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Abstract: A conditional Gaussian framework for understanding and predicting complex multiscale
nonlinear stochastic systems is developed. Despite the conditional Gaussianity, such systems
are nevertheless highly nonlinear and are able to capture the non-Gaussian features of nature.
The special structure of the system allows closed analytical formulae for solving the conditional
statistics and is thus computationally efficient. A rich gallery of examples of conditional Gaussian
systems are illustrated here, which includes data-driven physics-constrained nonlinear stochastic
models, stochastically coupled reaction–diffusion models in neuroscience and ecology, and large-scale
dynamical models in turbulence, fluids and geophysical flows. Making use of the conditional
Gaussian structure, efficient statistically accurate algorithms involving a novel hybrid strategy for
different subspaces, a judicious block decomposition and statistical symmetry are developed for
solving the Fokker–Planck equation in large dimensions. The conditional Gaussian framework is
also applied to develop extremely cheap multiscale data assimilation schemes, such as the stochastic
superparameterization, which use particle filters to capture the non-Gaussian statistics on the
large-scale part whose dimension is small whereas the statistics of the small-scale part are conditional
Gaussian given the large-scale part. Other topics of the conditional Gaussian systems studied here
include designing new parameter estimation schemes and understanding model errors.
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1. Introduction

Multiscale nonlinear dynamical systems are ubiquitous in different areas, including geoscience,
engineering, neural science and material science [1–8]. They are characterized by a large dimensional
phase space and a large dimension of strong instabilities which transfer energy throughout the
system. Many non-Gaussian characteristics, such as extreme and rare events, intermittency and
fat-tailed probability density functions (PDFs), are often observed in these multiscale nonlinear
dynamical systems [1,9,10]. Key mathematical issues are their basic mathematical structural
properties and qualitative features [2,3,11,12], short- and long-range forecasting [13–15], uncertainty
quantification (UQ) [16–18], and state estimation, filtering or data assimilation [15,19–22]. Due to
the lack of physical understanding or the inadequate resolution in the models because of the current
computing power, coping with the inevitable model errors that arise in approximating such complex
systems becomes a necessary and crucial issue in dealing with these multiscale nonlinear dynamical
systems [16,23–26]. Understanding and predicting complex multiscale turbulent dynamical systems
involve the blending of rigorous mathematical theory, qualitative and quantitative modelling,
and novel numerical procedures [2,27].

Despite the fully nonlinearity in many multiscale turbulent dynamical systems and the
non-Gaussian features in both the marginal and joint PDFs, these systems have conditional Gaussian
structures [1,15,28,29]. Writing the state variables as u = (uI, uII), the conditional Gaussianity means
that once the trajectories of uI are given, the dynamics of uII conditioned on these highly nonlinear
observed trajectories become Gaussian processes. In this article, we develop a general conditional
Gaussian framework for mathematical modeling, prediction, state estimation and UQ. One of the
desirable features of such conditional Gaussian system is that it allows closed analytical formulae
for updating the conditional statistics of uII given the trajectories of uI [28,30]. This facilitates the
development of both rigorous mathematical theories and efficient numerical algorithms for these
complex multiscale turbulent dynamical systems.

With the great progress in developing and improving the observational networks, a vast amount of
observational data is now available. An important scientific issue is to make use of these observational
data to build data-driven models that advance the understanding of the underlying physical processes
and improve the prediction skill. Physics-constrained nonlinear stochastic models are the recent
development of data-driven statistical-dynamical models for the time series of a partial subset of
observed variables, which arise from observations of nature or from an extremely complex physical
model [31,32]. The physics-constrained nonlinear stochastic modeling framework builds on early
works for single layer models without memory effects, which uses physical analytic properties to
constrain data-driven methods. They succeed in overcoming both the finite-time blowup and the
lack of physical meaning issues in various ad hoc multi-layer regression models [31,33]. Many of the
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physics-constrained nonlinear stochastic models belong to the conditional Gaussian framework, including
the noisy version of the famous Lorenz 63 and 84 models as well as a two-layer Lorenz 96 model [34–36].
In addition, two important conceptual models for turbulent dynamical systems [37,38] and a conceptual
model of the coupled atmosphere and ocean [39] also fit perfectly into the physics-constrained
nonlinear stochastic modeling framework with conditional Gaussian structures. These models are
extremely useful for testing various new multiscale data assimilation and prediction schemes [1,38,40].
Other physics-constrained nonlinear stochastic models with conditional Gaussian structures include a
low-order model of Charney–DeVore flows [29] and a paradigm model for topographic mean flow
interaction [32]. Notably, the physics-constrained nonlinear stochastic models combining with the
conditional Gaussian framework have been successfully applied for the real-time prediction and data
assimilation of the Madden–Julian oscillation (MJO) and monsoon [41–44], which are the dominant
modes of intraseasonal variabilities in nature.

In many multiscale turbulent dynamical systems, there is a natural time scale separation
between different variables. Therefore, the MTV strategy [45–48] (named after Majda, Timofeyev and
Vanden-Eijnden) can be applied to these systems for stochastic mode reduction. Using the MTV
strategy, the equations of motion for the unresolved fast modes are modified by representing the
nonlinear self-interactions terms between unresolved modes by damping and stochastic terms.
The resulting systems then naturally belong to the conditional Gaussian framework and they also
preserve physics-constrained properties. Examples include a simple stochastic model with key features
of atmospheric low-frequency variability [49] and a simple prototype nonlinear stochastic model with
triad interactions that mimics structural features of low-frequency variability of global circulation
models (GCM) [50] .

In addition to the data-driven physics-constrained nonlinear stochastic models, many large-scale
dynamical models in turbulence, fluids and geophysical flows also have conditional Gaussian
structures. These stochastic partial differential equation (SPDE) models include the stochastic
skeleton model for the MJO [51] and a coupled El Niño dynamical model capturing the El Niño
diversity [52], where nonlinearity interacts with state-dependent (multiplicative) noise and many
salient non-Gaussian features such as intermittency and fat-tailed PDFs are observed in these
systems. The stochastically forced Boussinesq equation [11] for the Rayleigh–Bénard convection [53,54]
and strongly stratified flows in geophysics [55] as well as its generalized version, namely the
Darcy–Brinkman–Oberbeck–Boussinesq system [56] for the convection phenomena in porous media,
also belong to the conditional Gaussian framework. Likewise, the multiscale shallow water
equation [11] with coupled geostrophically balanced (GB) and gravity modes fits into the conditional
Gaussian model family. On the other hand, quite a few stochastically coupled reaction–diffusion
models in neuroscience and ecology illustrate conditional Gaussian structures as well. Examples
include the stochastically coupled FitzHugh–Nagumo (FHN) models [57], the predator–prey
models [58], a stochastically coupled Susceptible-Infectious-Recovered (SIR) epidemic model [59]
and a nutrient-limited model for avascular cancer growth [60]. Furthermore, the conditional Gaussian
framework can be applied to model the coupled observation-filtering systems for the state estimation
of turbulent ocean flows using Lagrangian tracers [61–63]. The framework can also be utilized to
develop cheap and effective stochastic parameterizations for turbulent dynamical systems [64,65].

One of the key issues in studying the complex multiscale nonlinear turbulent dynamical systems
is to solve the time evolution of the associated PDFs, which is extremely useful in ensemble prediction,
data assimilation as well as understanding the intermittency and extreme events. The time evolution
of the PDFs associated with the underlying turbulent dynamical systems is described by the so-called
Fokker–Planck equation [66,67]. Due to the complexity of many multiscale turbulent dynamical
systems, the dimension of the systems can be quite large. However, solving the Fokker–Planck
equation in high dimensions is a well-known notoriously difficult problem. Traditional numerical
methods such as finite element and finite difference as well as the direct Monte Carlo simulations
all suffer from the curse of dimension [68,69]. Nevertheless, for the conditional Gaussian systems,
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efficient statistically accurate algorithms can be developed for solving the Fokker–Planck equation
in high dimensions and thus beat the curse of dimension. The algorithms involve a hybrid strategy
that requires only a small number of ensembles [38]. Specifically, a conditional Gaussian mixture
in a high-dimensional subspace via an extremely efficient parametric method is combined with
a judicious non-parametric Gaussian kernel density estimation in the remaining low-dimensional
subspace. The parametric method provides closed analytical formulae for determining the conditional
Gaussian distributions in the high-dimensional subspace and is therefore computationally efficient
and accurate. The full non-Gaussian PDF of the system is then given by a Gaussian mixture [38].
For even larger dimensional systems, a judicious block decomposition and statistical symmetry are
further applied that facilitate an extremely efficient parallel computation and a significant reduction of
sample numbers [36]. These algorithms are applied here to the statistical prediction of a stochastically
coupled FHN model with 1500 dimensions and an inhomogeneous two-layer Lorenz 96 model with
240 dimensions. Significant prediction skill shows the advantages of these algorithms in terms of both
accuracy and efficiency.

The conditional Gaussian framework also provides a power tool for the multiscale data
assimilation. In fact, data assimilation of turbulent signals is an important challenging problem
because of the extremely complicated large dimension of the signals and incomplete partial noisy
observations that usually mix the large scale mean flow and small scale fluctuations. Due to the limited
computing power, it is desirable to use multiscale forecast models which are cheap and fast to mitigate
the curse of dimensionality in turbulent systems. An extremely cheap multiscale data assimilation
scheme, called stochastic superparameterization [70–73], resolves the large-scale mean flow on a coarse
grid and replaces the nonlinear small-scale eddy terms by quasilinear stochastic processes on formally
infinite embedded domains where the stochastic processes are Gaussian conditional to the large scale
mean flow. The key ingredient of such a multiscale data assimilation method is the systematic use
of conditional Gaussian mixtures which make the methods efficient by filtering a subspace whose
dimension is smaller than the full state. This conditional Gaussian closure approximation results
in a seamless algorithm without using the high resolution space grid for the small scales and is
much cheaper than the conventional superparameterization, with significant success in difficult
test problems [71,72,74] including the Majda-McLaughlin-Tabak (MMT) model [71,75] and ocean
turbulence [76–78]. The method uses particle filters [20,79] or ensemble filters on the large scale
part [75,76] whose dimension is small enough so that the non-Gaussian statistics of the large scale part
can be calculated from a particle filter, whereas the statistics of the small scale part are conditionally
Gaussian given the large scale part. This framework is not restricted to superparameterization as the
forecast model and other cheap forecast models can also be employed. In fact, another multiscale
filtering algorithm with quasilinear Gaussian dynamically orthogonality method as the forecast method
in an adaptively evolving low dimensional subspace has been developed [80]. The multiscale filtering
also provides a mathematical framework for representation errors, which are due to the contribution
of unresolved scales [81,82] in the observations. Other theoretic and applied studies of the conditional
Gaussian framework include effective parameter estimation, model reduction and the understanding
of various model errors using information theory.

The remaining of the article is organized as follows. Section 2 provides an overview of data,
model and data-driven modeling framework as well as efficient data assimilation and prediction
strategies with solvable conditional statistics. Section 3 summarizes the general mathematical structure
of nonlinear conditional Gaussian systems, the physics-constrained nonlinear stochastic models and
the application of the MTV strategy to the conditional Gaussian systems. Then, a gallery of examples
of conditional Gaussian systems is shown in Section 4. Section 5 involves the effective statistically
accurate algorithms that beat the curse of dimension for Fokker–Planck equation for conditional
Gaussian systems together with their applications to statistical prediction. The topics related to the
parameter estimation, model error and multiscale data assimilation utilizing the conditional Gaussian
framework are shown in Section 6. The article is concluded in Section 7.
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2. Overview: Data vs. Model, Data-Driven Modeling Framework, and Efficient Data Assimilation
and Prediction Strategies with Solvable Conditional Statistics

A central contemporary issue for complex turbulent systems is to use data to improve scientific
understanding of the underlying physics, make real-time predictions, and quantify the uncertainty
in long range forecasting [1,27]. Recently, with the great progress in developing and improving the
observational networks, vast amount of observational data are now available. Many purely data-driven
statistical methods (regression, clustering and analog forecast etc.) [83–87] are thus developed and
have become popular approaches in attempting to understand and predict nature. Despite the success
in a crude understanding of nature in terms of explaining and forecasting some of the coarse-grained
variables in the largest scale to some extent, these purely data-driven statistical methods usually cannot
discover the nonlinear and intermittent nature in the underlying complex dynamics. They often fail to
reveal the non-trivial interactions between physical processes in different scales either. In addition,
these purely data-driven statistical methods typically require a large training dataset in order to
obtain complete and unbiased information from nature, which is however infeasible in many areas,
including climate, atmosphere and ocean science. In fact, satellite observations are only available for a
few decades [88,89] which are far from enough in understanding decadal or interannual variabilities
containing rare and extreme events. Note that many complex turbulent systems in nature are in high
dimensions, and therefore most purely data driven statistical methods are extremely expensive to use.

Therefore, combining model with data becomes necessary in understanding and predicting
nature. Suitable models involve important physical mechanisms and they can be used for real-time
prediction by incorporating only a small amount of data. In many simple but natural scenarios,
some low-dimensional physical variables are observed and low-order nonlinear stochastic models are
preferred for describing their behavior. Using data outcome to fit a quadratic regression model [90,91] is
a data-driven modeling strategy which outweighs the linear regression models and allows nonlinearity
and memory in time. However, there is no physical information in such quadratic regression
models. In fact, it has been shown in [33] via rigorous mathematical theory that such ad hoc
nonlinear regression strategies can exhibit finite time blow-up and pathological invariant measures
even though they fit the data with high precision. To include physical information into the models,
systematic physics-constrained multi-level quadratic regression models have been developed [31,32].
These models avoid pathological behavior by incorporating physical constraints with nonlinear
energy-conserving principles developed in the earlier stochastic climate modeling strategy [45].
Meanwhile, these physics-constrained models allow memory in effects. Although the number of the
parameters in physics-constrained nonlinear models can be large, the models are in general robust with
respect to the perturbation of the parameters around their optimal values [41]. This is crucial in practice
because it requires only a crude estimation of the parameters for the model, which greatly reduces
the computational cost for searching in high-dimensional parameter space. A striking real-world
application of these physics-constrained nonlinear models is to assess the predictability limits of
time series associated with the tropical intraseasonal variability such as the the Madden–Julian
oscillation (MJO) and monsoon. It has been shown in [41–43] that these physics-constrained nonlinear
models are able to reach the predictability limits of the large-scale MJO and monsoon and improves
prediction skill using the low-order models. Notably, the physics-constrained nonlinear stochastic
models require only a short training period [42,44] because the model development automatically
involves a large portion of the information of nature. This is extremely important since practically only
a limited observational data is available. In fact, comparable and even slightly more skillful prediction
results have been found using the physics-constrained nonlinear model compared with those using
non-parametric methods in predicting the MJO and monsoon intermittent time series [92,93], but the
prediction using the physics-constrained nonlinear model adopted a much shorter training period [44].

Another important reason that entails the model in understanding and predicting nature is due
to the fundamental limitations in measuring the observations. In fact, only partial observations are
available in most applications and observational noise is inevitable. For example, the sea surface
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temperature is easy to measure, but the temperature in the deep ocean is hard to estimate. In addition,
although the surface wind in the entire earth can be measured by satellites, the measured signals
usually contain large noise. Therefore, models are combined with the available observations for the
state estimation of the unobserved variables as well as reducing the noise in the observed ones. This is
known as data assimilation or filtering [15,20,22]. Note that most of the complex multiscale dynamical
systems involve strong nonlinearity and extreme events. Thus, the classical Kalman filter that works
only for linear models [94] fails to capture the nonlinear and non-Gaussian features in nature. Although
the so-called particle filter [95,96] is able to recover all the non-Gaussian statistics, it is computationally
expensive and can only be applied to low-dimensional scenarios, which are typically not the case
in most applications. In fact, even a global weather model with very coarse grid points at every
200 km already has about 106 state variables. Other direct strategies in handling large dimensional
systems, such as the ensemble Kalman filters [97,98], can also be problematic. For example, they are not
immune from “catastrophic filter divergence” (diverge beyond machine infinity) when observations
are sparse, even when the true signal is a dissipative system [99,100]. Therefore, designing new
efficient strategies for data assimilation and prediction that are accurate and can overcome the curse
of dimension is crucial in studying complex multiscale nonlinear dynamical systems with only noisy
partial observations [20,27,65,101,102]. Since both the data assimilation and prediction involve running
forward the dynamical models (known as the forecast models), the development of new strategies
entails the understanding and utilization of model structures.

Due to the complexity in many complex multiscale turbulent dynamical systems,
developing cheap and effective approximate models which nevertheless capture the main
characteristics of the underlying dynamics becomes necessary in data assimilation, prediction and the
understanding of nature. In particular, novel stochastic parameterization schemes play a significant
role in reducing the model complexity while retaining the key features of various multiscale turbulent
dynamical systems. These key features include the statistical feedback from small to large scales,
accurate dynamical and statistical behavior in large scale variables, and the main effect of the large-scale
variables on the statistical evolution of small scale processes. Then, efficient hybrid strategy can be
developed for dealing with large and small scale variables, respectively.

