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Abstract: Information-theoretic-based measures have been useful in quantifying network complexity.
Here we briefly survey and contrast (algorithmic) information-theoretic methods which have been
used to characterize graphs and networks. We illustrate the strengths and limitations of Shannon’s
entropy, lossless compressibility and algorithmic complexity when used to identify aspects and
properties of complex networks. We review the fragility of computable measures on the one hand and
the invariant properties of algorithmic measures on the other demonstrating how current approaches
to algorithmic complexity are misguided and suffer of similar limitations than traditional statistical
approaches such as Shannon entropy. Finally, we review some current definitions of algorithmic
complexity which are used in analyzing labelled and unlabelled graphs. This analysis opens up
several new opportunities to advance beyond traditional measures.

Keywords: algorithmic information theory; complex networks; Kolmogorov-Chaitin complexity;
algorithmic randomness; algorithmic probability; biological networks

1. Introduction

Networks, which are used extensively in science and engineering, are often complex when
representing static and dynamic data where edges are relations among objects or events. It is,
therefore, of fundamental importance to address the challenge of quantifying this complexity, and their
information content to be able to understand, deal with such complexity and eventually steer such
objects in educated ways. The ability of a computational model-based analysis of objects to implement
a complexity or information-theoretic measure, as shown in [1], is key to understanding the object
as well as the capabilities and limitations of the model. For example, popular implementations
of lossless compression algorithms used to estimate algorithmic information content such as those
based on the Lempel-Ziv (LZ) algorithm can effectively be implemented using Finite State Automata
(FSA) [2]. However, this means that they do not hold sufficient computational power to characterize
all the features in data [3]. To be able to capture all possible computable (recognizable by computer)
properties the full power of compression implied by algorithmic complexity is needed and requires
the computational power equivalent to a universal Turing machine not currently present in popular
implementations of lossless compression such as LZ. FSAs will therefore only be capable of capturing
statistical properties and some basic algorithmic features at the level of regular languages, and so
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on, other grammars of higher or lower power will cover only a partial subset of all the possible
properties that data, such as networks, can display. The use of popular implementations of lossless
compression algorithms, which have been widely used to approximate algorithmic complexity is
thus, in practice, a very minor improvement over classical Shannon information indexes [1] and can
only capture statistical regularities at their respective computational power, i.e., missing relevant
algorithmic properties.

In this review, we briefly survey some literature related to information-theoretic approaches to
network complexity, but more important, we stress some of the limitations both of current approaches
to calculations and applications of classical information theory and algorithmic complexity to graphs
and networks. In particular the fragility of entropy in its requirements and its dependencies to
associated mass probability distributions and the important limitations of lossless compression used to
estimate algorithmic information. Finally, we survey a new avenue and novel directions that attempt
to overcome some of these shortcuts.

1.1. Notation, Metrics, and Properties of Graphs and Networks

To ensure common ground, in this section, we briefly reprise some common definitions and
properties of graphs and complex networks. A vertex labelling V of a graph G = (V, E) is a function of
the set of vertices V to a set of labels different for each vertex. A graph with such a mapping function
is called a labelled graph. Otherwise, the graph is said to be unlabelled. |V(G)| and |E(G)| will denote
the vertex and edge/link count of G.

Graphs G and H are said to be isomorphic if there is a bijection between the vertex sets of G and H,
λ : V(G)→ V(H) such that any two vertices u and v ∈ G are adjacent in G if and only if λ(u) and λ(v)
are adjacent in H. When G and H are the same graph, the bijection is referred to as an automorphism of
G. The adjacency matrix of a graph is not an invariant under graph relabellings. Figure 1 illustrates two
adjacency matrices for isomorphic graphs. A(G) will denote the adjacency matrix of G.

Figure 1. The adjacency matrix is not an invariant description of an unlabelled graph. Two isomorphic
graphs can have two different adjacency matrix representations. This translates into the fact that the
graphs can be relabelled, thus being isomorphic. However, similar graphs have adjacency matrices
with similar algorithmic information content, as proven in [4].

The number of links per node constitutes a key characteristic of a graph. When all nodes have the
same number of links, the graph is said to be regular. The degree of a node v, denoted by d(v), is the
number of links to other nodes.
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A canonical form of G is a labelled graph Canon(G) that is isomorphic to G, such that every graph
that is isomorphic to G has the same canonical form as G. An advantage of Canon(G) is that unlike
A(G), A(Canon(G)) is a graph invariant of Canon(G) [5].

A popular type of graph that has been studied because of its use as a fundamental random
baseline is the Erdős-Rényi [6,7] (ER) graph. Here vertices are randomly and independently connected
by links using a fixed prescribed probability (also called edge density) (see Figure 2 for a comparison
between a regular and a random graph of the same size). The probability of vertices being connected
is referred to as the edge probability. The main characteristic of random graphs is that all nodes have
approximately the same number of links, equal to the average number of links per node. An ER graph
G(n, p) is a graph of size n constructed by connecting nodes randomly with probability p independent
of every other edge. Usually edge-independent ER graphs are assumed to be non-recursive (i.e., truly
random), but ER graphs can be constructed recursively with, for example, pseudo-random algorithms.
Here it is assumed that ER graphs are non-recursive, as theoretical comparisons and bounds hold only
in the non-recursive case. For numerical estimations, however, a pseudo-random edge connection
algorithm is utilized, in keeping with common practice.

