
X1, . . . , XN2 , Y

′
1, . . . , YN1

}
and the

respective sequences VN2 and V
′
N2

. Then,

VN2 −V
′
N2

=
1√
N2

N2

∑
j=1

(
g
(
f̃1,h1(Xj), f̃2,h2(Xj)

)
− g

(
f̃
′
1,h1

(Xj), f̃2,h2(Xj)
))

.

Using a similar argument as that used to obtain (A33), we have that if hd
1 = o(1) and N1 → ∞, then

E

( N2

∑
j=2

∣∣∣g (f̃1,h1(Xj), f̃2,h2(Xj)
)
− g

(
f̃
′
1,h1

(Xj), f̃2,h2(Xj)
)∣∣∣)2

 = o(1)

=⇒ E
[(

VN2 −V
′
N2

)2
]
= o

(
1

N2

)
.

Applying the Efron–Stein inequality gives

V
[
VN2

]
= o

(
N2 + N1

N2

)
= o(1).

Thus, based on Chebyshev’s inequality,

Pr
(∣∣VN2

∣∣ > ε
)
≤

V
[
VN2

]
ε2 = o(1),

and therefore, VN2 converges to zero in probability. Based on Slutsky’s theorem,√
N2
(
G̃h1,h2 −E

[
G̃h1,h2

])
converges in distribution to a zero mean Gaussian random variable

with variance
V
[
EX
[
g
(
f̃1,h1(X), f̃2,h2(X)

)]]
,

where X is drawn from f2.
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For the weighted ensemble estimator, we wish to know the asymptotic distribution of√
N2
(
G̃w −E

[
G̃w
])

where G̃w = ∑l∈l̄ w(l)G̃h(l). We have

√
N2
(
G̃w −E

[
G̃w
])

=
1√
N2

N2

∑
j=1

∑
l∈l̄

w(l)
(

g
(

f̃1,h(l)(Xj), f̃2,h(l)(Xj)
)
−EXj

[
g
(

f̃1,h(l)(Xj), f̃2,h(l)(Xj)
)])

+
1√
N2

N2

∑
j=1

(
EXj

[
∑
l∈l̄

w(l)g
(

f̃1,h(l)(Xj), f̃2,h(l)(Xj)
)]
−E

[
∑
l∈l̄

w(l)g
(

f̃1,h(l)(Xj), f̃2,h(l)(Xj)
)])

.

The second term again converges in distribution to a Gaussian random variable by the central
limit theorem. The mean and variance are, respectively, zero and

V
[
∑
l∈l̄

w(l)EX

[
g
(

f̃1,h(l)(X), f̃2,h(l)(X)
)]]

.

The first term is equal to

∑
l∈l̄

w(l)

(
1√
N2

N2

∑
j=1

(
g
(

f̃1,h(l)(Xj), f̃2,h(l)(Xj)
)
−EXj

[
g
(

f̃1,h(l)(Xj), f̃2,h(l)(Xj)
)]))

= ∑
l∈l̄

w(l)oP(1)

= oP(1),

where oP(1) denotes the convergence to zero as a probability. In the last step, we use the fact that if
two random variables converge in probability to constants, then their linear combination converges in
probability to the linear combination of the constants. Combining this result with Slutsky’s theorem
completes the proof.

Appendix H. Proof of Theorem 5 (Uniform MSE)

Since the MSE is equal to the square of the bias plus the variance, we can upper bound the left
hand side of (7) with

sup
p,q∈Σ(s,KH ,ε0,ε∞)

E
[(

G̃w0 − G(p, q)
)2
]
= sup

p,q∈Σ(s,KH ,ε0,ε∞)

(
Bias

(
G̃w0

)2
+ Var

(
G̃w0

))
≤ sup

p,q∈Σ(s,KH ,ε0,ε∞)

Bias
(
G̃w0

)2
+ sup

p,q∈Σ(s,KH ,ε0,ε∞)

Var
(
G̃w0

)
.

From the assumptions (Lipschitz, kernel bounded, weight calculated from the relaxed
optimization problem), we have

sup
p,q∈Σ(s,KH ,ε0,ε∞)

Var
(
G̃w0

)
≤ sup

p,q∈Σ(s,K,ε0,ε∞)

11C2
g||w0||22||K||∞

N

=
11C2

g||w0||22||K||∞
N

,

where the last step follows on from the fact that all of the terms are independent of p and q.
For the bias, recall that if g is infinitely differentiable and if the optimal weight (w0) is calculated

using the relaxed convex optimization problem, then

Bias
(
G̃w0

)
= ∑

i∈J
ci(p, q)εN−1/2,

=⇒ Bias
(
G̃w0

)2
=

ε2

N

(
∑
i∈J

ci(p, q)

)2

. (A34)
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We use a topology argument to bound the supremum of this term. We use the Extreme Value
Theorem [81]:

Theorem A5 (Extreme Value Theorem). Let f : X → R be continuous. If X is compact, then points
c, d ∈ X s.t. f (c) ≤ f (x) ≤ f (d) exist for every x ∈ X.

Based on this theorem, f achieves its minimum and maximum on X. Our approach is to first
show that the functionals ci(p, q) are continuous wrt p and q in some appropriate norm. We then show
that the space Σ(s, KH , ε0, ε∞) is compact wrt this norm. The Extreme Value Theorem can then be
applied to bound the supremum of (A34).