A simple yet practically useful strategy in filtering nonlinear and intermittent signals is via the
so-called stochastic parameterized extended Kalman filter (SPEKF) type of the forecast model [64,65].
The idea of the SKEPF model is that the small or unresolved scale variables are stochastically
parameterized by cheap linear and Gaussian processes, representing stochastic damping, stochastic phase
and stochastic forcing. Despite the model error in using such Gaussian approximations for the unresolved
nonlinear dynamics, these Gaussian processes succeed in providing accurate statistical feedback from the
unresolved scales to the resolved ones and thus the intermittency and non-Gaussian features as observed
in the resolved variables can be accurately recovered. The statistics in the SPEKF model can also be
solved with exact and analytic formulae, which allow an accurate and efficient estimation of the model
states. The SPEKF type of model has been used for filtering mutiscale turbulent dynamical systems [20],
stochastic superresolution [103] and filtering Navier–Stokes equations with model error [104]. A detailed
description of the SPEKF model can be found in Section 4.5.1. Notably, the SPEKF model involves a
hybrid approach, where certain cheap and statistically solvable Gaussian approximations are used
to describe the statistical features of the unresolved (or small scale) variables in a large dimensional
subspace while the highly nonlinear dynamical features of the resolved (or large scale) variables as
well as their interactions with the unresolved variables are retained in a relatively low dimensional
subspace. Such a strategy can be used as a guideline for designing suitable approximate forecast
models for various complex multiscale turbulent dynamical systems.

For multiscale data assimilation of many realistic and complex turbulent dynamical systems,
an extremely cheap scheme, called stochastic superparameterization [70–73], has been developed,
which makes use of a similar hybrid strategy as discussed above but with a more refined setup.
In the stochastic superparameterization, the large-scale mean flow is resolved on a coarse grid and
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the nonlinear small-scale eddy terms are replaced by quasilinear stochastic processes on formally
infinite embedded domains where these stochastic processes are Gaussian conditional to the large
scale mean flow. The key ingredient of such a multiscale data assimilation method is the systematic
use of conditional Gaussian mixtures which make the methods efficient by filtering a subspace whose
dimension is smaller than the full state. This conditional Gaussian closure approximation results in
a seamless algorithm without using the high resolution space grid for the small scales and is thus
extremely efficient. The method uses particle filters [20,79] or ensemble filters on the large scale
part [75,76] whose dimension is small enough so that the non-Gaussian statistics of the large scale part
can be calculated from a particle filter, whereas the statistics of the small scale part are conditionally
Gaussian given the large scale part. See Section 6.3 for more details. Note that such ideas can also be
applied to other cheap forecast models in addition to the superparameterization. For example, another
multiscale filtering algorithm with quasilinear Gaussian dynamically orthogonality method as the
forecast method in an adaptively evolving low dimensional subspace has been developed in [80].

Due to the significance in model approximation, data assimilation and prediction, it is necessary
to develop a general framework for the complex multiscale nonlinear turbulent dynamical systems
with conditional Gaussian structures. The key idea of such conditional Gaussian systems is that a
hybrid strategy can be applied to deal with the state variables u = (uI, uII), where particle methods
are used to solve the non-Gaussian statistics in the relatively low dimensional subspace associated
with uI and extremely cheap algorithms with closed analytical formulae are adopted to solve the
conditional Gaussian statistics of uII conditioned on uI in the remaining high dimensional subspace.
The Gaussianity in the conditional statistics are usually quite accurate as approximations since the
small or unresolved scales with the given (or fixed) large-scale variables usually represent fluctuations
in multiscale systems and the statistics are close to Gaussian. Nevertheless, the marginal statistics of the
small-scale variables uII themselves can be highly non-Gaussian, which is one of the salient features as
in nature [37]. Notably, developing such computationally efficient models that explores conditional
statistics also involves the mutual feedback between large scale and small scale variables. Thus, the full
system is completely nonlinear and allows physics-constrained nonlinear interactions. The general
conditional Gaussian nonlinear modeling framework provides a powerful tool in multiscale data
assimilation, statistical prediction, solving high-dimensional PDFs as well as parameter estimation,
causality analysis and understanding model errors.

3. A Summary of the General Mathematical Structure of Nonlinear Conditional
Gaussian Systems

3.1. Conditional Gaussian Nonlinear Dynamical Systems

The conditional Gaussian systems have the following abstract form [28]:

duI = [A0(t, uI) + A1(t, uI)uII]dt + ΣI(t, uI)dWI(t), (1)

duII = [a0(t, uI) + a1(t, uI)uII]dt + ΣII(t, uI)dWII(t). (2)

Once uI(s) for s ≤ t is given, uII(t) conditioned on uI(s) becomes a Gaussian process:

p
(
uII(t)|uI(s ≤ t)

)
∼ N (ūII(t), RII(t)). (3)

Despite the conditional Gaussianity, the coupled system (1) and (2) remains highly nonlinear
and is able to capture the non-Gaussian features as in nature. The conditional Gaussian distribution
p
(
uII(t)|uI(s ≤ t)

)
in (3) has closed analytic form [30]

duII(t) = [a0(t, uI) + a1(t, uI)uII]dt + (RIIA∗1(t, uI))(ΣIΣ∗I )
−1(t, uI)×

[duI − (A0(t, uI) + A1(t, uI)uII)dt] ,
(4)
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dRII(t) =
{

a1(t, uI)RII + RIIa∗1(t, uI) + (ΣIIΣ∗II)(t, uI)

−(RIIA∗1(t, uI))(ΣIΣ∗I )
−1(t, uI)(RIIA∗1(t, uI))

∗
}

dt,
(5)

which can be solved in an exact and efficient way. The conditional Gaussian framework (1)-(2)-(5) is
useful in the parameter estimation, data assimilation, prediction and uncertainty quantification of
complex turbulent dynamical systems as will be discussed throughout this article.

In this article, many conditional Gaussian systems with complex turbulent dynamical structures
will be studied. For the convenience of the reader, we will always use a blue color to represent the
variables that belong to uI and use a magenta color to denote those for uII.

3.2. Kalman–Bucy Filter: The Simplest and Special Data Assimilation Example within Conditional
Gaussian Framework

A special case of the general conditional Gaussian framework (1) and (2) is the so-called
Kalman–Bucy filter [105–108]. The Kalman–Bucy filter is a continuous time version of the Kalman
filter [21,94] and it deals with the linear coupled systems:

duI = [A0(t) + A1(t)uII]dt + ΣI(t)dWI(t), (6)

duII = [a0(t) + a1(t)uII]dt + ΣII(t)dWII(t). (7)

In (6) and (7), all the vectors and matrices A0, A1, a0, a1, ΣI and ΣII are functions of only t and
they have no dependence on uI in order to guarantee the linearity in the coupled system. In the
Kalman–Bucy filter, (7) is the underlying dynamics and (6) is the observational process. The observation
cannot change the underlying dynamics and therefore no uI appears in (7).

The filter estimate (also known as the posterior distribution) is the conditional distribution of
uII(t) given the observation uI(s ≤ t), i.e., p(uII(t)|uI(s ≤ t)). In light of (4) and (5), the mean and
variance of p(uII|uI) has the following explicit expressions:

duII(t) =[a0(t) + a1(t)uII]dt + (RIIA∗1(t))(ΣIΣ∗I )
−1(t) [duI − (A0(t) + A1(t)uII)dt] ,

dRII(t) =
{

a1(t)RII + RIIa∗1(t) + (ΣIIΣ∗II)(t)− (RIIA∗1(t))(ΣIΣ∗I )
−1(t)(RIIA∗1(t))

∗
}

dt.

Corresponding to (4) and (5), Chapter 6 of Bensoussan’s book [109] includes rigorous
mathematical derivations of the exact solutions of the Kalman–Bucy filter and some other more
general conditional Gaussian filters. It is also pointed out in [109] that all these filters belong to the
general conditional Gaussian filtering framework in (1)-(2)-(4)-(5) introduced in [110], which is an
early version of the book authored by Liptser and Shiryaev [30].

3.3. Physics-Constrained Nonlinear Models with Conditional Gaussian Statistics

Physics-constrained nonlinear stochastic models are the recent development of data driven
statistical-dynamical models for the time series of a partial subset of observed variables,
which arise from observations of nature or from an extremely complex physical model [31,32].
The physics-constrained nonlinear stochastic modeling framework builds on early works for single
layer models without memory effects, which uses physical analytic properties to constrain data driven
methods. These physics-constrained nonlinear stochastic models succeed in overcoming both the
finite-time blowup and the lack of physical meaning issues in various ad hoc multi-layer regression
models [31,33].

The physics-constrained nonlinear stochastic models contain energy-conserving quadratic
nonlinear interactions [1,31,32], namely

du =
[
(L + D)u + B(u, u) + F(t)

]
dt + Σ(t, u)dW(t),

with u · B(u, u) = 0,
(8)



Entropy 2018, 20, 509 10 of 80

where u = (uI, uII) and the dimensions of uI and uII are NI and NI I , respectively. In (8), L + D is
a linear operator representing dissipation and dispersion. Here, L is skew symmetric representing
dispersion and D is a negative definite symmetric operator representing dissipative process such
as surface drag, radiative damping, viscosity, etc. B (u, u) is a bilinear term and it satisfies energy
conserving property with u · B (u, u) = 0.

Many of the physics-constrained nonlinear stochastic models belong to the conditional Gaussian
framework. The goal here is to derive a general class of conditional Gaussian physics-constrained
nonlinear stochastic models. To this end, we rewrite the Equation (8) in the following way:

duI =
(
LI,1uI + LI,2uII + BI(u, u) + FI

)
dt + ΣI(uI)dWI,

duII =
(
LII,1uI + LII,2uII + BII(u, u) + FII

)
dt + ΣII(uI)dWII,

(9)

where the explicit dependence of the coefficients on time t has been omitted for notation simplicity.
In (9), LI,1uI, LI,2uII, LII,1uI and LII,2uII correspond to the the linear term L + D in (8) while BI(u, u)
and BII(u, u) represent the nonlinear terms in the processes associated with the variables in (1) and
those in (2), respectively. Since the conditional Gaussian systems do not allow quadratic nonlinear
interactions between uII and itself, both BI(u, u) and BII(u, u) can be written down as follows:

BI(u, u) = BI,1(uI, uI) + BI,2(uI, uII),

BII(u, u) = BII,1(uI, uI) + BII,2(uI, uII),
(10)

where B·,1(uI, uI) stands for the quadratic terms involving only uI and B·,2(uI, uII) represents the
quadratic interactions between uI and uII. Given the nonlinear terms in (10), the energy-conserving
quadratic nonlinearity in (8) implies

uI ·
(

BI,1(uI, uI) + BI,2(uI, uII)
)
+ uII ·

(
BII,1(uI, uI) + BII,2(uI, uII)

)
= 0. (11)

Inserting (10) into (9) yields the conditional Gaussian systems with energy-conserving quadratic
nonlinear interactions,

duI =
(

BI,1(uI, uI) + BI,2(uI, uII) + LI,1uI + LI,2uII + FI

)
dt + ΣI(uI)dWI, (12)

duII =
(

BII,1(uI, uI) + BII,2(uI, uII) + LII,1uI + LII,2uII + FII

)
dt + ΣII(uI)dWII, (13)

Now, we explore the detailed forms of the energy-conserving nonlinear terms in (12) and (13).
We start with BII,2(uI, uII), which can be written as

BII,2(uI, uII) = SII(uI)uII, with SII(uI) =
NI

∑
j=1

SII,juI,j, (14)

where each SII,j is a skew-symmetric matrix with ST
II,j = −SII,j and uI,j is the j-th entry of uI.

The energy-conserving property is easily seen by multiplying uII to BII,2(uI, uII) in (14),

uII · BII,2(uI, uII) = uII · S(uI)uII =
NI

∑
j=1

uI,j ·
(

uII · SII,juII

)
= 0.

Due to the skew-symmetric property of SII,j. In fact, BII,2(uI, uII) usually represents the internal
oscillation with non-constant oscillation frequency that depends on uI.

Next, BI,2(uI, uII) contains three components,

BI,2(uI, uII) = B1
I,2(uI, uII) + B2

I,2(uI, uII) + B3
I,2(uI, uII). (15)
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One of the components in (15), say B1
I,2(uI, uII), has its own energy conservation, i.e.,

uI · B1
I,2(uI, uII) = 0.

Here, B1
I,2(uI, uII) = SI(uI)uII and therefore

uI · SI(uI)uII = 0, (16)

where each column of SI(uI) is given by

SI,j(uI) = SI,juI, (17)

with SI,j being a skew-symmetric matrix. Thus, with (17) in hand, (16) becomes

NII

∑
j=1

(
uI · SI,j · uI

)
uII,j = 0,

where uII,j is the j-th entry of uII.
The other two components of BI,2(uI, uII) in (12) involve the interactions with

BII,1(uI, uI) = B2
II,1(uI, uI) + B3

II,1(uI, uI) in (13). On one hand, the energy-conserving property in
the following two terms is obvious,

B2
I,2(uI, uII) =

NI

∑
j=1

ΓjuI,juII, (18)

B2
II,1(uI, uI) = −

NI

∑
j=1

ΓT
j u2

I , (19)

where each Γj is a NI × NII matrix, uI,j is the j-th entry of uI and u2
I is a vector of size NI × 1 with the

j-th entry being u2
I,j. On the other hand, the remaining two terms B3

I,2(uI, uII) and B3
II,1(uI, uI) are

similar to those in (18)–(20) but deal with the cross-interactions between different components of uI

such as replacing u2
I by uI,j1 uI,j2 in (20). To this end, we define the following

G(uI) =
NI

∑
j=1

GjuI,j, (20)

which satisfies
uI ·G(uI)uII − uII ·GT(uI)uI = 0. (21)

In fact, (18)–(21) are important for generating the intermittent instability, where uII plays the role
of both damping and anti-damping for the dynamics of uI.

Finally, BI,1(uI, uI) involves any iterations between uI and itself that satisfies

uI · BI,1(uI, uI) = 0. (22)

Therefore, with (14)–(22) in hand, the conditional Gaussian system with energy-conserving
quadratic nonlinear interactions (12) and (13) has the following form:

duI =
(

BI,1(uI, uI) +
NI

∑
j=1

ΓjuI,juII + SI(uI)uII + G(uI)uII + LI,1uI + LI,2uII + FI

)
dt + ΣI(uI)dWI, (23)

duII =
(

SII(uI)uII −
NI

∑
j=1

ΓT
j u2

I + LII,1uI + LII,2uII −GT(uI)uI + FII

)
dt + ΣII(uI)dWII. (24)
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3.4. Multiscale Conditional Gaussian with MTV Stochastic Modeling Strategy

Let’s start with a general nonlinear deterministic model with quadratic nonlinearity,

du =
[
(L + D)u + B(u, u) + F(t)

]
dt, (25)

where the notations of vectors and matrices are the same as in Section 3.3. In (25), the state variables
are again decomposed into u = (uI, uII). Here, (uI, uII) has multiscale features, where uI denotes
the resolved variables that evolve slowly in time (e.g., climate variables) while uII are unresolved or
unobserved fast variables (e.g., weather variables). The system (25) can be written down into more
detailed forms:

duI =
[
(L11 + D11)uI + (L12 + D12)uII + B1

11(uI, uI)

+B1
12(uI, uII) + B1

22(uII, uII) + F1(t)
]
dt,

(26)

duII =
[
(L22 + D22)uII + (L21 + D21)uI + B2

11(uI, uI)

+B2
12(uI, uII) + B2

22(uII, uII) + F2(t)
]
dt.

(27)

Different from (12) and (13), the nonlinear interaction between fast scale variables themselves
B1

22(uII, uII) and B2
22(uII, uII) are also included in (26) and (27). To make the mutiscale system

(26) and (27) fit into the conditional Gaussian framework, two modifications are needed. First, if we
link (26) and (27) with the general conditional Gaussian framework (1) and (2), the quadratic terms
involving the interactions between uII and itself, namely B1

22(uII, uII) and B2
22(uII, uII), are not allowed

there. Second, stochastic noise is required at least to the system of uI.
To fill in these gaps, the most natural way is to apply idea from the MTV strategy to the

multiscale system (26) and (27). The MTV strategy [45–48], named after Majda, Timofeyev and
Vanden-Eijnden, is a systematic mathematical strategy for stochastic mode reduction. The MTV strategy
is a two-step procedure:

1. The equations of motion for the unresolved fast modes are modified by representing the nonlinear
self-interactions terms between unresolved modes by stochastic terms.

2. The equations of motion for the unresolved fast modes are eliminated using the standard
projection technique for stochastic differential equations.