The so-called small-world graph describes the phenomenon of many empirical networks where
most vertices are separated by a relatively small number of edges. A network is considered to be
a small-world graph G if the average graph distance D grows no faster than the log of the number of
nodes: D ∼ log |V(G)|. Many networks are scale-free, meaning that their degrees are size independent,
in the sense that the empirical degree distribution is independent of the size of the graph up to
a logarithmic term. That is, the proportion of vertices with degree k is proportional to γkτ for some τ > 1
and constant γ. In other words, many empirical networks display a power-law degree distribution.

Figure 2. From simple to random graphs. The graphs are ordered based on the estimation of their
algorithmic complexity (K). K(G) ∼ log2 |V(G)| = log2 15 ∼ 3.9 bits when a graph is simple (left)
and is highly compressible. In contrast, a random graph (right) with the same number of nodes and
number of links requires more information to be specified, because there is no simple rule connecting
the nodes and therefore K(G) ∼ |E(G)| = 15 in bits, i.e., the ends of each edge have to be specified
(so a tighter bound would be 2|E(G)| ∼ 30 for an ER graph of edge density ∼ 0.5.

1.2. Classical Information Theory

Information theory originated in the need to quantify fundamental limits on signal processing,
such as communicating, storing and compressing data. Shannon’s concept of information entropy
quantifies the average number of bits needed to store or communicate a message. Shannon’s entropy
determines that one cannot store (and therefore communicate) a symbol with n different symbols
in less than log(n) bits. In this sense, Shannon’s entropy determines a lower limit below which no
message can be further compressed, not even in principle. A complementary viewpoint on Shannon’s
information theory would be to consider it a measure quantifying the uncertainty involved in predicting
the value of a random variable. For example, specifying the outcome of a fair coin flip (two equally
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likely outcomes) requires one bit at a time, because the results are independent, each result therefore
conveying the maximum entropy. Things begin to get interesting when the coin is not fair. If one
considers a coin with heads on both obverse and reverse, then the tossing experiment always results in
heads, and the message will always be 1, with absolute certainty.

For an ensemble X(R, p(xi)), where R is the set of possible outcomes (the random variable),
n = |R| and p(xi) is the probability of an outcome in R. The Shannon information content or entropy
of X is then given by

H(X) = −
n

∑
i=1

p(xi) log2 p(xi)

Thus, calculating H(X) requires the mass distribution probability of ensemble X. Here we wish
to note that using Shannon’s entropy entails a choice regarding the level of granularity of the analysis.
This follows from it being a metric requiring the counting of discrete elements or events. For example,
consider the bit string 01010101010101, which clearly has a regular pattern. However, the Shannon
entropy of the string at the level of single bits is maximal, as at this level of granularity the string
contains the same number of 1s and 0s. Shifting perspective though, the string is clearly regular
when two-bit blocks are taken as basic units, instance in which the string has minimal complexity
because it contains only 1 symbol (01) from among the 4 possible ones (00, 01, 10, 11). One strategy
to mitigate this problem is to take into consideration all possible “granularities” (we call this Block
entropy), from length 1 to n, where n is the length of the sequence. This measure is related to what’s
also called predictive information or excess entropy (the differences among the entropies for consecutive
block sizes). However, such an approach comes with a computational price tag. To compute the block
entropy is prohibitively computationally expensive, as compared to fixing the block size at n, as it
entails producing all possible overlapping ( i

n) substrings for all i ∈ {1, . . . , n}.
In conclusion, characterizing the complexity or information in a network requires a specification

of the level of granularity of the analysis. However, this is exactly what we would like to know or
discover for a given complex network. Hence, in this sense we need to assume what we are trying
to discover. The block entropy “solution” is to run the analysis across all levels of granularity, which
evidently is not a scalable approach. This observation motivates the search for a more unbiased metric.
This is indeed a challenging task.

2. Classical Information and Entropy of Graphs

One of the major challenges in modern physics is to provide proper and suitable representations
of network systems for use in fields ranging from physics [8] to chemistry [9]. A common problem is
the description of order parameters with which to characterize the “complexity of a network”. Here we
note that the issue of order parameters is closely related to the selection of the level of granularity
of the analysis, as discussed in the previous section. One common conceptual solution is to perform
a selection of the kind of alphabet being used in the analysis of complex networks. Level of granularity
or selection of order parameters are examples of ways to meet this challenge. A complementary
approach involves using a set of predefined measures to describe a complex network. For example,
graph complexity has traditionally been characterized using graph-theoretic measures such as degree
distribution, clustering coefficient, edge density, and community or modular structure. In all these
cases there are numerous algorithms available which can compute these properties of networks
provided one pre-selects the feature of interest that each of these different graph-theoretic indexes
can measure.

More recently, networks have also been characterized using classical information theory.
One complication is the interdependence of many graph-theoretic properties, which makes measures
more sophisticated than single-property measurements [10] difficult to come by. One common
approach is to generate graphs that have a certain specific property while being random in all other
respects, the rationale being to assess whether or not the property in question is typical among
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an ensemble of graphs with otherwise seemingly different properties. We have recently advanced
methods to improve on this idea underlying the so-called “principle of maximum entropy” or Maxent
by way of approximating algorithmic complexity [11] based on the challenge that telling apart
pseudo-randomness from algorithmic randomness constitutes and that entropic indexes collapse
in the same case yet is fundamental to properly identify.