We first define the norm. Let α = s− r > 0. We use the standard norm on the space Σ(s, KH) [82]:

|| f || = || f ||Σ(s,KH)

= || f ||Cr + max
|β|=r
|Dβ f |C0,α

where

|| f ||Cr = max
|β|≤r

sup
x∈S
|Dβ f (x)|,

| f |C0,α = sup
x 6=y∈S

| f (x)− f (y)|
|x− y|α .

Lemma A5. The functionals ci(p, q) are continuous wrt the norm max(||p||Cr , ||q||Cr ).

Proof. The functionals ci(p, q) depend on terms of the form

c(p, q) =
∫  ∂i+jg(t1, t2)

∂ti
1∂tj

2

∣∣∣∣∣ t1 = p(x)
t2 = q(x)

Dβ p(x)Dγq(x)q(x)dx. (A35)

It is sufficient to show that this is continuous. Let ε > 0 and max (||p− p0||Cr , ||q− q0||Cr ) < δ

where δ > 0 will be chosen later. Then, by applying the triangle inequality for integration and adding
and subtracting terms, we have

|c(p, q)− c(p0, q0)|
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≤
∫
∣∣∣∣∣∣∣∣∣

 ∂i+jg(t1, t2)

∂ti
1∂tj

2

∣∣∣∣∣ t1 = p(x)
t2 = q(x)

Dβ p(x)Dγq(x) (q(x)− q0(x))

∣∣∣∣∣∣∣∣∣ dx

+
∫
∣∣∣∣∣∣∣∣∣

 ∂i+jg(t1, t2)

∂ti
1∂tj

2

∣∣∣∣∣ t1 = p(x)
t2 = q(x)

Dβ p(x)q0(x) (Dγq(x)− Dγq0(x))

∣∣∣∣∣∣∣∣∣ dx

+
∫
∣∣∣∣∣∣∣∣∣D

β p0(x)Dγq0(x)q0(x)


 ∂i+jg(t1, t2)

∂ti
1∂tj

2

∣∣∣∣∣ t1 = p(x)
t2 = q(x)

 (A36)

−

 ∂i+jg(t1, t2)

∂ti
1∂tj

2

∣∣∣∣∣ t1 = p0(x)
t2 = q0(x)



∣∣∣∣∣∣∣∣∣ dx

+
∫
∣∣∣∣∣∣∣∣∣

 ∂i+jg(t1, t2)

∂ti
1∂tj

2

∣∣∣∣∣ t1 = p(x)
t2 = q(x)

Dγq0(x)q0(x)
(

Dβ p(x)− Dβ p0(x)
)∣∣∣∣∣∣∣∣∣ dx.

Based on Assumption A.4, the absolute value of the mixed derivatives of g is bounded on the
range defined for p and q by some constant (Ci,j). Also, q0(x) ≤ ε∞. Furthermore, since Dγq0 and Dβ p
are continuous, and since S ⊂ Rd is compact, then the absolute value of derivatives Dγq0 and Dβ p is
also bounded by a constant (ε

′
∞). Let δ0 > 0. Then, since the mixed derivatives of g are continuous on

the interval [ε0, ε∞], they are uniformly continuous. Therefore, we can choose a small enough δ such
that (s.t.) ∣∣∣∣∣∣∣∣∣

 ∂i+jg(t1, t2)

∂ti
1∂tj

2

∣∣∣∣∣ t1 = p(x)
t2 = q(x)

−
 ∂i+jg(t1, t2)

∂ti
1∂tj

2

∣∣∣∣∣ t1 = p0(x)
t2 = q0(x)


∣∣∣∣∣∣∣∣∣ < δ0. (A37)

Combining all of these results with (A36) gives

|c(p, q)− c(p0, q0)| ≤ λ(S)δCijε
′
∞ (2 + ε∞)

+λ(S)ε′∞ε∞
(
2δ0 + Cijδ

)
,

where λ(S) is the Lebesgue measure of S . This is bounded since S is compact. Let δ
′
0 > 0 be s.t.

if max (||p− p0||Cr , ||q− q0||Cr ) < δ
′
0, then (A37) is less than ε

4λ(S)ε′∞ε∞
. Let δ1 = ε

4λ(S)Cijε
′
∞(1+ε∞)

.

Then, if δ < min(δ
′
0, δ1),

|c(p, q)− c(p0, q0)| < ε.

Given that each ci(p, q) is continuous, then
(
∑i∈J ci(p, q)

)2 is also continuous wrt p and q.
We now argue that Σ(s, KH) is compact. First, a set is relatively compact if its closure is compact.

Based on the Arzela–Ascoli theorem [83], the space Σ(s, KH) is relatively compact in the topology
induced by the ‖·‖Σ(t,KH) norm for any t < s. We choose t = r. It can then be shown that under the
‖·‖Σ(r,KH) norm, Σ(s, KH) is complete [82]. Since Σ(s, KH) is contained in a metric space, it is also closed
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and therefore, equal to its closure. Thus, Σ(s, KH) is compact. Then, since Σ(s, KH , ε0, ε∞) is closed
in Σ(s, KH), it is also compact. Therefore, since for each p, q ∈ Σ(s, KH , ε0, ε∞),

(
∑i∈J ci(p, q)

)2
< ∞,

based on the Extreme Value Theorem, we have

sup
p,q∈Σ(s,KH ,ε0,ε∞)

Bias
(
G̃w0

)2
= sup

p,q∈Σ(s,KH ,ε0,ε∞)

ε2

N

(
∑
i∈J

ci(p, q)

)2

=
ε2

N
C,

where we use the fact that J is finite (see Section 3.2 or Appendix B for the set J ).
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