In fact, we only need to take the first step in the MTV strategy here. Using ε to represent the
time scale separation between uI and uII, the terms with quadratic nonlinearity of uII and itself are
approximated by

B1
22(uII, uII) ≈ −

Γ1

ε
uII +

ΣI√
ε

WI,

B2
22(uII, uII) ≈ −

Γ2

ε
uII +

ΣII√
ε

WII.
(28)

That is, we replace the quadratic nonlinearity of uII by a linear damping and stochastic noise,
where Γ1, Γ2, ΣI and ΣII are positive definite symmetric matrices. The motivation of (28) is that
the nonlinear self-interacting terms of fast variables uII are responsible for the chaotic sensitive
dependence on small perturbations and do not require a more detailed description if their effect on
the coarse-grained dynamics for the climate variables alone is the main objective. On the other hand,
the quadratic nonlinear interactions between uI and uII are retained.

Note that in the second step of the MTV strategy, standard techniques of averaging and adiabatic
elimination of fast modes in stochastic equations are applied, assuming that ε� 1. Here, we assume ε

is a finite small value and thus do not apply the second step of the MTV strategy.
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Now, inserting (28) into (26) and (27) yields

duI =
[
(L11 + D11)uI + (L′12 + D12)uII + B1

11(uI, uI) + B1
12(uI, uII) + F1(t)

]
dt + Σ′IdWI(t), (29)

duII =
[
(L′22 + D22)uII + (L21 + D21)uI + B2

11(uI, uI) + B2
12(uI, uII) + F2(t)

]
dt + Σ′IIWII(t), (30)

where L′12 = L12 − Γ1/ε, L′22 = L22 − Γ2/ε, Σ′I = ΣI/
√

ε and Σ′II = ΣII/
√

ε. Clearly, (29) and (30)
belongs to the conditional Gaussian framework. Notably, if the nonlinear terms in (29) and (30) satisfy
the conditions in Section 3.3, then (29) and (30) becomes a physics-constrained nonlinear model.

4. A Gallery of Examples of Conditional Gaussian Systems

This section includes various conditional Gaussian complex nonlinear dynamical systems and
their applications.

4.1. Physics-Constrained Nonlinear Low-Order Stochastic Models

4.1.1. The Noisy Versions of Lorenz Models

Lorenz proposed three famous models in 1963, 1984 and 1996. These models are widely used as
simplified models to mimic the turbulent and chaotic behavior and as test models for data assimilation
and prediction in atmosphere and ocean science. By incorporating noise and other small-scale
parameterizations, these models all belong to the conditional Gaussian family.

1. The Noisy Lorenz 63 (L-63) Model

dx = σ(y− x)dt + σxdWx,

dy =
(
x(ρ− z)− y

)
dt + σydWy,

dz = (xy− βz)dt + σzdWz.

(31)

The deterministic L-63 model (σx = σy = σz = 0 in (31)) is proposed by Lorenz in 1963 [34]. It is
a simplified mathematical model for atmospheric convection. The equations relate the properties of
a two-dimensional fluid layer uniformly warmed from below and cooled from above. In particular,
the equations describe the rate of change of three quantities with respect to time: x is proportional
to the rate of convection, y to the horizontal temperature variation, and z to the vertical temperature
variation. The constants σ, ρ, and β are system parameters proportional to the Prandtl number,
Rayleigh number, and certain physical dimensions of the layer itself [111]. The L-63 model is also
widely used as simplified models for lasers, dynamos, thermosyphons, brushless direct current DC
motors, electric circuits, chemical reactions and forward osmosis [112–118]. the noisy version of the
L-63 includes more turbulent and small-scale features and their interactions with the three large scale
variables while retains the characteristics in the original L-63. The noisy L-63 model is a conditional
Gaussian system (1) and (2) with uI = x and uII = (y, z)T . It also belongs to the conditional Gaussian
family with uI = (y, z)T and uII = x.

In Figure 1, we show some sample trajectories of the noisy L-63 model (31) with the typical values
that Lorenz used [34],

ρ = 28, σ = 10, β = 8/3, (32)

Together with a moderate noise level

σx = σy = σz = 5. (33)

In addition to the chaotic behavior and the butterfly profile, the small fluctuations due to the
noise are also clearly observed in these trajectories.



Entropy 2018, 20, 509 14 of 80

50 60 70 80 90 100

−20

0

20

(a) Sample trajectory of x

50 60 70 80 90 100

−20

0

20

(b) Sample trajectory of y

50 60 70 80 90 100
0

50

(c) Sample trajectory of z

t

−20 0 20

−20

0

20

x

y

(d)  2D trajectory of z and y

−20 0 20
0

20

40

60

y

z

(e)  2D trajectory of y and z

0 20 40 60

−20

0

20

z

x

(f)  2D trajectory of z and x

−20
0 20

−20
0

20
0

50

x

(g)  3D trajectory of x, y and z

y

z

Figure 1. Sample trajectories of the noisy L-63 model (31) with parameters ρ = 28, σ = 10, β = 8/3,
σx = σy = σz = 5. (a–c) 1D trajectories of x, y and z, respectively; (d–f) 2D trajectories of (x, y), (y, z)
and (z, x); (g) 3D trajectory of (x, y, z).

2. The Noisy Lorenz 96 (L-96) and Two-Layer L-96 Models

The original L-96 model with noise is given by

dui =
(
ui−1(ui+1 − ui−2)− d̄iui + F

)
dt + σudWui . (34)

The model can be regarded as a coarse discretization of atmospheric flow on a latitude circle
with complicated wave-like and chaotic behavior. It schematically describes the interaction between
small-scale fluctuations with larger-scale motions. However, the noisy L-96 model in (34) usually does not
have the conditional Gaussian structure unless a careful selection of a subset of ui for uII. Nevertheless,
some two-layer L-96 models do belong to conditional Gaussian framework. These two-layer L96 models
are conceptual models in geophysical turbulence that includes the interaction between small-scale
fluctuations in the second layer with the larger-scale motions. They are widely used as a testbed for data
assimilation and parameterization in numerical weather forecasting [36,40,119,120]. One natural choice
of the two-layer L-96 model is the following [36]:

dui =

(
ui−1(ui+1 − ui−2) +

J

∑
j=1

γi,juivi,j − d̄iui + F

)
dt + σudWui , i = 1, . . . , I,

dvi,j =
(
−dvi,j vi,j − γju2

i

)
dt + σi,jdWvi,j , j = 1, . . . , J.

(35)

Linking the general conditional Gaussian framework (1) and (2) with the two-layer L-96 model
in (35), uI = {ui} represents the large-scale motions while uII = {vi,j} involves the small-scale
variables.

In Figures 2–4, numerical simulations of the two-layer L-96 model in (35) with I = 40 and J = 5
are shown. Here, the damping and coupling coefficients are both functions of space with

d̄i = 1 + 0.7 cos(2πi/J), and γi,j := γi = 0.1 + 0.25 cos(2πi/J). (36)

These mimic the situation that the damping and coupling above the ocean are weaker than those
above the land since the latter usually have stronger friction or dissipation. Therefore the model
is inhomogeneous and the large-scale wave patterns over the ocean are more significant, where a
westward propagation is clearly seen in all these figures (Panel (a)). The other parameters are as follows:

σu = 1, σvi,1 = 0.5, σvi,2 = 0.2, σvi,3 = σvi,4 = σvi,5 = 0.1.

dvi,1 = 0.2, dvi,2 = 0.5, dvi,3 = 1, dvi,4 = 2, dvi,5 = 5,
(37)
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which imply that the damping time is shorter in the smaller scales. The model in (35) has many
desirable properties as in more complicated turbulent systems. Particularly, the smaller scales are
more intermittent (Panel (b)) with stronger fat tails in PDFs. Different constant forcing F = 5, 8 and 16
are adopted in Figures 2–4, which result in various chaotic behavior for the system. With the forcing
increase, the oscillation patterns in u become more regular while the small scale variables at each fixed
grid point show more turbulent behavior.
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Figure 2. Simulations of the two-layer L-96 model in (35) with inhomogeneous parameters (36).
Here, F = 5. (a) spatio-temporal evolution of the large-scale variable ui; (b) time series of ui and vi,j at
i = 21; from top to bottom: larger to smaller scales with increasing intermittency.
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Figure 3. Simulations of the two-layer L-96 model in (35) with inhomogeneous parameters (36).
Here, F = 8. (a) spatio-temporal evolution of the large-scale variable ui; (b) time series of ui and vi,j at
i = 21; from top to bottom: larger to smaller scales with increasing intermittency.
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Figure 4. Simulations of the two-layer L-96 model in (35) with inhomogeneous parameters (36).
Here, F = 16. (a) spatio-temporal evolution of the large-scale variable ui; (b) time series of ui and vi,j at
i = 21; from top to bottom: larger to smaller scales with increasing intermittency.

3. The Noisy Lorenz 84 (L-84) Model

The noisy L-84 model is an extremely simple analogue of the global atmospheric circulation [121,122],
which has the following form [35,123]:

dx =
(
−(y2 + z2)− a(x− f )

)
dt + σxdWx,

dy =
(
− bxz + xy− y + g

)
dt + σydWy,

dz =
(
bxy + xz− z

)
dt + σzdWz.

(38)

In (38), the zonal flow x represents the intensity of the mid-latitude westerly wind current
(or the zonally averaged meridional temperature gradient, according to thermal wind balance),
and a wave component exists with y and z representing the cosine and sine phases of a chain of
vortices superimposed on the zonal flow. Relative to the zonal flow, the wave variables are scaled
so that x2 + y2 + z2 is the total scaled energy (kinetic plus potential plus internal). Note that these
equations can be derived as a Galerkin truncation of the two-layer quasigeostrophic potential vorticity
equations in a channel.

In the L-84 model (38), the vortices are linearly damped by viscous and thermal processes.
The damping time defines the time unit and a < 1 is a Prandtl number. The terms xy and xz represent
the amplification of the wave by interaction with the zonal flow. This occurs at the expense of the
westerly current: the wave transports heat poleward, thus reducing the temperature gradient, at a rate
proportional to the square of the amplitudes, as indicated by the term −(y2 + z2). The terms −bxz
and bxy represent the westward (if x > 0) displacement of the wave by the zonal current, and b > 1
allows the displacement to overcome the amplification. The zonal flow is driven by the external force
a f which is proportional to the contrast between solar heating at low and high latitudes. A secondary
forcing g affects the wave, it mimics the contrasting thermal properties of the underlying surface of
zonally alternating oceans and continents. When g = 0 and f < 1, the system has a single steady
solution x = f , y = z = 0, representing a steady Hadley circulation. This zonal flow becomes unstable
for f > 1, forming steadily progressing vortices. For g > 0, the system clearly shows chaotic behavior.
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Linking (38) to the general conditional Gaussian framework (1) and (2), it is clear that the zonal
wind current uI = x is the variable for state estimation or filtering given the two phases of the
large-scale vortices uII = (y, z).

In Figure 5, we show the sample trajectories of the system with the following parameters:

a =
1
4

, b = 4, f = 8, g = 1, (39)

which were Lorenz adopted [35]. Small noise σx = σy = σz − 0.1 is also added to the system. It is clear
that y and z are quite chaotic and they appear as a pair (Panels (b,c,f)). On the other hand, x is less
turbulent and occurs in a relatively slower time scale. It plays an important role in changing both the
phase and amplitude of y and z.
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Figure 5. Simulations of the L-84 model (38) with parameters in (39). (a–c) sample trajectories of x, y
and z, respectively; (d) 3D trajectory of (x, y, z); (e,f) 2D trajectories of (x, y) and (y, z).

4.1.2. Nonlinear Stochastic Models for Predicting Intermittent MJO and Monsoon Indices

Assessing the predictability limits of time series associated with the tropical intraseasonal
variability such as the the Madden–Julian oscillation (MJO) and monsoon [41–43] is an important
topic. They yield an interesting class of low-order turbulent dynamical systems with extreme events
and intermittency. For example, Panels (c,d) in Figure 6 show the MJO time series [41], measured by
outgoing longwave radiation (OLR; a proxy for convective activity) from satellite data [88]. These time
series are obtained by applying a new nonlinear data analysis technique, namely nonlinear Laplacian
spectrum analysis [124], to these observational data. To describe and predict such intermittent time
series, the following model is developed:

du1 = (−du(t) u1 + γ v u1−ω u2) dt + σu dWu1 ,

du2 = (−du(t) u2 + γ v u2 +ω u1) dt + σu dWu2 ,

dv = (−dv v − γ (u2
1 + u2

2)) dt + σv dWv,

dω = (−dωω + ω̂) dt + σω dWω,

(40)

with
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du(t) = du0 + du1 sin(ω f t + φ). (41)

Such a model is derived based on the physics-constrained nonlinear data-driven strategy [31,32].
In this model, uI = (u1, u2) are the two-dimensional indices obtained from observational data while
uII = (v, ω) are the two hidden unobserved variables representing other important underlying physical
processes that interact with the observational ones. The coupled system is a conditional Gaussian one,
which plays an important role here since there is no direct observational data for the two hidden processes
v and ω. In fact, in order to obtain the initial values of v and ω for ensemble forecast, the data assimilation
formula in (4) and (5) is used given the observational trajectories of u1 and u2. The parameters here are
estimated via information theory. With the calibrated parameters, the sample trajectories as shown in
Panels (a,b) capture all the important features as in the MJO indices from observations. In addition,
the non-Gaussian PDFs (Panels (e,f)) and the correlation and cross-correlation functions (Panels (g,h))
from the model nearly perfectly match those associated with the observations. In [41], significant
prediction skill of these MJO indices using the physics-constrained nonlinear stochastic model (6)
was shown. The prediction based on ensemble mean can have skill even up to 40 days. In addition,
the ensemble spread accurately quantify the forecast uncertainty in both short and long terms. In light
of a twin experiment, it was also revealed in [41] that the model in (6) is able to reach the predictability
limit of the large-scale cloud patterns of the MJO.
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Figure 6. Using physics-constrained nonlinear low-order stochastic model (6) to capture the key
features of the observed MJO indices. (a,b) sample trajectories from the model (6); (c,d) MJO indices
from observations; (e,f) comparison of the PDFs in both linear and logarithm scales; (g,h) comparison
of the autocorrelation and cross-correlation functions.

4.1.3. A Simple Stochastic Model with Key Features of Atmospheric Low-Frequency Variability

This simple stochastic climate model [49,125] presented below is set-up in such a way that it
features many of the important dynamical features of comprehensive global circulation models (GCMs)
but with many fewer degree of freedom. Such simple toy models allow the efficient exploration of the
whole parameter space that is impossible to conduct with GCMs:
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dx1 =
(
−x2(L12 + a1x1 + a2x2) + d1x1 + F1 + L13y1 + b123x2y1

)
dt + σx1 dWx1 ,

dx2 =
(
+x1(L12 + a1x1 + a2x2) + d2x2 + F2 + L24y2 + b213x1y1

)
dt + σx2 dWx1 ,

dy1 =
(
− L13x1 + b312x1x2 + F3 −

γ1

ε
y1

)
dt +

σy1√
ε

dWy1 .

dy2 =
(
− L24x2 + F4 −

γ2

ε
y2

)
dt +

σy2√
ε

dWy2 ,

(42)

where b123 + b213 + b312 = 0. It contains a quadratic nonlinear part that conserves energy as well as a
linear operator. Therefore, this model belongs to physics-constrained nonlinear stochastic model family.
The linear operator includes a skew-symmetric part that mimics the Coriolis effect and topographic
Rossby wave propagation, and a negative definite symmetric part that is formally similar to the
dissipation such as the surface drag and radiative damping. The two variables x1 and x2 can be
regarded as climate variables while the other two variables y1 and y2 become weather variables
that occur in a much faster time scale when ε is small. In fact, the MTV strategy as described in
Section 3.4 is applied to y1 and y2 that introduce this ε together with stochastic noise and damping
terms. The coupling in different variables is through both linear and nonlinear terms, where the
nonlinear coupling through bijk produces multiplicative noise. Note that when ε → 0, applying an
explicit stochastic mode reduction results in a two-dimensional system for the climate variables [45,46].
Clearly, the 4D stochastic climate model (42) is a conditional Gaussian system with uI = (x1, x2)

T and
uII = (y1, y2)

T .
In Figure 7, sample trajectories and the associated PDFs in two dynamical regimes are shown.

The two regimes differ by the scale separation ε with ε = 1 (Regime I) and ε = 0.1 (Regime II),
respectively. The other parameters are the same in the two regimes:

L12 = 1, L13 = 0.5, L24 = 0.5, a1 = 2, a2 = 1, d1 = −1, d2 = −0.4,

σ1 = 0.5, σ2 = 2, σ3 = 0.5, σ4 = 1, b123 = 1.5, b213 = 1.5, b312 = −3,

F1 = F2 = F3 = F4 = 0.