Indeed, approaches using measures based on Shannon entropy which claim to quantify the
information content of a network [12] as an indication of its “typicality” are based on an assumption
of associated ensembles provided by the entropy evaluation, the idea of Maxent being that the more
statistical random the more typical. The claim is that one can construct a “null model” that captures
some aspects of a network (e.g., graphs that have the same degree distribution) and see how different
the network is from the null model as regards particular features, such as clustering coefficient, graph
distance, or other features of interest. The procedure aims at producing an intuition of an ensemble of
graphs that are assumed to have been sampled uniformly at random from the set of all graphs with
the same property, in order to determine if such a property occurs with high or low probability. If the
graph is not significantly different, statistically, from the null model, then the graph is said to be as
“simple” as the null model; otherwise, the measure is said to be a lower bound on the “complexity”
of the graph as an indication of its random as opposed to causal nature. Yet, to construct a proper null
model is far from trivial, since as a rule one does not know what properties are present in the network.

Some applications of entropy are to node and graph degree distributions. For example, a method
to estimate upper and lower bounds for extremal node degrees was recently proposed in [13] as
a measure of relative entropy calculated from the graph edge probability matrix and largest eigenvalues.
Entropy has also been applied to other graph features, such as functions of their adjacency matrices [14],
and to distance and Laplacian matrices [15].

A recent example is the computation of the Shannon entropy of adjacency matrices to discover
CRISPR candidate regions as a method to transform DNA sequences into graphs [16]. A survey
contrasting adjacency matrix-based (walk) entropies and other entropies (e.g., based on degree
sequence) is also offered in [14]. The study finds that adjacency-based entropies are more robust
vis-à-vis graph size and are correlated with graph algebraic properties, as these are also based on the
adjacency matrix (e.g., graph spectrum). However, these walk entropy approaches are designed for
static or fixed graphs. For time-varying and evolving graphs other measures have been proposed [17]
based on the calculation and change of graph spectral properties.

In estimating the complexity of objects, in particular of graphs, it is common practice to rely on
graph- and information-theoretic measures. Here, using integer sequences with properties such as
Borel normality, we explain how these measures are not independent of the way in which an object,
such as a graph, can be described or observed. From observations that can reconstruct the same graph
and are therefore essentially translations of the same description, we will see that when applying
a computable measure such as Shannon entropy, not only is it necessary to pre-select a feature of
interest where there is one, and to make an arbitrary selection where there is not, but also that more
general properties, such as the causal likelihood of a graph as a measure (opposed to randomness)
can be largely misrepresented by computable measures such as entropy and entropy rate. Therefore,
recursive and non-recursive (uncomputable) graphs and graph constructions based on these integer
sequences have been introduced, whose different lossless descriptions have disparate entropy values,
thereby enabling the study and exploration of a measure’s range of applications and demonstrating
the weaknesses of computable measures of complexity.

One way to describe a network is to use the notion of a node degree sequence of a graph. Clearly,
when formulated in this manner, the Shannon entropy can be used to characterize the node degree
sequence of a graph, by analogy with strings. This use of entropy was first suggested and introduced
by [18]. Similar approaches have been investigated and adopted in characterizing chemical graphs
and networks investigated within the computational systems biology community [19]. Yet, a notion of
coarse graining is needed, specifically, using the idea of a layered computation of the graph degree
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distribution such as, for example, a sphere covering. Such an approach provides an hierarchical
application of entropy, which can be considered a version of graph traversal entropy rate. Assessing
molecular complexity is naturally of considerable interest in chemistry. Here, Shannon entropy has been
used to quantify the entropy associated with the degree sequence of the graph reflecting the molecular
structure. If the network is unlabelled, then a description using the degree distribution is invariant
to relabellings. Hence, the degree distribution is not a lossless representation of a labelled network.
This is valid whenever the node labels are not relevant. In contrast, when dealing with time-dependent
or temporal networks, the degree distribution cannot be used for analyzing or reconstructing the
network from data, as the labels of the nodes, the time-stamps, contain the critical information.

We note that the concept of entropy rate cannot be directly applied to the degree distribution.
The reason is that the node degree sequence has no inherent order, because any label numbering will be
arbitrary. It therefore follows that Shannon entropy is not invariant vis-à-vis the language description
of a network. This is in line with the previous discussion about level of granularity, or, on the same note,
order parameters. Please note that a labelled or an unlabelled network has a flat degree distribution
and therefore the lowest Shannon entropy for degree sequence and adjacency matrix.