(43)

It is obvious that with ε = 1, all the four variables lie in the same time scale. Both “climate variable”
x1 and “weather variable” y1 can have intermittent behavior with non-Gaussian PDFs. On the other
hand, with ε = 0.1, a clear scale separation can be seen in the time series, where y1 and y2 occur in a
much faster time scale than x1 and x2. Since the memory time due to the strong damping becomes
much shorter in y1 and y2, the associated PDFs for these “weather variables” become Gaussian.

4.1.4. A Nonlinear Triad Model with Multiscale Features

The following nonlinear triad system is a simple prototype nonlinear stochastic model that
mimics structural features of low-frequency variability of GCMs with non-Gaussian features [50] and
it was used to test the skill for reduced nonlinear stochastic models for the fluctuation dissipation
theorem [126]:

du1 = (−γ1u1 + L12u2 + L13u3 + Iu1u2 + F(t)) dt + σ1dW1, (44)

du2 = (−L12u1 −
γ2

ε
u2 + L23u3 − Iu2

1)dt +
σ2

ε1/2 dW2, (45)

du3 = (−L13u1 − L23u2 −
γ3

ε
u3) dt +

σ3

ε1/2 dW3. (46)

The triad model (44)–(46) involves a quadratic nonlinear interaction between u1 and u2 with
energy-conserving property that induces intermittent instability. On the other hand, the coupling
between u2 and u3 is linear and is through the skew-symmetric term with coefficient −L23,
which represents an oscillation structure of u2 and u3. Particularly, when L23 is large, fast oscillations
become dominant for u2 and u3 while the overall evolution of u1 can still be slow provided that the
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feedback from u2 and u3 is damped quickly. Such multiscale structure appears in the turbulent ocean
flows described for example by shallow water equation, where u1 stands for the geostrophically
balanced part while u2 and u3 mimics the fast oscillations due to the gravity waves [11,122].
The large-scale forcing F(t) represents the external time-periodic input to the system, such as the
seasonal effects or decadal oscillations in a long time scale [121,127]. In addition, the scaling factor ε

plays the same role as in the 4D stochastic climate model (42) that allows a difference in the memory of
the three variables. Note that the MTV strategy as described in Section 3.4 is applied to u2 and u3 that
introduces the factor ε. The nonlinear triad model in (44)–(46) belongs to conditional Gaussian model
family with uI = (x1, x2)

T and uII = (y1, y2)
T .
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Figure 7. Simulations of the simple stochastic climate model (42) with parameters given by (43).
(Left) Regime I with ε = 1. (Right) Regime II with ε = 0.1.

To understand the dynamical behavior of the nonlinear triad model (44)–(46), we show the model
simulations in Figure 8 for the following two regimes:

Regime I : ε = 1.0, I = 1, σ1 = 0.5, L12 = 0.4, L13 = 0.4, L23 = 0,

γ1 = 2.5, γ2 = 0.4, γ3 = 0.4, σ2 = 1.2, σ3 = 0.8, F = 2,

Regime II : ε = 0.1, I = 5, σ1 = 0.5, L12 = 1.0, L13 = 1.0, L23 = 10,

γ1 = 2.0, γ2 = 0.1, γ3 = 0.1, σ2 = 1.2, σ3 = 0.8, F = 2.

(47)

In Regime I, ε = 1 and therefore u1, u2 and u3 occur in the same time scale. Since a large noise
coefficient σ1 = 2.5 is adopted in the dynamics of u1, the PDF of u1 is nearly Gaussian and the variance
is large. The latter leads to a skewed PDF of u2 due to the nonlinear feedback term −Iu2

1, where the
extreme events are mostly towards the negative side of u2 due to the negative sign in front of the
nonlinear term. As a consequence, the u3 also has a skewed PDF but the skewness is positive. On the
other hand, in Regime I, where ε = 0.1, u2 and u3 both have a short decorrelation time and the
associated PDFs are nearly Gaussian. Nevertheless, the slow variable u1 is highly non-Gaussian due to
the direct nonlinear interaction between u2 in which u2 plays the role of stochastic damping and it
results in the intermittent instability in the signal of u1.
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Figure 8. Model simulation of the triad model (44)–(46) with parameters in (47). (a) Regime I with
ε = 1; (b) Regime II with ε = 0.1.

4.1.5. Conceptual Models for Turbulent Dynamical Systems

Understanding the complexity of anisotropic turbulence processes over a wide range of
spatiotemporal scales in engineering shear turbulence [128–130] as well as climate atmosphere ocean
science [73,121,122] is a grand challenge of contemporary science. This is especially important from
a practical viewpoint because energy often flows intermittently from the smaller scales to affect the
largest scales in such anisotropic turbulent flows. The typical features of such anisotropic turbulent
flows are the following: (A) The large-scale mean flow is usually chaotic but more predictable than
the smaller-scale fluctuations. The overall single point PDF of the flow field is nearly Gaussian
whereas the mean flow pdf is sub-Gaussian, in other words, with less extreme variability than a
Gaussian random variable; (B) There are nontrivial nonlinear interactions between the large-scale
mean flow and the smaller-scale fluctuations which conserve energy; (C) There is a wide range of
spatial scales for the fluctuations with features where the large-scale components of the fluctuations
contain more energy than the smaller-scale components. Furthermore, these large-scale fluctuating
components decorrelate faster in time than the mean-flow fluctuations on the largest scales, whereas the
smaller-scale fluctuating components decorrelate faster in time than the larger-scale fluctuating
components; (D) The PDFs of the larger-scale fluctuating components of the turbulent field are nearly
Gaussian, whereas the smaller-scale fluctuating components are intermittent and have fat-tailed PDFs,
in other words, a much higher probability of extreme events than a Gaussian distribution.

Denote u the largest variable and {vk} a family of small-scale variables. One can think of u as
the large-scale spatial average of the turbulent dynamics at a single grid point in a more complex
system and {vk} as the turbulent fluctuations at the grid point. To add a sense of spatial scale, one can
also regard vk as the amplitude of the k-th Fourier cosine mode evaluated at a grid point. A hallmark
of turbulence is that the large scales can destabilize the smaller scales in the turbulent fluctuations
intermittently and this increased small-scale energy can impact the large scales; this key feature is
captured in the conceptual models. With the above discussion, here are the simplest models with all
these features, the conceptual dynamical models for turbulence [37]:
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du =

(
−duu + γ

K

∑
k=1

v2
k + F

)
dt,

dvk =
(
−dvk vk − γuvk

)
dt + σvk dWvk , 1 ≤ k ≤ K.

(48)

Now, let us take K = 5 and use the following parameters which have been tested in [37] that
represent the features of turbulent flows:

du = 0.01, dvk = 1 + 0.02k2,
σ2

vk

dvk

=
0.004

(1 + k)5/3 , γ = 1.5, F = −0.15. (49)

The sample trajectories and the associated PDFs are shown in Figure 9. The largest scale u is
nearly Gaussian while more intermittent behavior is observed in the smaller scale variables. Here,
the nonlinear interaction plays an important role in generating these turbulent features and the total
energy in the nonlinear terms is conserved. Thus, all the features (A)–(D) above are addressed in this
model. It is also clear that the conceptual turbulent model (48) is a conditional Gaussian system with
uI = (v1, . . . , v5)

T , uII = u.
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Figure 9. Sample trajectories (a) and the associated PDFs (b) of the conceptual turbulent model (48)
with parameters in (49).

In [36], a modified version of the conceptual model was developed:

du = (−duu +
K

∑
k

γk u vk + F)dt + σudWu, (50)

dvk = (−dvk vk − γk u2)dt + σvk dWvk , k = 1, . . . , K. (51)

This modified conceptual turbulent model again fits into the conditional Gaussian framework,
where uI = u includes the largest scale variable and uII = (v1, . . . , vK)

T represents small-scale ones.
The modified conceptual turbulent model (50) and (51) inherits many important features from the
dynamics in (48). For example, with suitable choices of parameters, the large-scale observed variable u
is nearly Gaussian while small-scale variables vk becomes more intermittent with the increasing of k.
In addition, the small-scale turbulent flows provide feedback to large scales through the nonlinear
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coupling with energy-conserving property. An example is shown in Figure 10 with the following
choice of parameters:

du = 0.1, F = 0.5, σu = 2, γk = 0.25,

dvk = {0.2, 0.5, 1, 2, 5}, σvk = {0.5, 0.2, 0.1, 0.1, 0.1}, k = 1, . . . , 5.
(52)
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Figure 10. Sample trajectories (a) and the associated PDFs (b) of the modified conceptual turbulent
model (50) and (51) with parameters in (52).

4.1.6. A Conceptual Model of the Coupled Atmosphere and Ocean

In [39], the signatures of feedback between the atmosphere and the ocean are studied with a
simple coupled model, which can be used to exam the effects of oceanic variability and seasonality.

The atmosphere component is the Lorenz 1984 model (38) discussed in Section 4.1.1, except that
the forcing has an explicit form

f (t) = f0 + f1 cos ωt,

which represents seasonal effect. Therefore, the atmosphere model reads

dx =
(
−(y2 + z2)− a(x− f (t))

)
dt + σxdWx,

dy =
(
− bxz + xy−y + g

)
dt + σydWy,

dz =
(
bxy + xz−z

)
dt + σzdWz.

(53)

Again, x represents the amplitude of the zonally averaged meridional temperature gradient while
y and z denote the amplitudes of the cosine and sine longitudinal phases of a chain of large-scale
waves. The poleward heat transport is achieved by the eddies at a rate proportional to y2 + z2,
and this heat transport reduces the zonally averaged temperature gradient. The term f (t) represents
the zonally averaged forcing due to the equator-pole difference in solar heating and it varies on a
seasonal timescale.

On the other hand, the oceanic module simulates the wind-driven circulation in a basin that
occupies a fraction r of the longitudinal extent of the atmosphere. Its dynamics are described by a set
of four ordinary differential equations, namely,
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dp = −(ψ2
r + ψ2

i )pdt,

dq = 0,

dψr = (−σψr −Ωψi)dt,

dψi = (Ωψr − σψi)dt.

(54)

Here, p represents the zonally averaged meridional temperature gradient at the sea surface, while q
represents the basin-averaged sea surface temperature. The poleward heat transport is achieved by a
large-scale flow, at a rate proportional to ψ2

r +ψ2
i . The average temperature Q is conserved in the absence

of any coupling with the atmosphere. The transport is represented by two phases of the streamfunction,
ψr and ψi. The streamfunction undergoes damped oscillations with a period, 2π/Ω, of 5.3 y and a
decay time, σ−1, of 17 y. This damped oscillation is the only source of internal variability in the ocean
and is due to the intrinsic decadal variability of the wind-driven circulation. Note that the equations for
the two phases of the streamfunction can be derived as a Galerkin truncation of the one-and-a-half-layer
quasigeostrophic potential vorticity equation for long linear Rossby waves. It is suggested in [131,132]
that basin modes with decadal frequencies can be excited by stochastic atmospheric forcing and represent
a resonant response of the ocean. This model essentially assumes that the intrinsic decadal variability of
the ocean wind-driven circulation is described by one such mode. For weak flow, the wind-driven gyres
reduce the zonally averaged north-south temperature gradient in a basin.

The feedback between the ocean and the atmosphere are constructed so as to conserve total heat
in the air–sea exchange. The coupled atmosphere-ocean model reads:

dx =
(
−(y2 + z2)− a(x− f (t)) + rm(p− x− γ)

)
dt + σxdWx,

dy =
(
− bxz + xy− y + g+ rm(q− y)

)
dt + σydWy,

dz =
(
bxy + xz− z

)
dt + σzdWz,

dp =
(
− np+mc−1(x− p + γ)

)
dt + σpdWp,

dq = mc−1(y− q) + σqdWq,

dψr =
(
− σψr −Ωψi + αrx + βry

)
dt + σφr dWφr ,

dψi =
(
Ωψr − σψi + αix + βiy

)
dt + σφi dWφi ,

(55)

where the terms with underlines represent the coupling between atmosphere and ocean. In (55),
the term ψ2

r + ψ2
i on the right-hand side of the evolution of p is parameterized by a constant n such

that the ocean part become a linear model. Therefore, (55) includes a nonlinear atmosphere model
and a linear ocean model. The coupling is through linear terms. Thus, treating the atmosphere
variables as uI = (x, y, z) and the ocean variables as uII = (p, q, ψr, ψi), the coupled system (55)
belongs to conditional Gaussian framework. It is also obvious that the coupled model belongs
to the physics-constrained regression model family.

In (55), the air–sea heat fluxes are proportional to the difference between the oceanic and the
atmospheric temperature: these are the terms m(p− x) and m(q− y). The bulk transfer coefficient, m,
is assumed to be constant. In the atmospheric model, this term needs to be multiplied by the fraction
of earth covered by ocean, r. In the oceanic model, the air–sea flux is divided by c, which is the ratio of
the vertically integrated heat capacities of the atmosphere and the ocean. The constant γ represents the
fraction of solar radiation that is absorbed directly by the ocean. There is no heat exchange between
the atmospheric standing wave z and the ocean because z represents the sine phase of the longitudinal
eddies and has zero zonal mean across the ocean. A feedback between z and the ocean would appear
if we added an equation for the longitudinal temperature gradient of the ocean. The effect of the wind
stress acting on the ocean is represented as a linear forcing proportional to x and y in the equations for
the streamfunction, ψ. The coupling constants αr, αi, βr, and βi are chosen to produce realistic values
for the oceanic heat transport. Detailed discussions of the parameter choices and model behaviors in
different dynamical regimes are shown in [39].
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4.1.7. A Low-Order Model of Charney–DeVore Flows

The concept of multiple equilibria in a severely truncated “low-order” image of the atmospheric
circulation was proposed by Charney and DeVore [133] (the CdV model). The simplest CdV model
describes a barotropic zonally unbounded flow over a sinusoidal topography in a zonal channel with
quasigeostrophic dynamics. The vorticity balance of such a flow

∂

∂t
∇2Ψ + u · ∇

[
∇2Ψ + βy +

f0b
H

]
= R∇2(Ψ∗ −Ψ) (56)

needs an additional constraint to determine the boundary values of the streamfunction Ψ on the channel
walls. The vorticity concept has eliminated the pressure field and its reconstruction in a multiconnected
domain requires the validity of the momentum balance, integrated over the whole domain,

∂U
∂t

= R(U∗ −U) +
f0

H

〈
b

∂Ψ
∂x

〉
. (57)

Here, U is the zonally and meridionally averaged zonal velocity and R∇2Ψ∗ = −R∂U∗/∂y is the
vorticity and RU∗ the zonal momentum imparted into the system.

The depth of the fluid is H− b and the topography height b is taken sinusoidal, b = b0 cos Kx sin Ky
with K = 2πn/L, where L is the length and L/2 the width of the channel. A heavily truncated expansion

Ψ = −Uy +
1
K
[A cos Kx + B sin Kx] sin Ky

represents the flow in terms of the zonal mean U and a wave component with sine and cosine
amplitudes A and B. It yields the low-order model [29,133]:

dU =

(
R(U∗−U) +

1
4

δB
)

dt + σUdWU ,

dA =

(
− KB(U − cR)− RA

)
dt + σAdWA,

dB =

(
KA(U − cR)−

1
2

δU − RB
)

dt + σBdWB,

(58)

where cR = β/2K2 is the barotropic Rossby wave speed and δ = f0b0/H. Apparently, (58) belongs to
the conditional Gaussian framework when the zonal mean flow is treated as uI = U while the two
wave components belong to uII = (A, B)T . This model also belongs to physics-constrained nonlinear
modeling family.

Without the stochastic noise, three equilibria are found if U∗ is well above cR. The three possible
steady states can be classified according to the size of the mean flow U compared to the wave
amplitudes: (a) The high zonal index regime is frictionally controlled, the flow is intense and the wave
amplitude is low; (b) The low zonal index regime is controlled by form stress, the mean flow is weak
and the wave is intense; (c) The intermediate state is transitional, it is actually unstable to perturbations.
This “form stress instability” works obviously when the slope of the resonance curve is below the one
associated with friction, i.e., ∂(RU − 1

4 δB[U])/∂U > 0, so that a perturbation must run away from the
steady state.

4.1.8. A Paradigm Model for Topographic Mean Flow Interaction

A barotropic quasi-geostrophic equation with a large scale zonal mean flow can be used to solve
topographic mean flow interaction. The full equations are given as follows [2]:
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∂q
∂t

= −∇⊥ψ · ∇q− u(t)
∂q
∂x
− β

∂ψ

∂x
,

q = ∆ψ + h,

du
dt

=
1

4π2

∫
h

∂ψ

∂x
.

(59)

Here, q and ψ are the small-scale potential vorticity and stream function, respectively. The large
scale zonal mean flow is characterized by u(t) and the topography is defined by function h = h(x, y).
The parameter β is associated with the β-plane approximation to the Coriolis force. The domain
considered here is a periodic box [0, 2π]2.