Fragility of Computable Measures Such as Entropy

Common statistical and computable measures such as Shannon entropy can easily be proven not
to be robust and to require arbitrary choices such as coarse graining at multiple levels. Dependent on
underlying mass distributions, and mostly quantifying how removed the assumptions of the premises
are from real-world applications, Shannon entropy has unfortunately proved to have limited use in
dealing with complexity, information content, and ultimately, causation and temporal information.
To further our intuition as to why this is the case and assess how to progress beyond it, let us first
consider the formal basis of Shannon entropy. In a graph G we define the (Shannon) entropy as

H(A(G)) = −
n

∑
i=1

P(A(xi)) log2 P(A(xi))

where G is the random variable with n possible outcomes (all possible adjacency matrices of size
|V(G)|). For example, a completely disconnected graph G with all adjacency matrix entries equal to
zero has entropy H(A(G)) = 0, since the number of different symbols in the adjacency matrix is 1.
However, if the frequency of 1s and 0s differs in A(G), then H(A(G)) 6= 0. In general we will use
Block entropy to detect additional graph regularities. The idea is to gloss over the adjacency matrix at
different and greater resolution. We note, however, that in calculating the unlabelled Block entropy of
a graph one has to consider all possible adjacency matrix representations for all possible labellings.
Therefore, the Block entropy of a graph is computed as:

H(G) = min{H(A(gL))|GL ∈ L(G)}

where L(G) is the group of all possible labellings of G.
Other entropy-based measures of network elements are possible. Yet as a rule, they all require

that an observer focus on a particular graph element or property of the graph, such as the adjacency
matrix, degree sequence, or number of bifurcations. Notably, they do not all converge in entropy,
thus illustrating that Shannon entropy is not invariant vis-à-vis different descriptions of the same
object. This is in contrast to algorithmic complexity, which has the ability to characterize any general or
universal property of a graph or network [20]. Indeed, in [20], it has been recently introduced a graph
that is generated recursively by a small computer program of (small) fixed length. Yet when looking
at its degree sequence we see that it tends to maximal entropy, and when looking at the adjacency
matrix it tends to zero entropy at the limit, thus displaying divergent values for the same object when
considering different mass probability distributions—when assuming the uniform distribution to
characterize an underlying ensemble comprising all possible adjacency matrices of increasing size,
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or when assuming all possible degree sequences. In a follow-up paper [21] by an independent group,
our techniques were used to find other high entropy graphs generated recursively (and thus actually
of low randomness).

The proposed refinement of the so-called principle of maximum entropy—or Maxent—based
on algorithmic complexity demonstrates (formally and numerically) how not all ER networks are
random [11], and that methods based on algorithmic complexity can to some extent tell apart random
from pseudo-random ER networks, calling into question the ability of classical Maxent to compare
objects against their most randomized versions.

3. Moving Towards Algorithmic Complexity of Graphs

A graph with low entropy has low algorithmic complexity because the statistical regularities
found in the graph can be used in a computer program to generate it. However, a graph with high
entropy can have high or low algorithmic complexity [20] and the number of high entropy but low
algorithmic complexity graphs will diverge [22], this means that entropy overestimates randomness
because it can only characterize traditional statistical properties and not algorithmic randomness
as it can be directly derived from the works of Kolmogorov [23] and Martin-Löf [24], et al., and as
investigated both theoretically and numerically in [1].

Using an entropy-based metric poses also the challenge of selecting an appropriate level of e.g.,
coarse graining: the problem of knowing which level is the proper level to the challenge of identifying
order parameters for a given system to minimize its estimated randomness [22] including the selection
of a feature of interest per our discussion of the way in which entropy requires the definition of
a variable that belongs to an ensemble with an associated mass probability distribution. It would be
optimal if we knew in advance which properties we are after, prior to beginning our search for them.
However, how then could we get out of this vicious circle, chasing our own tail in the general case
when no feature can be chosen before hand as it is often, if not always, the case in real-world scenarios?

During the last decades we have benefited from pioneering work on the mathematics of
algorithmic complexity originating from Kolmogorov [23], Chaitin [25], Solomonoff [26], Levin [27]
and Martin-Löf [24], among others. Their framework offers the opportunity, in principle, to analyze
complex objects in an unbiased manner from first mathematical principles. That is, from the accepted
mathematical definition of randomness by way of algorithmic randomness that is removed from the
definition of pseudo-randomness that is so widely used in practice based on classical information
theory. Yet, conventionally this approach has been hampered by the notion that since algorithmic
randomness is not a computable property, then it is supposed to be of very limited practical value,
if any.

3.1. Lossless Compression in Network Complexity

It has been traditional to use, misuse and overuse lossless compression algorithms alleging that
they provide approximations to algorithmic complexity. While it is true that high compression is
a sufficient test for non-randomness, because the length of the compressed file (in bits) together with the
fixed length of the lossless compression algorithm (in bits) is an upper bound of algorithmic complexity,
implementations popular lossless compression algorithms cannot achieve much better performance
than a simple traditional statistics approach very close to what Shannon entropy could achieve by its
own [1,3]. It is thus very clear that popular lossless compression algorithms are limited by design,
as their aim is to capture statistical regularities (i.e., repetitions) within a sliding window of variable
length in order to compile a dictionary where the most frequently repeated long segments are replaced
by shorter codes. When such a window length is unbounded, such algorithms are said to be optimal,
and even universal [2], as they can approach exact values of entropy rate in the limit. However, they are
not optimal or universal in any more fundamental and algorithmic sense. Popular lossless compression
algorithms such as LZ implement a look-up table based on a dictionary compiled by assigning the
longest repetitions to the shorter codes, something that an algorithmic measure would naturally do,
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while also identifying regularities beyond statistics. Other lossless compression algorithms are directly
based on number of repetitions or Shannon entropy, with most if not all strategies being very similar
in essence, being based on counting features, i.e., being what we consider statistical.