Now, we construct a set of special solutions to (59), which inherit the nonlinear coupling of
the small-scale flow with the large-scale mean flow via topographic stress. Consider the following
Fourier decomposition:

ψ(~x, t) = ∑
k 6=0

ψk(t)eik~l·~x, h(~x) = ∑
k 6=0

hkeik~l·~x, (60)

where~l = (lx, ly) and ~x = (x, y). By assuming h0 = 0 and inserting (60) into (59), we arrive at the
layered topographic equations in Fourier form:

dψk
dt

= iklx

(
β

k2|~l|2
− u

)
ψk + i

klx

k2|~l|2
hku,

du
dt

= −ilx ∑
k 6=0

khkψ∗k ,

where ψ∗k = ψ−k and h∗k = h−k. Consider a finite Fourier truncation. By adding extra damping and
stochastic noise for compensating the information truncated in the finite Fourier decomposition in ψk,

dψk =

(
−dkψk + iklx

(
β

k2|~l|2
− u

)
ψk + i

klx

k2|~l|2
hku

)
dt + σkdWk, |k| ≤ K,

du =

(
−ilx ∑

k 6=0
khkψ∗k

)
dt.

We arrive at a conditional Gaussian system with uI = {ψk} and uII = u.
In [2], very rich chaotic dynamics are reached with two-layer topographic models. Here as a

concrete example, we consider a single layer topography in the zonal direction~l = (1, 0) [32],

ψ(x, t) = ψ1(t)eix + ψ−1(t)e−ix,

h(x) = H
(

cos(x) + sin(x)
)
= h1e−ix + h−1e−ix,

where h1 = H/2− H/2i and H denotes the topography amplitude. Choose

ψ1(t) =
1
2
(
b(t)− ia(t)

)
and ψ−1 = ψ∗1

and rotate the variables (a, b) counterclockwise by 45◦ to coordinate (v1, v2). We arrive at

du = ωv1dt + σudWu,

dv1 =
(
− 2ωu− βv2 + uv2

)
dt,

dv2 = (βv1 − uv1)dt,

(61)



Entropy 2018, 20, 509 27 of 80

where ω= H/
√

2. This model is similar to the Charney and Devore model for nonlinear regime
behavior without dissipation and forcing. Then, with additional damping and noise in v1 and v2

approximating the interaction with the truncated Rossby wave modes, we have the following system:

du = ωv1dt,

dv1 =
(
− dv1 v1 − 2ωu− βv2 + uv2

)
dt + σv1 dWv1 ,

dv2 = (−dv2 v2 + βv1 − uv1)dt + σv2 dWv2 .

(62)

Linear stability is satisfied for v1, v2 while there is only neutral stability of u. The system in (62)
satisfies the conditional Gaussian framework where uI = (v1, v2)

T and uII = u. Notably, this model
also belongs to the physics-constrained nonlinear model family. One interesting property of this
model is that, if the invariant measure exists, then, despite the nonlinear terms, the invariant measure
is Gaussian. The validation of this argument can be easily reached following [31]. A numerical
illustration is shown Figure 11 with the following parameters:

ω = 1, dv1 = dv2 = 1, β = 0.5, σv1 = 0.2, σv2 = 0.2. (63)

Note that, if stochastic noise is also added in the evolution equation of u, then the system (62) also
belongs to the conditional Gaussian model family with uI = u and uII = (v1, v2)

T .
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Figure 11. Sample trajectories (a–c) and the associated PDFs (d–f) of the single layer topography
model (62) with parameters in (63). Note that the invariant measure is Gaussian.

4.2. Stochastically Coupled Reaction–Diffusion Models in Neuroscience and Ecology

4.2.1. Stochastically Coupled FitzHugh–Nagumo (FHN) Models

The FitzHugh–Nagumo model (FHN) is a prototype of an excitable system, which describes
the activation and deactivation dynamics of a spiking neuron [57]. Stochastic versions of the FHN
model with the notion of noise-induced limit cycles were widely studied and applied in the context of
stochastic resonance [134–137]. Furthermore, its spatially extended version has also attracted much
attention as a noisy excitable medium [138–141].

One common representation of the stochastic FHN model is given by

εdu =
(

f1(u) + c1v
)
dt +

√
εδ1dWu,

dv =
(

f2(u) + c2v + s(t)
)
dt + δ2dWv,

(64)
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where the time scale ratio ε is much smaller than one (e.g., ε ≈ 10−2), implying that u(t) is the fast and
v(t) is the slow variable. The coupled FHN system in (64) is obviously a conditional Gaussian system
with uI = u and uII = v. The nonlinear function f1(u) is one of the nullclines of the deterministic
system. A common choice for this function is

f1(u) = u− cu3, (65)

where the parameter c is either 1 or 1/3. On the other hand, f2(u) is usually a linear function of u.
In (64), s(t) is an external source and it can be a time-dependent function. In the following, we set s(t)
to be a constant external forcing for simplicity. Diffusion term is typically imposed in the dynamics of
u. Thus, with these choices, a simple stochastically coupled spatial-extended FHN model is given by

εdu =

(
du∇2u + u− 1

3
u3 − v

)
dt +

√
εδ1dWu,

dv =
(
u + a

)
dt + δ2dWv.

(66)

With δ1 and δ2, the model in (66) contains the model families with both coherence resonance and
self-induced stochastic resonance [142]. Applying a finite difference discretization to the diffusion
term in (66), we arrive at the FHN model in the lattice form

εdui =

(
du(ui+1 + ui−1 − 2ui) + ui −

1
3

u3
i − vi

)
dt +

√
εδ1dWui ,

dvi =
(
ui + a

)
dt + δ2dWvi , i = 1, . . . , N.

(67)

Note that the parameter a > 1 is required in order to guarantee that the system has a global
attractor in the absence of noise and diffusion. The random noise is able to drive the system above
the threshold level of global stability and triggers limit cycles intermittently. The model behavior
of (67) in various dynamical regimes has been studied in [36]. The model can show both strongly
coherent and irregular features as well as scale-invariant structure with different choices of noise and
diffusion coefficients.

There are several other modified versions of the FHN model that are widely used in applications.
One that appears in the thermodynamic limit of an infinitely large ensemble is the so-called globally
coupled FHN model

εdui =

(
du(ui+1 + ui−1 − 2ui) + ui −

1
3

u3
i + m(ū− ui)− vi

)
dt +

√
εδ1dWui ,

dvi =
(
ui + a

)
dt + δ2dWvi , i = 1, . . . , N,

(68)

where ū = 1
N ∑N

i=1 ui. Different from the model in (67) where each ui is only directly coupled to its two
nearest neighbors ui−1 and ui+1, each ui in the globally coupled FHN model (68) is directly affected by
all uj, j = 1, . . . , N. In [57], various closure methods are developed to solve the time evolution of the
statistics associated with the globally coupled FHN model (68).

Another important modification of the FHN model is to include the colored noise into the system
as suggested by [57,143]. For example, the constant a on the right-hand side of (67) can be replaced by
an OU process [143] that allows the memory of the additive noise. Below, by introducing a stochastic
coefficient γ in front of the linear term u, a stochastically coupled FHN model with multiplicative noise
is developed. The model reads

εdui =

(
du(ui+1 + ui−1 − 2ui) + ui −

1
3

u3
i − vi

)
dt +

√
εδ1dWui ,

dvi =
(
γiui + a

)
dt + δ2dWvi ,

dγi = −dγi (γi − γ̂i)dt + σγi dWγi , i = 1, . . . , N.

(69)
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The stochastically coupled FHN model with multiplicative noise belongs to the conditional
Gaussian framework with uI = (u1, . . . , uN)

T and uII = (v1, γ1, . . . , vN , γN)
T .

To provide intuition about the dynamical behavior of the stochastically coupled FHN model
with multiplicative noise (69), we show the time series of the model with n = 1, namely there is no
diffusion term and the coupled model is three-dimensions. The three-dimensional model with no
diffusion reads,

εdu =

(
u− 1

3
u3 − v

)
dt +

√
εδ1dWu,

dv =
(
γu + a

)
dt + δ2dWv,

dγ = −dγ(γ− γ̂)dt + σγdWγ,

(70)

with the following parameters

ε = 0.01, δ1 = 0.2, δ2 = 0.4, a = 1.05, dγ = 1, γ̂ = 1. (71)

Figure 12 shows the model simulations with different σγ. Note that, when σγ = 0, the model (70)
reduces to a two-dimensional model with γ ≡ γ̂. From Figure 12, it is clear that u is always intermittent.
On the other hand, v has only a small variation when γ is nearly a constant while more extreme events
in v are observed when σγ increases (see the PDF of v). Note that the extreme events in v are strongly
correlated with the quiescent phase of u according to the phase diagram. These extreme events do not
affect the regular ones that form a closed loop with the signal of u. With the increase of σγ, the periods
of u becomes more irregular. This can be seen in (d), which shows the distribution of the time interval
T between successive oscillations in u. With a large σγ, this distribution not only has a large variance
but also shows a fat tail.
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Figure 12. Simulations of the three-dimensional stochastically coupled FHN model with multiplicative
noise (70). Different values of noise coefficient σγ are used here. (a) sample trajectories of u (blue),
v (red) and γ (green); (b) the associated PDFs; (c) phase diagram of (u, v); (d) distribution of the time
interval T between successive oscillations in u.

Finally, Figure 13 shows the model simulation in the spatial-extended system (69), where n = 500.
The same parameters as in (71) are taken and dγi = dγ = 1 and γ̂i = γ̂ = 1 for all i. Homogeneous
initial conditions ui(0) = −2 and vi(0) = 0.5 are adopted for all i = 1, . . . , N. The four rows show the
simulation with different σγ, where σγ is the noise coefficient at all the grid points, namely σγi = σγ for
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all i. With the increase of σγ, the spatial structure of u becomes less coherent and more disorganized,
which is consistent with the temporal structure as shown in Figure 12. In addition, more extreme
events can be observed in the field of v due to the increase of the multiplicative noise.

Figure 13. Simulations of the stochastically coupled FHN model with multiplicative noise system
with spatial-extended structure (69). The same parameters as in (71) are taken and dγi = dγ = 1 and
γ̂i = γ̂ = 1 for all i. Homogeneous initial conditions ui(0) = −2 and vi(0) = 0.5 are adopted for all
i = 1, . . . , N. (a–d) show the simulation with different σγ = 0, 0.3, 0.6 and 1.0, where σγ is the noise
coefficient at all the grid points, namely σγi = σγ for all i.

4.2.2. The Predator–Prey Models

The functioning of a prey–predator community can be described by a reaction–diffusion system.
The standard deterministic predator–prey models have the following form [58]:

du
dt

= D∇2u +
α

b
u(1− u)− γ

u
u + h

v,

dv
dt

= D∇2v + κγ
u

u + h
v− µv,

(72)

where u and v represent predator and prey, respectively. Here, α, b, H, and γ are constants: α is the
maximal growth rate of the prey, b is the carrying capacity for the prey population, and H is the
half-saturation abundance of prey. Introducing dimensionless variables

ũ = u/b, ṽ = vγ/(αb), t̃ = αt, r̃ = r(α/D)1/2

and, using the dimensionless parameters,

h = H/b, m = µ/α, k = κγ/α.

The non-dimensional system (by dropping the primes) becomes

du
dt

= ∇2u + u(1− u)− u
u + h

v,

dv
dt

= ∇2v + k
u

u + h
v−mv.

(73)

Note that, in the predator–prey system, both u and v must be positive.
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Clearly, the deterministic model is highly idealized and therefore stochastic noise is added into
the system [144,145]. In order to keep the positive constraints for the variables u and v, multiplicative
noise is added to the system. One natural choice of the noise is the following:

du
dt

= ∇2u + u(1− u)− u
u + h

v + f (u)Ẇu,

dv
dt

= ∇2v + k
u

u + h
v−mv.

(74)

Here, f (u) is a function of u and its value vanishes at u = 0 to guarantee the positivity of the
system. The most straightforward choice of f (u) is f (u) ∝ u, which leads to small noise when the
signal of u is small and large noise when the amplitude of u is large. Another common choice of this
multiplicative noise is f (u) ∝ u/

√
1 + u2 such that the noise level remains nearly constant when u is

larger than a certain threshold. Applying a spatial discretization to the diffusion terms, the stochastic
coupled predator–prey in (74) belongs to the conditional Gaussian framework with uI = u and uII = v.
Note that when f (u) ≈ 0, the conditional Gaussian estimation (4) and (5) will become singular due to
the term ( f (u) f (u)∗)−1. Nevertheless, the limit cycle in the dynamics will not allow the solution to be
trapped at u = 0. Assessing this issue using rigorous analysis is an interesting future work.

Figure 14 shows sample trajectories and phase portraits under the simplest setup simulation
of (74) without diffusion terms ∇2u and ∇2v. The parameters are given as follows:

k = 2, r = 0.4, m = 0.8, h = 0.4. (75)

Panels (a,b) show the simulations without stochastic noise while Panels (c,d) show the results
with a multiplicative noise f (u) = 0.05u/

√
1 + u2. The intermittent behavior is found in both u and v.
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Figure 14. Sample trajectories and phase portraits under the simplest setup simulation of (74) without
diffusion terms ∇2u and ∇2v. The parameters are given in (75). (a,b) simulations without stochastic
noise; (c,d) simulations with a multiplicative noise f (u) = 0.05u/

√
1 + u2.

In Figure 15, we show the simulations of the spatial-extended system in (74), where we take
30 and 90 grid points in x and y directions, respectively. Spatially periodic boundary conditions are
used here. In all three of the simulations in Columns (a–c), the initial values for both u and v are
the same. Column (a) shows the model simulation of (74) with diffusion terms ∇2u and ∇2v, but the
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noise coefficient is zero, namely f (u) = 0. Therefore, the model is deterministic and spatial patterns
can be seen in all the time instants. In Column (b), we ignore the diffusion terms ∇2u = ∇2v = 0
and thus the system is spatially decoupled. Nevertheless, a stochastic noise f (u) = 0.05u/

√
1 + u2

is added to the system. The consequence is that the initial correlated structure will be removed by
the noise and, at t = 5, the spatial structures are purely noisy. Finally, in Column (c), the simulations
of the model with both the diffusion terms ∇2u, ∇2v and the stochastic noise f (u) = 0.05u/

√
1 + u2

are shown. Although after t = 5, the initial structure completely disappears, the diffusion terms
correlate the nearby grid points and spatial structures are clearly observed in these simulations. Due to
the stochastic noise, the patterns are polluted and are more noisy than those shown in Column (a).
In addition, the structure in v is more clear since the noise is directly imposed only on u.
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Figure 15. Snapshots at t = 0, t = 1, t = 5 and t = 20 of the spatial-extended system (74).
Spatially periodic boundary conditions are used here. The parameters are given in (75). In all the three
simulations in (a–c), the initial values for both u and v are the same. (a) model simulation of (74) with
diffusion terms ∇2u and ∇2v but the noise coefficient f (u) = 0; (b) model simulation of (74) without
diffusion terms ∇2u = ∇2v = 0. Therefore, the system is spatially decoupled. However, a stochastic
noise f (u) = 0.05u/

√
1 + u2 is added to the system; (c) simulations with both the diffusion terms ∇2u

and ∇2v and the stochastic noise f (u) = 0.05u/
√

1 + u2.

4.2.3. A Stochastically Coupled SIR Epidemic Model

The SIR model is one of the simplest compartmental models for epidemiology, and many models
are derivations of this basic form [59,146]. The model consists of three compartments: “S” for the
number susceptible, “I” for the number of infectious, and “R” for the number recovered (or immune).
Each member of the population typically progresses from susceptible to infectious to recovered, namely

susceptible −→ infectious −→ recovered. (76)

This model is reasonably predictive for infectious diseases which are transmitted from human to
human, and where recovery confers lasting resistance, such as measles, mumps and rubella.

The classical SIR model is as follows:
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dS = (−βSI − µ1S + b)dt,

dI = (βSI − µ2 I − αI)dt,

dR = (αI − µ3R)dt,

(77)

where the total population size has been normalized to one and the influx of the susceptible comes
from a constant recruitment rate b. The death rate for the S, I and R class is, respectively, given by
µ1, µ2 and µ3. Biologically, it is natural to assume that µ1 < min{µ2, µ3}. The standard incidence of
disease is denoted by βSI, where β is the constant effective contact rate, which is the average number
of contacts of the infectious per unit time. The recovery rate of the infectious is denoted by α such that
1/α is the mean time of infection.

When the distribution of the distinct classes is in different spatial locations, the diffusion terms
should be taken into consideration and random noise can also be added. Thus, an extended version of
the above SIR system (77) can be described as the following [147–149]:

dS = (∇2S− βSI − µ1S + b)dt + σ(S)dWS,

dI = (∇2 I + βSI − µ2 I − αI)dt,

dR = (∇2R + αI − µ3R)dt,

(78)

where the noise is multiplicative in order to guarantee the positivity of the three variables.
Clearly, the SIR model in (78) is a conditional Gaussian system with uI = S and uII = (I, R)T . It can
be used to estimate and predict the number of both infectious and recovered given those susceptible.
Note that the SIS model (the model with only S and I variables) [150] is a special case of SIR model and
it naturally belongs to the conditional Gaussian framework.

4.2.4. A Nutrient-Limited Model for Avascular Cancer Growth

Here, we present a nutrient-limited model for avascular cancer growth [60], where the cell actions
(division, migration, and death) are locally controlled by the nutrient concentration field. Consider a
single nutrient field described by the diffusion equation:

dN = (DN∇2N − γNσn − λγNσc)dt (79)

in which γ and λ are the nutrient consumption rates of normal and cancer cells, respectively.
The domain is the tissue which is represented by a square lattice of size (L + 1)× (L + 1) and lattice
constant ∆. On the other hand, the growth factor (GF) concentration obeys the diffusion equation

dG = (DG∇2G− k2G + ΓσcN(GM − G))dt, (80)

which includes the natural degradation of GFs, also imposing a characteristic length ∼ 1/k for
GFs diffusion, and a production term increasing linearly with the local nutrient concentration up
to a saturation value GM. Therefore, we are assuming that the release of GFs involves complex
metabolic processes supported by nutrient consumption. The boundary conditions satisfied by the
GF concentration field is G(~x, t) = 0 at a large distance (d > 2/k) from the tumor border. Define the
non-dimensional variables:

t′ =
DNt
∆2 , ~x′ =

~x′

∆
, N′ =

N
K0

, G′ =
G

GM
,

α =

(
γ∆2

DN

)1/2

, k′ = k
(

∆2

DN

)1/2

, Γ′ =
Γ∆2

DN
, D =

DG
DN

,

with these new variables (dropping the primes) and stochastic noise, the system (79) and (80) becomes
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dN = (∇2N − α2Nσn − λα2Nσc)dt + σNdWN ,

dG = (D∇2G− k2G + ΓσcN(1− G))dt + σGdWG.
(81)

The coupled system (81) is a conditional Gaussian system with the observations given by the GF
concentration uI = G and the state estimation for the nutrient field uII = N.

4.3. Large-Scale Dynamical Models in Turbulence, Fluids and Geophysical Flows

4.3.1. The MJO Stochastic Skeleton Model

The Madden–Julian oscillation (MJO) is the dominant mode of variability in the tropical
atmosphere on intraseasonal time scales and planetary spatial scales [151–153]. It affects both tropical
and extratropical weather and climate. It can also possibly trigger and modify the El Niño-Southern
Oscillation [154–156]. Understanding and predicting the MJO is a central problem in contemporary
meteorology with large societal impacts.

In [51], a stochastic skeleton model was developed that recovers robustly the most fundamental
MJO features: (1) a slow eastward speed of roughly 5 m/s; (2) a peculiar dispersion relation with
dω/dk ≈ 0; (3) a horizontal quadrupole vortex structure; (4) the intermittent generation of MJO
events; and (5) the organization of MJO events into wave trains with growth and demise, as seen in
nature. In fact, the first three features are already covered by the deterministic version of the skeleton
model [157,158]. The last two ones are significantly captured by the stochastic version [51]. Using a
method based on theoretical waves structures, the MJO skeleton from the model is identified in the
observational data [159]. In addition, the stochastic skeleton model is capable of reproducing observed
MJO statistics such as the average duration of MJO events and the overall MJO activity [160].

The MJO stochastic skeleton model is given as follows [51]:

ut − yv− θx = 0,

yu− θy = 0,

θt − ux − vy = H̄a− sθ ,

qt + Q̄(ux + vy) = −H̄a + sq,

at = stochastic birth-death process,

(82)

and the expectation of the convective activity a satisfies

at = Γqa, (83)

where ·t, ·x and ·y denote the derivatives with respect to time t zonal (east-west) coordinate x and
meridional (north-south) coordinate y. In (82), u, v and θ are the zonal velocity, meridional velocity and
the potential temperature, respectively, and a is the envelope of convective activity. The fourth equation
describes the evolution of low-level moisture q. All variables are anomalies from a radiative-convective
equilibrium, except a. The skeleton model contains a minimal number of parameters: Q̄ is the
background vertical moisture gradient, Γ is a proportionality constant. H̄ is irrelevant to the dynamics
but allows us to define a cooling/drying rate H̄a for the system in dimensional units. sθ and sq

are external sources of cooling and moistening that need to be prescribed in the system. Notably,
the planetary envelope a ≥ 0 in particular is a collective representation of the convection/wave activity
occurring at sub-planetary scale, the details of which are unresolved. A key part of the q− a interaction
is the assumption that q influences the tendency of a at = Γqa, where Γ > 0 is a constant.

Next, the system (82) is projected onto the first Hermite function in the meridional direction such
that a(x, y, t) = A(x, t)φ0, q = Qφ0, sq = Sqφ0, sθ = Sθφ0, where φ0(y) =

√
2(4π)−1/4 exp(−y2/2).

Such a meridional heating structure is known to excite only Kelvin waves and the first symmetric
equatorial Rossby waves [11,161]. The resulting meridionally truncated equations are
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Kt + Kx = (Sθ − H̄A)/2, (84)

Rt − Rx/3 = (Sθ − H̄A)/3, (85)

Qt + Q̄(Kx − Rx/3) = (H̄A− Sq)(Q̄/6− 1), (86)

At = stochastic birth-death process. (87)

The expectation of the convective activity A satisfies

At = ΓQA. (88)

Figure 16 shows one model simulation of different fields (Panels (a–d)) as well as the MJO patterns
(Panel (e)) with realistic warm pool background heating and moisture sources [51]. The MJO patterns
are calculated by the combination of different fields using eigen-decomposition [51]. All the features
mentioned at the beginning of this subsection can be clearly seen in Panel (e).

Figure 16. (a) Velocity field u; (b) temperature θ; (c) moisture q; (d) convective activity H̄a and (e) the
MJO patterns in the MJO stochastic skeleton model (84)–(87). The x-axis is the zonal region that extends
over the entire equator. The y-axis is time.

To provide intuition of forming a conditional Gaussian system from the original MJO skeleton
model, we start with a simplified version of the full spatially extended system in (84)–(87) and (88),
namely the stochastic skeleton single-column model,

dK
dt

= (Sθ − H̄A)/2, (89)

dR
dt

= (Sθ − H̄A)/3, (90)

dQ
dt

= (H̄A− Sq)(Q̄/6− 1), (91)

dA
dt

= stochastic birth-death process, (92)

where the expectation of the convective activity A satisfies

dA
dt

= ΓQA. (93)
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In the single-column model, the spatial derivative disappears and the coupled system becomes a
four-dimensional stochastic ODEs. In the original stochastic skeleton model [51], the process of the
convective activity A is driven by a stochastic birth-death process, which provides a clear physical
interpretation of the evolution of the convective activity. Note that in the continuous limit of the
stochastic birth-death process (the small jump between the two nearby states ∆a→ 0), (92) converges
to a continuous SDE

dA = ΓQAdt +
√

λAdWA, (94)

where WA is white noise. See [162] for more details. It is clear that (94) involves a multiplicative noise
that guarantees the non-negativity of A. In addition, the expectation of the convective activity A
converges to (93). Replacing (92) by (94), we arrive at the following system:

dA = ΓQAdt +
√

λAdWA, (95)

dK =
1
2

(
Sθ − H̄A

)
dt, (96)

dR =
1
3

(
Sθ − H̄A

)
dt, (97)

dQ =

(
1− Q̄

6

)
(Sq − H̄A) dt, (98)

which is a conditional Gaussian system with uI = A and uII = (K, R, Q). Note that, in the content
of data assimilation and prediction, judicious model errors [20,28] are often added to the system.
These judicious model errors include extra damping and stochastic noise that balance the intrinsic
model error and the observational error as well as improve the model capability in capturing the
uncertainty. With these judicious model errors, the system (95)–(98) can be modified as

dA = ΓQAdt +
√

λAdWA, (99)

dK =

(
−d̄KK +

1
2

(
Sθ − H̄A

))
dt + σKdWK, (100)

dR =

(
−d̄RR +

1
3

(
Sθ − H̄A

))
dt + σRdWR, (101)

dQ =

(
−d̄QQ +

(
1− Q̄

6

)
(Sq − H̄A)

)
dt + σQdWQ. (102)

Now let us consider the spatially extended system (84)–(87). Making use of the finite Fourier
decomposition of the state variables

F (xj, t) = ∑
−M+1≤k≤M

F̂k(t)e
2πikxj/L = ∑

−M+1≤k≤M
F̂k(t)e

ilkxj , F = {A, K, R, Q}

and plugging them into the truncated system (84)–(87), we reach the following stochastic system:

dÂk
dt

= Γ ∑
−M+1≤s≤M

Q̂s Âk−s +
√

λk ÂkẆA
k ,

dK̂k
dt

= (−ilk − d̄K
k )K̂k +

1
2

(
Ŝθ

k − H̄Âk

)
+ σK

k ẆK
k ,

dR̂k
dt

= (ilk/3− d̄R
k )R̂k +

1
3

(
Ŝθ

k − H̄Âk

)
+ σR

k ẆR
k ,

dQ̂k
dt

= −d̄Q
k Q̂k − Q̄ilk

(
K̂k −

R̂k
3

)
+

(
1− Q̄

6

)(
Ŝq

k − H̄Âk

)
+ σQ

k ẆQ
k ,

−M + 1 ≤ k ≤ M,

(103)
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where judicious model errors with extra damping and stochastic noise are added in these equations.
In addition to improving the skill in data assimilation and prediction, these extra damping and
stochastic noise also compensate the small scale information that has been truncated in the finite
Fourier decomposition.

It is clear that the nonlinear model (103) is a conditional Gaussian system with

uI = {Âk}, and uII = ({K̂k}, {R̂k}, {Q̂k}).

Linking (103) to the original system (82), u, v, θ and q belong to uII and the wave activity a
is the observed variable uI. Note that there are several further studies of the stochastic skeleton
model. By involving additional off equatorial components of convective heating and adding a simple
seasonal cycle in a warm pool background [163], the skeleton model succeeds in reproducing the
meridionally asymmetric intraseasonal events and a seasonal modulation of intraseasonal variability.
Another extended version of the skeleton model involves the refined vertical structure of the MJO
in nature [164]. All of these modified versions belong to the conditional Gaussian framework.
Note that a rigorous proof has shown that the stochastic skeleton model has the geometric ergodicity
property [165].

4.3.2. A Coupled El Niño Model Capturing Observed El Niño Diversity

The El Niño Southern Oscillation (ENSO) has significant impact on global climate and seasonal
prediction [166–168]. It is the most prominent year-to-year climate variation on earth, with dramatic
ecological and social impacts. The traditional El Niño consists of alternating periods of anomalously
warm El Niño conditions and cold La Niña conditions in the equatorial Pacific every two to seven years,
with considerable irregularity in amplitude, duration, temporal evolution and spatial structure of these
events. In recent decades, a different type of El Niño has been frequently observed [169–172], which is
called the central Pacific (CP) El Niño. Different from the traditional El Niño where warm sea surface
temperature (SST) occurs in the eastern Pacific, the CP El Niño is characterized by warm SST anomalies
confined to the central Pacific, flanked by colder waters to both east and west. Understanding and
predicting El Niño diversity has significant scientific and social impacts [173,174].

In [52], a simple modeling framework has been developed that automatically captures the
statistical diversity of ENSO. The starting model is a deterministic, linear and stable model that
includes the coupled atmosphere, ocean and SST [175]. Then, key factors are added to the system in a
systematic way. First, a stochastic parameterization of the wind bursts including both westerly and
easterly winds is coupled to the starting model that succeeds in capturing both the eastern Pacific El
Niño events and the statistical features in the eastern Pacific [175]. Secondly, a simple nonlinear zonal
advection with no ad hoc parameterization of the background SST gradient and a mean easterly trade
wind anomaly representing the multidecadal acceleration of the trade wind are both incorporated into
the coupled model that enable anomalous warm SST in the central Pacific [176]. Then, a three-state
stochastic Markov jump process is utilized to drive the wind burst activity that depends on the strength
of the western Pacific warm pool in a simple and effective fashion [52]. It allows the coupled model to
simulate the quasi-regular moderate traditional eastern Pacific El Niño, the super El Niño, the CP El
Niño as well as the La Niña with realistic features [177]. In particular, the model succeeds in capturing
and predicting different super El Niño events [178], including both the directly formed (similar to
1997–1998) and delayed events (similar to 2014–2016). An improved version of the model is also able
to recover the season synchronization [179]. The coupled model is as follows:
Atmosphere

−yv− ∂xθ = 0,

yu− ∂yθ = 0,

−(∂xu + ∂yv) = Eq/(1−Q).

(104)
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Ocean

∂τU − c1YV + c1∂x H = c1τx,

YU + ∂Y H = 0,

∂τ H + c1(∂xU + ∂YV) = 0.

(105)

SST
∂τT + µ∂x(UT) = −c1ζEq + c1ηH, (106)

Coupling:
Eq = αqT, τx = γ(u + up). (107)

Here, x is zonal direction and τ is interannual time, while y and Y are meridional direction
in the atmosphere and ocean, respectively. The u, v are zonal and meridional winds, θ is potential
temperature, U, V are zonal and meridional currents, H is thermocline depth, T is SST, Eq is latent
heating, and τx is zonal wind stress. All variables are anomalies from an equilibrium state, and are
non-dimensional. The coefficient c1 is a non-dimensional ratio of time scales, which is of order O(1).
The term up describes stochastic wind burst activity. The atmosphere extends over the entire equatorial
belt 0 ≤ x ≤ LA with periodic boundary conditions, while the Pacific ocean extends over 0 ≤ x ≤ LO
with reflection boundary conditions for the ocean model and zero normal derivative at the boundaries
for the SST model. The wind bursts and easterly mean trade wind are parameterized as

up = ap(τ)sp(x)φ0(y),
dap

dτ
= −dp(ap − âp) + σp(TW)Ẇ(τ),

(108)

where the noise σp(TW) is a state-dependent noise coefficient given by a three-state Markov jump
process. In addition, sp(x) and φ0(y) are the prescribed zonal and meridional bases.

Applying the meridional truncation to the coupled system (104)–(108), the coupled model reduces
to a set of PDEs that depends only on time t and zonal variables x. These equations describe the
zonal propagation of atmosphere and ocean Kelvin and Rossby waves [52]. Figure 17 shows a model
simulation. The El Niño diversity is clearly captured, where a traditional eastern Pacific ENSO cycle
(t = 181–182), a series of CP El Niño (t = 192–197) and a super El Niño (t = 199) are all observed.
Similar to the MJO skeleton model in Section 4.3.1, a suitable set of zonal bases are chosen and the
coupled ENSO model becomes a large dimension of coupled ODE system. By adding judicious
model errors with extra damping and stochastic forcing (as in the MJO skeleton model), the resulting
system belongs to the conditional Gaussian framework, where uI includes SST and uII contains all the
variables in atmosphere and ocean.

4.3.3. The Boussinesq Equation

The Boussinesq approximation [11] is a way to solve nonisothermal flow without having to solve
for the full compressible formulation of the Navier–Stokes equations. It assumes that variations in
density have no effect on the flow field, except that they give rise to buoyancy forces. The Boussinesq
equation is derived when the Boussinesq approximation is applied to the full Navier–Stokes equation:

∇ · u = 0,

∂u
∂t

+ u · ∇u = − 1
ρ0
∇p + ν∇2u− gαT + Fu,

∂T
∂t

+ u · ∇T = κ∇2T + FT ,

(109)
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where T is the temperature, u is the velocity fields, ρ0 is the reference density, p is the pressure, g is
the acceleration due to gravity, Fu and FT are the external forcing and κ is the diffusion coefficient.
Note that the forcing terms Fu and FT can involve both deterministic and stochastic forcing. The three
equations in (109) are the continuity equation, the momentum equation and the thermal equation,
respectively. The Boussinesq equation has a wide application, including modeling the Rayleigh–Bénard
convection [53,54] and describing strongly stratified flows as in geophysics [55].
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Figure 17. Model simulations of the coupled ENSO model (104)–(108). The x-axis is the zonal region of
the equatorial Pacific. The y-axis is time. (a) time series of the stochastic wind burst amplitude ap (blue)
and its 90-day running mean; (b–e) atmosphere wind u, ocean current U, thermocline depth H and
SST T.