Networks have emerged as a unifying language in science and technology. The elements of
such graphs range from chemical elements and molecules [19] to interacting computer programs or
agents. This language for science has fuelled rapid advances in the development of analytical and
computational techniques for describing, deconstructing, and engineering networks. Network theory
and algorithms have become key areas, with numerous ramifications into other fields. For example,
computational systems analysis in molecular biology has emerged as a conceptual framework within
which to understand and reconstruct relations among biological components, a case in point being
the construction of transcriptional networks from a gene expression dataset that provides a set of
possible hypotheses explaining connections among genes. The regulation of genes (nodes) is captured
in the directed edges of the graph. Such knowledge is vital to advancing our understanding of
living organisms as systems in specific domains ranging from developmental biology to regenerative
medicine. Examples are abundant within biology, medicine, and even health care data.

It is, therefore, essential to provide a fundamental theoretical understanding of networks as
objects. Different branches of information theory promise to deliver and develop such a quantitative
framework on which we can conceive specific algorithms and applications. Since a natural candidate
is Shannon entropy, we will in this review discuss and contrast a Shannon-based approach, lossless
compression, and algorithmic information theory, with special reference to networks. One key finding
is that a computable measure, using counting and returning an output for every input in finite time,
is not invariant vis-à-vis variant descriptions of the object [3].

3.2. Alternatives to Lossless Compression

More recently, novel directions have been developed in techniques different to popular lossless
compression capable of yielding upper bounds to algorithmic complexity by way of estimating lowe
bounds of algorithmic probability [4,28] capable of characterizing algorithmic features by finding the
small computer programs that generate a string, a matrix and even a graph. Based on this body of work
it has been shown how to avoid the vicious circle referred to above and instead numerically estimate
the inherent complexity of objects in general and networks in particular. Thus, complementary to
entropy-based measures, new methods to approximate the algorithmic complexity of a graph have
been introduced [4,28,29].

Below we provide a brief review of this work illustrating how upper bounds on algorithmic
complexity can be estimated with alternatives to popular lossless compression algorithms that are very
limited and are closer to Shannon entropy than to algorithmic complexity [1].

3.3. Algorithmic Information Theory

Technically, the algorithmic complexity of a string s [23,25] is formally defined by

K(s) = min{|p| : U(p) = s}

by invoking a universal Turing machine U with an output s on halting we obtain the shortest program p
measured in bits. Here a universal Turing machine U is a formal model of a general-purpose computer.
Such a machine can be programmed to reproduce any computable object, such as a string. Please note
that a network can be considered a set of strings since the graph is defined by the rows or columns of
an adjacency matrix. The subscript of U can be omitted since, based on the invariance theorem [30,31],
KU only depends on U up to a constant. Technically, ∃γ such that |KU(s)− KU′(s)| < γ where γ is
a constant independent of U and U′. Since the theory is asymptotic we have convergence at the limit
of long strings (s), and the approximations become better the longer. This follows from the invariance
theorem. We note that despite our use of different Turing machines U and U′, the results do not
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depend on the specific Turing machine at the limit. Hence, at the limit (for |s| → ∞) the evaluations of
the complexity of the string s using different Turing machines will coincide.

K has the technical inconvenience of being non-computable but, more precisely, it is
semi-computable, meaning that it can be approximated but is not solvable by algorithmic means.
Originally, it has been proven that no effective algorithm exists which takes a string s as input and
produces the exact integer K(s) as output [23,25]. This is an echo of what is commonly referred to
as the undecidability of the halting problem [32] in computer science. This refers to the difficulty of
knowing whether or not a given computation will eventually stop. Yet, in practice K can be effectively
approximated by using, for example, compression algorithms. This fact offers an understanding
of algorithmic complexity in terms of uncompressibility. If an object, or a network in our case,
is uncompressible, then the network is considered to be an algorithmically random network. If on
the other hand, a biological network is compressible, then K is small and there exists a shorter
description of the network relative to the full network itself. Thus, the degree to which an object
can be compressed indicates how removed it is from maximum algorithmic randomness. We can
therefore define a compression ratio, also related to the randomness deficiency, where the ratio is given by
C(G) = Comp(G)/|A(G)|, where Comp(G) is the compressed length in bits of the adjacency matrix G
of a network using a lossless compression algorithm (e.g., Compress). The |A(G)| denotes the size of the
adjacency matrix as a block. For example, using the dimensions of the array and multiplying its values
such that if the adjacency matrix is 5 × 5, then |A(G)| = 25. At this juncture one may ask whether the
procedure depends on the nature of the lossless compression algorithm used. If so, then the estimated
upper bound would be not be valid in general. The short answer is that it does not depend on the
lossless algorithm, since compressibility is a sufficient test for non-randomness. Thus, we can test
different lossless algorithms one by one and retain the best compression as an approximation to K,
as a sequence of lower and lower values of K. Naturally, the lossless compression algorithm includes
a decompression algorithm that retrieves the exact original object, without any loss of information
when decompressed. In summary, the closer C(G) is to 1, the less compressible, whereas the reverse
is true if it is close to 0. We note that, interestingly, the fact that a non-computable object such as
K can be numerically approximated in practice calls to mind historical examples in physics where
approximations of complicated integrals have proved to be sufficient in practice.

3.4. Algorithmic Probability

The algorithmic probability [26,27,33] of a string s, denoted by AP(s), indicates the probability
that a valid random program p written in bits uniformly distributed produces the string s when run
on a universal (prefix-free (The group of valid programs forms a prefix-free set (no element is a prefix
of any other, a property necessary to keep 0 < AP(s) < 1.) For details see [30,34].)) Turing machine
U. Formally,

AP(s) = ∑
p:U(p)=s

1/2|p|

That is, the sum over all the programs p for which a universal Turing machine U outputs s
and halts.

Algorithmic probability and algorithmic complexity K are formally (inversely) related by the
so-called algorithmic Coding theorem [30,34]:

| − log2 AP(s)− K(s)| < O(1)

where O(1) is an additive value independent of s. Please note that the Coding theorem implies that
the algorithmic complexity can be estimated from the frequency of a string.

To illustrate the above let us consider π. Under the assumption of Borel’s absolute normality
of π, whose digits appear randomly distributed, and with no knowledge of the deterministic
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source and nature of π as produced by short mathematical formulae, we ask how an entropy
versus an algorithmic metric performs. First, the Shannon entropy rate (thus assuming the uniform
distribution along all integer sequences of N digits) of the N first digits of π, in any base, would suggest
maximum randomness at the limit. However, without access to or without making assumptions as
regards the probability distribution, approximations to algorithmic probability would assign π high
probability, and thus the lowest complexity by the Coding theorem, as has been done in [22,35–38].
Hence, this illustrates the fundamental difference between the two approaches, as they characterize
the object as being strikingly different with regard to their complexity.

Just as with π, it has been proven how certain graphs can be artificially constructed to target any
level of Shannon entropy [20,21] and thus any estimation of statistical randomness without changing
its algorithmic complexity by means of being recursively generated thus of deterministic nature
hence diverging from the entropy values derived from them when the generating source and mass
probability distribution is unknown. While this is not a surprise it has been often overlooked in
their wide application to all type of objects, in particular, to graphs and networks, as if the measure
were meaningful or robust without having to pre-select a feature by choice of associated probability
distributions [20].

3.5. Approximations to Graph Algorithmic Complexity

It is pertinent to ask how well algorithmic complexity can be estimated, i.e., how well different
graphs can be distinguished. For example, having two graphs of the same size, can we distinguish
between regular, complex, and random graphs? This was demonstrated in [4] to be feasible for graphs
of the same size, and by extension when they grew asymptotically. Here, K was calculated using
the BDM as a compression algorithm. It assigned low algorithmic complexity to regular graphs,
medium complexity to complex networks following Watts-Strogatz or Barabási-Albert algorithms,
and higher algorithmic complexity to random networks. This is what we expect theoretically,
since random graphs are the most algorithmically complex. Please note that all long binary strings
are algorithmically random, and approximately all random unlabelled graphs are algorithmically
random [39]. Hence, using algorithmic complexity we can prove that the number of unlabelled graphs
is a function of their randomness deficiency, which translates into establishing numerically how distant
they are from the maximum value of K(G) and in line with recent proposals to generalize Maxent to
algorithmic randomness [11].

As noted above, the Coding Theorem Method (CTM) [35,36] provides the means for approximation
via the frequency of a string. Now, why is this so? The underlying mathematics originates from
the relation specified by algorithmic probability between frequency of production of a string from
a random program and its algorithmic complexity. It is also therefore denoted as the algorithmic
Coding theorem, in contrast to another well known coding theorem in classical information theory).
Essentially, the numerical approximation hinges on the fact that the more frequently a string (or object)
occurs, the lower its algorithmic complexity. Conversely, strings with a lower frequency have higher
algorithmic complexity.

The way to implement a compression algorithm at the level of Turing machines, unlike popular
compression algorithms based on Shannon entropy, is to go through all possible compression schemes.
This is equivalent to traversing all possible programs that generate a piece of data, which is exactly
what the CTM algorithm does.

In [4], numerical evidence was presented supporting the theoretical assumption that the
algorithmic complexity of an unlabelled graph should not differ dramatically from any of its labelled
versions. This can be understood from the observation that there is a small computer program of
fixed size that determines the order of the labelling proportional to the size of the isomorphism group.
The size of the isomorphism group makes a difference. Given a large isomorphism group, the labelled
networks have more equivalent descriptions, which follow from their symmetries. These can therefore,
according to algorithmic probability, be of lower algorithmic complexity.
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3.6. Reconstructing K of Graphs from Local Patterns

For any given network it is of considerable interest to ask whether there are any specific features or
patterns in the network. When addressing this challenge we note here the gulf between a pre-selected
level of coarse graining versus an “unbiased” algorithmic complexity search for patterns. In what
has been referred to as network biology, there is a large body of work originating in the pioneering
efforts to discover motifs in networks [40]. Here there is a string analogy to patterns in the DNA string,
i.e., motifs determining structures of proteins. In the context of networks, several abundant motifs
such as feed-forward and feedback circuits have been discovered. Yet, higher order patterns have been
much more difficult to detect due to the exponential increase in the number of possible motifs. Hence a
brute force counting strategy is difficult to implement in practice. Yet, these attempts hinge on a search
for predefined patterns of a certain size (small number of nodes) which differ relative to the random
null model. Alternatively, using the algorithmic complexity framework offers a complementary view
of this important problem.