Here for simplicity, let us assume the boundary conditions are periodic. The framework below
can be easily extended to the Boussinesq system with more general boundary conditions. Similar to
the general procedure as described in Section 4.3.1, applying a finite Fourier truncation to (109) and
adding judicious model errors with extra damping and noise if needed, the resulting system consists
of a large dimension of stochastic ODEs. Here, the continuity equation with divergence free condition
provides the eigen-directions of the each Fourier mode associated with the velocity field [11], namely,

u(x, t) = ∑
0<|k|≤K

û(t)eikxrk,

where rk is the eigen-direction associated with the wavenumber k. Note that the resulting system
remains highly nonlinear due to the quadratic coupling between different Fourier modes in the
advection u · ∇u and u · ∇T. The straightforward calculation shows that the system belongs to
the conditional Gaussian framework with uI = u and uII = T, where the right-hand side should be
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understood as the Fourier modes. Such a setup allows the state estimation of the temperature T given
the noisy velocity field u using the closed form (4) and (5) in the conditional Gaussian framework.

In many applications, it is easier to observe the temperature T while the velocity field u is
required to be estimated. However, if we choose uI = T and uII = u, then (109) is not a conditional
Gaussian system. To satisfy the requirement of the conditional Gaussian framework, the equation of the
velocity field has to be linearized. Nevertheless, in the situation with large Pradlt number [54,180,181],
which occurs quite often in applications (such as Rayleigh–Bénard convection), the nonlinear term
u · ∇u can be dropped and the resulting system becomes

∇ · u = 0,

∂u
∂t

= − 1
ρ0
∇p + ν∇2u− gαT + Fu,

∂T
∂t

+ u · ∇T = κ∇2T + FT .

(110)

It is important to note that the coupled system remains nonlinear due to the nonlinear coupling
u · ∇T. One interesting issue is to understand the model error by dropping the term u · ∇u in filtering
the resulting conditional Gaussian systems.

4.3.4. Darcy–Brinkman–Oberbeck–Boussinesq System—Convection Phenomena in Porous Media

The problem considered in this subsection is the convection phenomena in porous media which is
relevant to a variety of science and engineering problems ranging from geothermal energy transport to
fiberglass insulation. Consider a Rayleigh–Bénard like problem: convection in a porous media region,
Ω, bounded by two parallel planes saturated with fluids. The bottom plate is kept at temperature T2

and the top plate is kept at temperature T1 with T2 > T1. One of the famous models is the following
Darcy–Brinkman–Oberbeck–Boussinesq system in the non-dimensional form [56]:

∇ · v = 0,

γa

(
∂v
∂t

+ (v · ∇)v
)
+ v− D̃a∆v +∇p = RaDkT + Fv,

∂T
∂t

+ v · ∇T = ∆T + FT ,

(111)

where k is the unit normal vector directed upward, v is the non-dimensional seepage velocity, p is
the non-dimensional kinematic pressure, T is the non-dimensional temperature. As in (109), Fv and
FT here are external forcing, which involve both deterministic and stochastic parts. The parameters
in the system are given by the Prandtl–Darcy number, γ−1

a , which is defined as γ−1
a = (νh2)/(κK)

where ν is the kinematic viscosity of the fluid, h is the distance between the top and bottom plates,
κ is the thermal diffusivity and K is the permeability of the fluid; the Brinkman–Darcy number, D̃a,
which is given by D̃a = (µe f f K)/(νh2), where νe f f is the effective kinematic viscosity of the porous
media; and the Rayleigh–Darcy number, RaD, which takes the form RaD = (gγ(T2 − T1)Kh)/(νκ),
where g is the gravitational acceleration constant, α is the thermal expansion coefficient. The parameter
γa is also called the non-dimensional acceleration coefficient.

As in the Boussinesq equation, by applying finite Fourier expansion and adding extra damping
and noise to the Darcy–Brinkman–Oberbeck–Boussinesq model (111), a conditional Gaussian
system is reached with uI = v and uII = T. Again, the right-hand side should be understood as
Fourier coefficients.

On the other hand, applying linearization and dropping one of the nonlinear terms (v · ∇)v
in (111), the temperature T can be viewed as the observed variable to filter the seepage velocity v,

uI = T and uII = v.
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The resulting system is given by

∇ · v = 0,

γa
∂v
∂t

+ v− D̃a∆v +∇p = RaDkT + Fv,

∂T
∂t

+ v · ∇T = ∆T + FT .

(112)

4.3.5. The Rotating Shallow Water Equations

The rotating shallow water equation is an appropriate approximation for atmospheric and oceanic
motions in the midlatitudes with relatively large length and time scales [11]. In such regimes, the effects
of the earth’s rotation are important when the fluid motions evolve on a time scale that is comparable
or longer than the time scale of rotation. Note that the rotation shallow water equations do not include
the effects of density stratification as observed in many other phenomena.

The rotating shallow water equation is as follows:

∂u
∂t

+ u · ∇u + f u⊥ + g∇h = Fu,

∂h
∂t

+ u · ∇h + (H + h)∇ · u = Fh,
(113)

where u is the two-dimensional velocity field in the (x, y)-plane, h is the geophysical height. On the
right-hand side of (113), Fu and Fh are forcing terms that include both deterministic and stochastic
forcing. As discussed in the previous subsections, choosing uI = u and uII = h and applying the
procedure in Section 4.3.1 with finite Fourier expansion and judicious model error, a conditional
Gaussian system is formed.

Alternatively, in some applications, the height variable h can be measured and the velocity field u
is required to be filtered or estimated. Thus, it is natural to set

uI = h and uII = u

and then making use of data assimilation to estimate the velocity field. To allow such a problem to fit
into conditional Gaussian framework, one of the nonlinear terms u · ∇u is dropped and the resulting
system is given by

∂h
∂t

+ u · ∇h + (H + h)∇ · u = Fh,

∂u
∂t

+ f u⊥ + g∇h = Fu.
(114)

The equations in (114) are then put into the framework in Section 4.3.1 that forms a conditional
Gaussian system.

As a side remark, linearizing the shallow water Equation (113) and writing into characteristic
forms of the resulting equations provide two types of modes:

1. Geostrophically balanced (GB) modes: ω~k,B = 0; incompressible.

2. Gravity modes: ω~k,± = ±ε−1
√

δ|~k|2 + 1; compressible.

Let us denote v̂~k,B and v̂~k,± as the random coefficients of GB and gravity modes for each Fourier
wavenumber, respectively. Following the idea in [20], a coupled system that describes the interactions
between the GB and gravity modes are given by
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dv̂~k,B = (−dBv̂~k,B + f~k,B(t))dt + σ~k,BdW~k,B(t),

dv̂~k,± =
(
(−dg + iω~k,±+iv̂~k,B)v̂~k,± + f~k,±(t)

)
dt + σ~k,±dW~k,±(t).

(115)

Collecting the equations for different Fourier wavenumbers forms a coupled systems for the GB
and gravity modes. Note that the GB modes are in slow time scale while the gravity modes occur in a
fast time scale. Denote

uI = {v̂~k,B} and uII = {v̂~k,±}.

The coupled system (115) including all the Fourier wavenumbers k belong to the conditional
Gaussian framework.

4.4. Coupled Observation-Filtering Systems for Filtering Turbulent Ocean Flows Using Lagrangian Tracers

Lagrangian tracers are drifters and floaters that collect real-time information of fluid flows [182].
Filtering (or data assimilation) of the turbulent ocean flows using Lagrangian tracers provides a
more accurate state estimation and reduces the uncertainty [183–185]. In [61–63], a first rigorous
mathematical framework was developed and it was applied to study (1) the information barrier in
filtering [61]; (2) the filtering skill of multiscale turbulent flows [62] and (3) the model error in various
cheap and practical reduced filters with both linear and strongly nonlinear underlying flows [63].

Consider a d dimensional random flow modeled by a finite number of Fourier modes with
random amplitudes in periodic domain (0, 2π]d,

~v(~x, t) = ∑
~k∈K

v̂~k(t) · e
i~k·~x ·~r~k.

Each v̂k(t) follows an OU process,

dv̂~k(t) = −d~k v̂~k(t)dt + f~k(t)dt + σ~kdWv
~k
(t). (116)

The observations are given by the trajectories of L noisy Lagrangian tracers,

d~xl(t) = ~v(~xl(t), t)dt + σxdWx
l (t)

= ∑
~k∈K

v̂~k(t) · e
i~k·~xl(t) ·~r~kdt + σxdWx

l (t), l = 1, . . . , L,

which is highly nonlinear due to the appearance of the ~xl(t) in the exponential term.
Collecting all the Fourier components of the velocity into a vector and including all the tracer

displacements into another yields

U = (v̂1, ...v̂K)
T, X = (x1,x, x1,y, ..., xL,x, xL,y)

T. (117)

Then, the coupled observation-filtering system is formed in a concise way,

Observations: dX = PX(X)Udt + ΣxdWX ,

Underlying flow: dU = −ΓUdt + F(t)dt + ΣudWu.

This is obviously a conditional Gaussian system with uI = X and uII = U.
In [62], multiscale turbulent flows were studied. To include both the (slow) geophysically

balanced (GB) modes and (fast) gravity modes, the simple flow field in (116) was replaced by

dv̂~k,B = (−dBv̂~k,B + f~k,B(t))dt + σ~k,BdW~k,B,

dv̂~k,± =
(
(−dg + iω~k,±)v̂~k,± + f~k,±(t)

)
dt + σ~k,±dW~k,±,

(118)
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where ω~k,± ∝ ±ε−1 with ε being a Rossby number [11,121].
In [63], a nonlinear coupling between GB and gravity modes as described in (115) were further

included for generating the true signal while the filter adopts (118). This allows the understanding of
model errors based on a novel information theoretic framework [63].

4.5. Other Low-Order Models for Filtering and Prediction

4.5.1. Stochastic Parameterized Extended Kalman Filter Model

The stochastic parameterized extended Kalman filter (SPEKF) model [65,101] was introduced to
filter and predict the highly nonlinear and intermittent turbulent signals as observed in nature:

du =
(
(−γ + iω)u + F(t) + b

)
dt + σudWu,

dγ = −dγ(γ− γ̂)dt + σγdWγ,

dω = −dω(ω− ω̂)dt + σωdWω,

db = −db(b− b̂)dt + σbdWb.

(119)

In the SPEKF model (119), the process u(t) is driven by the stochastic damping γ(t), stochastic
phase ω(t) and stochastic forcing correction b(t), all of which are specified as Ornstein–Uhlenbeck (OU)
processes [66]. In (119), F(t) is a deterministic large-scale forcing, representing external effects such
as the seasonal cycle. Physically, the variable u(t) in (119) represents one of the resolved modes
(i.e., observable) in the turbulent signal, while γ(t), ω(t) and b(t) are hidden processes. In particular,
γ(t), ω(t) and b(t) are surrogates for the nonlinear interaction between u(t) and other unobserved
modes in the perfect model. The SPEKF model naturally belongs to conditional Gaussian filtering
framework with the observed variable uI = u and filtering variables uII = (γ, ω, b)T .

The nonlinear SPEKF system was first introduced in [65,101] for filtering multiscale turbulent
signals with hidden instabilities and has been used for filtering and prediction in the presence of
model error [1,20]. In addition to filtering and predicting intermittent signals from nature in the
presence of model error [101,186–188], other important applications of using SPEKF to filter complex
spatial-extended systems include stochastic dynamical superresolution [103] and effective filters for
Navier–Stokes equations [104]. It has been shown that the SPEKF model has much higher skill than
classical Kalman filters using the so-called mean stochastic model (MSM)

du =
(
(−γ̂ + iω̂)u + F(t) + b̂

)
dt + σudWu (120)

to capture the irregularity and intermittency in nature. Here, γ̂, ω̂ and b̂ in (120) are the constant
mean states of the damping, phase and forcing and therefore the MSM is a linear model with
Gaussian statistics.

To provide more intuition, we show in Figure 18 the model simulation of SPEKF together with
the MSM for comparison. The following parameters are adopted here

F(t) = 2 exp(0.2t), σu = 1, dγ = 0.8, σγ = 2, γ̂ = 2.5,

dω = 0.6, σω = 1, ω̂ = 2, db = 0.8, σb = 1, b̂ = 0.
(121)

In Panel (a), the simulation of the MSM is shown. As expected, the signal of u has a large-scale
time-periodic behavior due to the time-periodic forcing F(t). On top of the large-scale behavior,
small fluctuations with nearly a constant oscillation is found, which is due to the constant phase ω̂.
There is no intermittency since the damping γ̂ = 2.5 > 0 always stabilizes the system.

On the other hand, with stochastic damping, stochastic phase and stochastic forcing, the variable
u(t) has a rich dynamical behavior with intermittency and random oscillations. See Panels (b,c). In fact,
when γ(t) becomes negative, the anti-damping results in an exponential increase of the signal of u
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and generates intermittency. In addition, the stochastic phase ω(t) leads to different phase oscillation
frequency. For example, ω(t) at Event (a) is much smaller than that at Event (c), and therefore the
oscillation at the phase of Event (c) is much faster. Furthermore, the stochastic forcing b(t) also modifies
the signal of u(t). One example is shown in Event (b), where a large amplitude of b(t) forces the signal
u(t) to go towards a positive value in the local area.
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Figure 18. Simulations of the SPEKF model and MSM. (a) the observed variable u from MSM (120);
(b) the observed variable u from SPEKF model; (c) hidden variables. The parameters are given in (121).
The red curves are for MSM and blue ones are for SPEKF. The black dashed line in the γ process
indicates the threshold of zero. When γ is below this threshold, γ becomes anti-damping and the
associated signal of u tends to have exponential growth.

4.5.2. An Idealized Surface Wind Model

The following idealized surface wind model is a version of the model for stochastic surface
momentum budget [189]. Here, tendencies in the horizontal wind vector (u, v) averaged over a layer
of thickness h are modelled as resulting from imbalances between the surface turbulent momentum flux
(expressed using a bulk drag law with drag coefficient cd, taken to be constant) and the ageostrophic
difference between the pressure gradient and Coriolis forces:

du
dt

= 〈Πu〉 −
cd
h
(u2 + v2)1/2u + ηu + σuẆu,

dv
dt

= − cd
h
(u2 + v2)1/2v + ηv + σvẆv,

dηu

dt
= − 1

τ
ηu +

σ

τ
Ẇ1,

dηv

dt
= − 1

τ
ηv +

σ

τ
Ẇ2.

The model assumes that tendencies associated with horizontal momentum advection are
negligible and that the “large-scale” ageostrophic residual between the pressure gradient and Coriolis
forces can be expressed as a mean (〈Πu〉, 0) and fluctuations (ηu, ηv).

It is important to note that simply applying the white noise approximation for u and v
(i.e., ηu = ηv = 0) has several limitations [190]. In particular, the white noise model requires
unrealistically large values of h to produce serial dependence similar to that observed, and it is
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unable to account for the strong anisotropy in the autocorrelation structure of the wind components.
Therefore, independent Ornstein–Uhlenbeck processes [66] (ηu, ηv) are included in the coupled system.

With extra additive noise with amplitudes σu, σv, the coupled system belongs to conditional
Gaussian framework with uI = (u, v)T and uII = (ηu, ηv)T . The conditional Gaussian framework
can be applied to filter the signal of (ηu, ηv), the filtered signal of which provides a clear view of the
importance of such parameterization against simple white noise source.

5. Algorithms Which Beat the Curse of Dimension for Fokker–Planck Equation for Conditional
Gaussian Systems: Application to Statistical Prediction

The Fokker–Planck equation is a partial differential equation (PDE) that governs the time evolution
of the probability density function (PDF) of a complex system with noise [66,67]. For a general nonlinear
dynamical system,

du = F(u, t)dt + Σ(u, t)dW, (122)

with state variables u ∈ RN , noise matrix Σ ∈ RN×K and white noise W ∈ RK, the associated
Fokker–Planck equation is given by

∂
∂t p(u, t) = −∇u

(
F(u, t)p(u, t)

)
+ 1

2∇u · ∇u(Q(u, t)p(u, t)),
pt
∣∣
t=t0

= p0(u),
(123)

with Q = ΣΣT . In many complex dynamical systems, including geophysical and engineering
turbulence, neuroscience and excitable media, the solution of the Fokker–Planck equation in (123)
involves strong non-Gaussian features with intermittency and extreme events [1,57,191]. In addition,
the dimension of u in these complex systems is typically very large, representing a variety of
variability in different temporal and spatial scales [1,121] (see also the examples in Section 4).
Therefore, solving the high-dimensional Fokker–Planck equation for both the steady state and transient
phases with non-Gaussian features is an important topic. However, traditional numerical methods such
as finite element and finite difference as well as the direct Monte Carlo simulations of (122) all suffer
from the curse of dimension [68,69]. Nevertheless, for the conditional Gaussian systems (1) and (2),
efficient statistically accurate algorithms can be developed for solving the Fokker–Planck equation in
high dimensions and thus beat the curse of dimension. Since the conditional Gaussian system is able to
capture many salient features of the turbulent behavior, such algorithms are quite useful in uncertainty
quantification, data assimilation and statistical prediction of turbulent phenomena in nature.