Here we instead determine the algorithmic complexity of a graph. This translates into
considering how often the adjacency matrix of a motif is generated by a random Turing machine on
a 2-dimensional array, also called a termite or Langton’s ant [41]. Hence an acounting procedure is
performed using Turing machines aiming to approximate the algorithmic complexity of the identified
structures. This technique is referred to as the Block Decomposition Method (BDM), as introduced
in [4] and [22]. The BDM technique requires a partition of the adjacency matrix corresponding to the
graph into smaller matrices. With these building blocks in our hands we numerically calculate the
corresponding algorithmic probability by running a large set of small 2-dimensional deterministic
Turing machines, and then—by applying the algorithmic Coding theorem as discussed above—its
algorithmic complexity.

Following such a divide-and-conquer scheme we can then approximate the overall complexity of
the original adjacency matrix by the sum of the complexity of its parts. Please note that we have to take
into account a logarithmic penalization for repetition, given that n repetitions of the same object only
add log n to its overall complexity, as one can simply describe a repetition in terms of the multiplicity
of the first occurrence. Technically, this translates into the algorithmic complexity of a labelled graph G
by means of BDM is defined as follows:

KBDM(G, d) = ∑
(ru ,nu)∈A(G)d×d

log2(nu) + Km(ru) (1)

where Km(ru) is the approximation of the algorithmic complexity of the sub-arrays ru arrived at
by using the algorithmic Coding theorem, while A(G)d×d represents the set with elements (ru, nu),
obtained by decomposing the adjacency matrix of G into non-overlapping squares, i.e., the block
matrix, of size d by d. In each (ru, nu) pair, ru is one such square and nu its multiplicity (number of
occurrences). From now on KBDM(g, d = 4) will be denoted only by K(G), but it should be taken as
an approximation to K(G) unless otherwise stated (e.g., when taking the theoretical true K(G) value).
Once CTM is calculated, BDM can be implemented as a look-up table, and hence runs efficiently in
linear time for non-overlapping fixed size submatrices.

Similar to the notion of Block entropy (c.f. Section 3), the algorithmic complexity of a graph G is
given by:

K′(G) = min{K(A(GL))|GL ∈ L(G)}

where L(G) is the group of all possible labellings of G whereas GL is a particular labelling. Please note
that K(G) provides a choice for graph canonization, since it uses the adjacency matrix of G having the
lowest algorithmic complexity. Here we combine G with the smallest lexicographical representation
when the adjacency matrix is concatenated by rows. This is by way of dealing with the fact that G
does not have to be unique. Next, one may ask how this relates to the findings using a more standard
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search for motifs, as has been employed in network biology, as discussed above. Specifically, is the
BDM approach able to recover known network motifs? To this end we use subarrays of the adjacency
matrix in order to ensure that network motifs (over-represented graphs), used in biology and proven
to classify superfamilies of networks [40,42], are taken into consideration in the BDM calculation.
This demonstrates that BDM alone classifies and identifies the same superfamilies of networks [28] as
classical network motifs— as discussed above—were able to identify.

3.7. Group-Theoretic Robustness of Algorithmic Graph Complexity

How robust is the measure of algorithmic complexity? Here we review this question by contrasting
the computation using unlabelled versus labelled graphs. In short, the metric is robust up to an additive
constant. Let us dwell on this issue in some more detail. First, regular graphs have been shown to
have low values of K whereas random graphs have high estimated values of K. This has been shown
by actually performing the non-trivial calculation of unlabelled complexity, namely K′. Furthermore,
graphs with a larger set of automorphisms have lower K values compared to graphs with a smaller set
of automorphisms [4]. Now, an important question is how accurate a labelled estimation of K(G) is
with respect to the unlabelled K′(G). This is a valid concern and a useful question to ask since in the
general case, the calculation of K(G) is computationally cheap, as compared to K′(G), which carries
an exponential overhead. Perhaps surprisingly, the difference |K(G)−K′(G)| is bounded by a constant.
Indeed, as first suggested in [37], there exists an algorithm, denoted by α of fixed length (bit-size)
|α| such that all L(G) relabellings of G can be computed. This is doable using a brute-force scheme,
e.g., by producing all the indicated adjacency matrix rows and their associated permutations of the
columns. It therefore follows that |K(G)− K(GL)| < |α| for any relabelled graph GL of G. In other
words, K(GL) = K′(G) + |α|, where |α| is independent of G. We wish to note here that even if the time
complexity of α is commonly believed to not be in the P class, it is not a relevant observation. It is
sufficient for the proof to go through that an α exists and is of finite size. We can therefore safely deduce
that an estimation of the unlabelled K′(G) by piggy-backing on the estimate of a labelled K(GL) is
indeed an accurate asymptotic approximation. The brute-force schemata is likely the shortest program
description capable of producing all graph relabellings, and therefore the best choice to minimize α.

This result is both relevant and useful in practice. First, we can accurately estimate KL(G) through
K(G) for any lossless representation of G up to an additive term. Yet, as noted above, the existence of
a finite entity does not readily inform us about the convergence rate of K(G) to KL(G). Interestingly,
numerical estimations demonstrate that the convergence rate is fast. For example, the median of
the BDM estimations of all the isomorphic graphs of the graph in Figure 1 is 31.7, with a standard
deviation of 0.72. However, when generating a graph, the BDM median is 27.26 and the standard
deviation 2.93, clearly indicating a statistical difference. However, more importantly, the probability of
a random graph having a large automorphism group count is low, as shown in [4]. These observations
are consistent with what we would expect of the algorithmic probability of a random graph—a low
frequency of production as a result of running a Turing machine on a 2-dimensional tape. In the
current review and in [4] we have also shown that graphs, their formal duals, and their co-spectral
versions have similar algorithmic complexity values as estimated using algorithmic probability (BDM).
This means that in practice the convergence is not only guaranteed but also sufficiently rapid.

3.8. K(G) Is Not a Graph Invariant But Highly Informative

In addition to the issue of robustness discussed in the previous section, here we address what
could be referred to as sensitivity. Namely, if two graphs end up with similar K(G), does it follow
that they are isomorphic? Let us probe why this is not the case. K(G) can readily be computed via
an approximation up to a bounded error that vanishes asymptotically with the increase in the size of
the graph. Note, however, that K(G) does not uniquely determine G. This is evident from the fact
that two non-isomorphic graphs G and H can have K(G) = K(H). More precisely, the algorithmic
Coding theorem provides an estimation of how often this occurs, and it is also related to a simple
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Pigeonhole argument. Indeed, if G or H are algorithmically speaking (Kolmogorov-Chaitin) random
graphs, then the probability that K(G) = K(H) grows exponentially. If G and H are complex, then their
algorithmic probability ∼ 1/2K(G) and ∼ 1/2K(H) respectively are small and are located in the tail
of the algorithmic probability distribution, also referred to as the Universal distribution or Levin’s
semi-measure) distribution. This ranges over a very tiny interval of (maximal) algorithmic complexity,
hence increasing the chance of collision of the values, i.e., K(G) = K(H).

In [37], we utilized theoretical and experimental estimates of the algorithmic complexity of
trivial/simple (denoted here by S) and random Erdős-Rényi (ER) graphs. Regular graphs, such
as completely disconnected or complete graphs, have algorithmic complexity K(S) = log |V(S)|.
ER graphs have maximal complexity, so any other complex network is upper bounded by K(ER)
graphs. Finally, note that the algorithmic complexity of a Barabási-Albert (BA) network is low, because
it is based on a recursive procedure, while preserving an element of randomness since the generative
model comes equipped with an attachment probability.

In [37], theoretical and numerical estimations of algorithmic information content for a range of
theoretical and real-world networks is provided. Here, Table 1, offers a larger picture, summarizing
the theoretical expectations of the asymptotic behaviour of K for different graphs and networks.
Notice, that ER′ represents a graph that satisfies the definition of an ER graph but its edges are not
independent because ER′ is recursively generated by, for example, a pseudo-random number generator
(PRNG). This, these discerning capabilities to distinguish randomness from pseudo-randomness and
tell apart ER′ from ER is what the introduction of algorithmic complexity to the study of graphs and
networks offers.

Table 1. Theoretical calculations of K for different network topologies for 0 ≤ p ≤ 1. Clearly, minimum
values are for fully connected, fully disconnected and recursive graphs while maximum K is reached
for edge-independent ER graphs with edge density p = 0.5 and fixed number of nodes for which
K(ER) ∼ (|V(ER)|

2 )/2. For WS graphs, p is the rewiring probability.

Type of Graph/Network Asymptotic Expected Behaviour

Empty/Complete (E) K(E) ∼ log |V(E)|

Regular recursive (R) (e.g., cycles, stars) K(R) ∼ log |V(R)|

Barabási-Albert (BA) K(BA) ∼ |V(BA)|+ c

Watts-Strogatz (WS) limp→0 K(WS) ∼ K(R)
limp→1 K(WS) ∼ K(ER) or K(ER′)

Algorithmic random Erdős-Rényi (ER) K(ER) ∼ n(n−1)
16p|p−1|

Pseudo-random Erdős-Rényi (ER′) K(ER′) ∼ K(S)

To test our numerical approximations to these theoretical estimations we have devised a wide
range of experiments, one of the most conclusive with regards to graphs being the one performed
on dual and co-spectral graphs. We know that graphs and their duals must have about the same
algorithmic complexity because there is a computer program of (small) fixed size that can transform
any graph into its dual by simple replacement of edges for nodes and nodes for edges. While for duals
it was clear that our methods were numerically sound, the co-spectrality test confirmed the robustness
of our measures. For both tests our methods outperformed other approaches, such as compression
and Shannon entropy as reported in [22].

4. Conclusions

We have surveyed concepts and methods using classical and algorithmic information theory,
including properties and limitations of Shannon entropy and lossless compression in the context of
graph profiling and a recent direction of research that moves away from classical statistics and the
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wide application of lossless compression. As surveyed, novel approaches show promising signs and
have evolved into alternative tools that are now being applied in the context of temporal dynamic
networks with applications to areas such as molecular biology under the name of algorithmic information
dynamics as introduced in [43] based on the measures surveyed in the second part of this review paper
thanks to their robust capabilities in characterizing properties of graphs and networks. These new
approaches are important because they are better rooted in the accepted mathematical definition of
randomness that make them robust and universal in fundamental ways, as opposed to the more
traditional, yet widely exploited, (over)use of statistical randomness in either its Shannon entropy
or popular lossless compression forms. These new approaches are thus better equipped to deal with
more difficult challenges such as that of causation removed from traditional correlation.
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