5.1. The Basic Algorithm with a Hybrid Strategy

Here, we state the basic efficient statistically accurate algorithms developed in [38]. The only
underlying assumption here is that the dimension of uI is low while the dimension of uII can be
arbitrarily high.

First, we generate L independent trajectories of the variables uI, namely u1
I (s ≤ t), . . . , uL

I (s ≤ t),
where L is a small number. This first step can be done by running a Monte Carlo simulation for the full
system, which is computationally affordable with a small L. Then, different strategies are adopted
to deal with the parts associated with uI and uII, respectively. The PDF of uII is estimated via a
parametric method that exploits the closed form of the conditional Gaussian statistics in (4) and (5),

p(uII(t)) = lim
L→∞

1
L

L

∑
i=1

p(uII(t)|ui
I(s ≤ t)). (124)

See [38] for the details of the derivation of (124). Note that the limit L→ ∞ in (124) (as well as (125)
and (126) below) is taken to illustrate the statistical intuition, while the estimator is the non-asymptotic
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version. On the other hand, due to the underlying assumption of the low dimensionality of uI,
a Gaussian kernel density estimation method is used for solving the PDF of the observed variables uI,

p
(
uI(t)

)
= lim

L→∞

1
L

L

∑
i=1

KH

(
uI(t)− ui

I(t)
)

, (125)

where KH(·) is a Gaussian kernel centered at each sample point ui
I(t) with covariance given by the

bandwidth matrix H(t). The kernel density estimation algorithm here involves a “solve-the-equation
plug-in” approach for optimizing the bandwidth [192] that works for any non-Gaussian PDFs.
Finally, combining (124) and (125), a hybrid method is applied to solve the joint PDF of uI and
uII through a Gaussian mixture,

p(uI(t), uII(t)) = lim
L→∞

1
L

L

∑
i=1

(
KH(uI(t)− ui

I(t)) · p(uII(t)|ui
I(s ≤ t))

)
. (126)

Practically, L ∼ O(100) is sufficient for the hybrid method to solve the joint PDF with NI ≤ 3 and
NII ∼ O(10). See [38] for the illustration of various concrete examples. Note that the closed form of
the L conditional distributions in (124) can be solved in a parallel way due to their independence [38],
which further reduces the computational cost. Rigorous analysis [193] shows that the hybrid
algorithm (126) requires a much less number of samples as compared with traditional Monte Carlo
method especially when the dimension of uII is large.

5.2. Beating the Curse of Dimension with Block Decomposition

The basic algorithm in (126) succeeds in solving the Fokker–Planck equation with O(10) state
variables. However, many complex turbulent dynamical systems in nature involve variables that
have a much higher dimension (for example, those in Section 4.3). In such a situation, the update
of the conditional covariance matrix becomes extremely expensive since the number of entries
in the covariance matrix is N2, where n = NI + NII is the total dimension of the variables.
Therefore, new strategies are required to be incorporated into the basic algorithm in (126) in
order to beat the curse of dimension. In this subsection, we develop an effective strategy with
block decomposition [36], which combines with the basic algorithm and can efficiently solve the
Fokker–Planck equation in much higher dimensions even with orders in the millions.

Consider the following decomposition of state variables:

uk = (uI,k, uII,k) with uI,k ∈ RNI ,k and uII,k ∈ RNII ,k,

where 1 ≤ k ≤ K, NI = ∑K
k=1 NI,k and NII = ∑K

k=1 NII,k. Correspondingly, the full dynamics in
(1)–(2) are also decomposed into K groups, where the variables on the left-hand side of the k-th group
are uk. In addition, for notation simplicity, we assume both ΣI and ΣII are diagonal and thus the noise
coefficient matrices associated with the equations of uI,k and uII,k are ΣI,k and ΣII,k, respectively.

To develop efficient statistically accurate algorithms that beat the curse of dimension, the following
two conditions are imposed on the coupled system.

Condition 1: In the dynamics of each uk in (1) and (2), the terms A0,k and a0,k can depend on all the
components of uI while the terms A1,k and a1,k are only functions of uI,k, namely,

A0,k = A0,k(t, uI), a0,k = a0,k(t, uI),

A1,k = A1,k(t, uI,k), a1,k = a1,k(t, uI,k).
(127)

In addition, only uII,k interacts with A1,k and a1,k on the right-hand side of the dynamics of uk.
Therefore, the equation of each uI = (uI,k, uII,k) becomes
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duI,k = [A0(t, uI) + A1(t, uI,k)uII,k]dt + ΣI(t, uI,k)dWI(t), (128)

duII,k = [a0(t, uI) + a1(t, uI,k)uII,k]dt + ΣII(t, uI,k)dWII(t). (129)

Note that in (128) and (129) each uk is fully coupled with other uk′ for all k′ 6= k through A0(t, uI)

and a0(t, uI). There is no trivial decoupling between different state variables.

Condition 2: The initial values of (uI,k, uII,k) and (uI,k′ , uII,k′) with k 6= k′ are independent with
each other.

These two conditions are not artificial and they are actually the salient features of many
complex systems with multiscale structures [73], multilevel dynamics [119] or state-dependent
parameterizations [103]. Under these two conditions, the conditional covariance matrix becomes block
diagonal, which can be easily verified according to (5). The evolution of the conditional covariance of
uII,k conditioned on uI is given by:

dRII,k(t) =
{

a1,kRII,k + RII,ka∗1,k + (ΣII,kΣ∗II,k)− (RII,kA∗1,k)(ΣI,kΣ∗I,k)
−1(RII,kA∗1,k)

∗
}

dt,

which has no interaction with that of RII,k′ for all k′ 6= k since A0 and a0 do not enter into the evolution
of the conditional covariance. Notably, the evolutions of different RII,k with k = 1, . . . , K can be
solved in a parallel way and the computation is extremely efficient due to the small size of each
individual block. This facilitates the algorithms to efficiently solve the Fokker–Planck equation in
large dimensions.

Next, the structures of A0,k and a0,k in (127) allow the coupling among all the K groups of variables
in the conditional mean according to (4). The evolution of ūII,k, namely the conditional mean of uII,k
conditioned on uI, is given by

dūII,k(t) = [a0,k + a1,kūII,k]dt + RII,kA∗1,k(ΣI,kΣ∗I,k)
−1[duI,k − (A0,k(t, uI) + A1,kūII,k)dt].

Finally, let’s use concrete examples to illustrate the reduction in the computational cost with the
block decomposition.

The first example is the two-layer L-96 model in (35). A typical choice of the number of grid
points for the large scale variables ui (i = 1, . . . , I) is I = 40 and that of the equations for the small scale
variables vi,j (j = 1, . . . , J) is J = 5. Thus, the total number of the small-scale variables vi,j is I× J = 200
and the size of conditional covariance is ntotal = (I × J)2 = 40, 000. Note that the two-layer L-96 model
in (35) can be decomposed into the form in (128) and (129). Each block contains one element of uk
and five elements of vk,j with j = 1, . . . , 5 and k fixed, and the number of the blocks is K = I = 40.
Therefore, the conditional covariance matrix associated with each block is of size 5× 5 = 25 and the
total number of the elements that need to be updated is nreduced = 25× 40 = 1, 000, which is only 2.5%
compared with the total elements in the full conditional covariance matrix!

Another example is the stochastically coupled FHN models. In fact, the block decomposition
can be applied to all the versions (67)–(69) of the stochastically coupled FHN models as discussed in
Section 4.2.1. Here, we illustrate the one in (69) with multiplicative noise. Let’s take n = 500. Since
the conditional statistics involves the information for both vi and γi with i = 1, . . . , 500, the total
size of the conditional covariance is ntotal = (2× 500)2 = 1, 000, 000. On the other hand, with the
block decomposition that involves 500 blocks, where each block is of size 2× 2 = 4 and contains the
information of only one vi and one γi, the total number of the elements that need to be updated is
nreduced = 500× 4 = 2000. Clearly, the computational cost in the conditional covariance update with
the block decomposition is only nreduced/ntotal = 0.5% compared with a full update! In Section 5.5,
the statistical prediction of both the two-layer L-96 model and the stochastically coupled FHN model
with multiplicative noise using the efficient statistically accurate algorithms will be demonstrated.
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5.3. Statistical Symmetry

As was discussed in the previous two subsections, the hybrid strategy and the block
decomposition provide an extremely efficient way to solve the high-dimensional Fokker–Planck
equation associated with the conditional Gaussian systems. In fact, the computational cost in the
algorithms developed above can be further reduced if the coupled system (1) and (2) has statistical
symmetry [36]:

p
(
uI,k(t), uII,k(t)

)
= p

(
uI,k′(t), uII,k′(t)

)
, for all k and k′. (130)

Namely, the statistical features for variables with different k are the same. The statistical symmetry
is often satisfied when the underlying dynamical system represents a discrete approximation of
some PDEs in a periodic domain with nonlinear advection, diffusion and homogeneous external
forcing [2,20].

With the statistical symmetry, collecting the conditional Gaussian ensembles N (ūII,k(t), RII,k(t))
for a specific k in K different simulations is equivalent to collecting that for all k with 1≤ k≤ K in a single
simulation. This also applies to N (ui

I(t), H(t)) that are associated with uI. Therefore, the statistical
symmetry implies that the effective sample size is L′ = KL, where K is the number of the group
variables that are statistically symmetric and L is the number of different simulations of the coupled
systems via Monte Carlo. If K is large, then a much smaller L is needed to reach the same accuracy as
in the situation without utilizing statistical symmetry, which greatly reduces the computational cost.

Below, we discuss the details of constructing the joint PDFs obtaining from the algorithms
with statistical symmetry. First, we adopt the one-dimensional case for the convenience of
illustration. The method can be easily extended to systems with multivariables and multidimensions.
Denote ū1, ū2, . . . , ūK the mean values of the Gaussian ensembles at different grid points and
the associated variance are R1, . . . , RK. For simplicity, we only take one full run of the system.
Therefore, the total number of Gaussian ensembles is K. Clearly, the 1D PDFs p(ui) at different
grid points are the same and are given by

p(ui) = lim
k→∞

1
K

K

∑
k=1
N (ūk, Rk), i = 1, . . . , K. (131)

The limit is taken for statistical intuition while a finite and small K is adopted in practice.
Now, we discuss the construction of the joint PDFs. We use the 2D joint PDF p(u1, u2) as an

illustration. The joint PDF is a Gaussian mixture with K Gaussian ensembles, where the mean of each
2D Gaussian ensemble is

µ1 =

(
ū1

ū2

)
, µ1 =

(
ū2

ū3

)
. . . µK−1 =

(
ūK−1

ūK

)
, µK =

(
ūK
ū1

)
, (132)

and the covariance matrix is given by

R1 =

(
R1

R2

)
, R2 =

(
R2

R3

)
. . . RK−1 =

(
RK−1

RK

)
, RK =

(
RK

R1

)
. (133)

It is clear from the construction of the ensemble mean in (132) that the subscript in the second
component equals that of the first component plus one. That is, the first component of each
µk, k = 1, . . . , K is treated as u1 due to the statistical symmetry and the second component is treated as
the corresponding u2 associated with each k. The diagonal covariance matrix in (133) comes from the
fact that each sample point is independent with each other. This is also true and more obvious for the
block diagonal conditional covariance. Notably, the diagonal covariance matrix of each ensemble does
not mean that the correlation between u1 and u2 is completely ignored. The correlation is reflected
regarding how the points of ensemble means µk, k = 1, . . . , K are distributed.
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5.4. Quantifying the Model Error Using Information Theory

Before we apply the efficient statistically accurate algorithms to statistical prediction, we introduce
a measurement for quantifying errors. The natural way to quantify the error in the predicted PDF
related to the truth is through an information measure, namely the relative entropy (or Kullback–Leibler
divergence) [2,187,194–197]. The relative entropy is defined as

P(p(u), pM(u)) =
∫

p(u) ln
p(u)

pM(u)
du, (134)

where p(u) is the true PDF and pM(u) is the predicted one from the efficient statistically accurate
algorithms. This asymmetric functional on probability densities P(p, pM) ≥ 0 measures lack of
information in pM compared with p and has many attractive features. First, P(p, pM) ≥ 0 with
equality if and only if p = pM. Secondly, P(p, pM) is invariant under general nonlinear changes of
variables. Notably, the relative entropy is a good indicator of quantifying the difference in the tails of
the two PDFs, which is particularly crucial in the turbulent dynamical systems with intermittency and
extreme events. On the other hand, the traditional ways of quantifying the errors, such as the relative
error ‖p− pM‖/‖p‖, usually underestimate the lack of information in the PDF tails.

5.5. Applications to Statistical Prediction

Now, we apply the efficient statistically accurate algorithms developed in the previous subsections
to statistical prediction. Two examples of nonlinear complex turbulent dynamical systems in high
dimensions are shown below.

The first example is the stochastically coupled FHN model in (69) with multiplicative noise
(Section 4.2.1) with n = 500,

εdui =

(
du(ui+1 + ui−1 − 2ui) + ui −

1
3

u3
i − vi

)
dt +

√
εδ1dWui ,

dvi =
(
γiui + a

)
dt + δ2dWvi ,

dγi = −dγi (γi − γ̂i)dt + σγi dWγi , i = 1, . . . , N.

(135)

The parameters are given by (71).
The second example is the two-layer L-96 model in (35) (Section 4.1.1) with I = 40 and J = 5.

The parameters are given by (36) and (37):

dui =

(
ui−1(ui+1 − ui−2) +

J

∑
j=1

γi,juivi,j − d̄iui + F

)
dt + σudWui , i = 1, . . . , I,

dvi,j =
(
−dvi,j vi,j − γju2

i

)
dt + σi,jdWvi,j , j = 1, . . . , J.

(136)

Both the stochastically coupled FHN model (135) and the two-layer L-96 model (136) satisfy
the model structure as described in Section 5.2 such that the block decomposition applies.
Figure 19 provides a schematic illustration of the coupling between different variables in these models
(for illustration purposes, I = n = 6 is used in the figure). The multiscale and layered structures
can be easily observed. It is also clear that all the variables are coupled to each other with no trivial
decoupling. Note that the stochastically coupled FHN model (135) with the given parameters here
also satisfies the statistical symmetry while the two-layer L-96 model (136) is inhomogeneous.
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Figure 19. Schematic illustration of the coupling between different variables in the stochastically
coupled FHN model (135) (left) and the two-layer L-96 model (136) (right). For illustration purposes,
I = n = 6 is used in this figure while I = 40 and n = 500 in the model simulations. All the variables
are coupled to each other with no trivial decoupling.

5.5.1. Application to the Stochastically Coupled FHN Model with Multiplicative Noise Using
Statistical Symmetry

Here, we illustrate the statistical prediction of the stochastically coupled FHN model with
multiplicative noise (135), where the number of grid points in space is n = 500. The noise coefficient in
the γi process is σγi = 0.6 for all i. The other parameters are the same as those in (71) and the noise
coefficients are the same at different grid points i, namely

ε = 0.01, δ1 = 0.2, δ2 = 0.4, a = 1.05, dγi = 1, γ̂i = γ̂ = 1, σγi = σγ = 0.6. (137)

We also adopt homogeneous initial conditions ui(0) = −2 and vi(0) = 0.5 for all i = 1, . . . , N.
Therefore, the model satisfies the statistical symmetry. The model simulations were shown in
Figures 12 and 13, where intermittent events are observed in both the fields of u and v.

Figure 20 shows the time evolution of the first four moments associated with u1 and v1. Note that
due to the statistical symmetry, the evolutions of these moments for different ui and vi are the same
as u1 and v1. The dot at t = 0.68 indicates the time instant that u arrives at its most non-Gaussian
phase while t = 4.2 is a non-Gaussian phase, where u is nearly the statistical equilibrium while v is
still transient. In Figures 21 and 22, the statistical prediction of the 1D marginal and 2D joint PDFs are
shown at these two time instants. At t = 0.68, most of the probability density of u1 is concentrated
around u1 = −1.8. However, there is a small but non-zero probability around u1 = 2 (see the subpanel
with the logarithm scale), which leads to large skewness and kurtosis of the statistics of u1 as observed
in Figure 20. The efficient statistically accurate algorithms succeed in predicting the PDFs at this
transient phase and are able to accurately recover the statistics in predicting such extreme events.
A similar performance is found in Figure 22, where the bimodal PDF of u1, the highly skewed PDF
of v1 and the Gaussian one of γ1 are all predicted with high accuracy. The fully non-Gaussian joint
PDFs p(u1, v1) and p(v1, γ1) are also predicted with almost no bias. These results indicate the skillful
behavior of the algorithms developed above.

Note that the total dimension of the stochastically coupled FHN model with multiplicative
noise (135) is 3N = 1500. Due to the statistical symmetry, the effective sample size in the statistical
prediction as shown in Figures 21 and 22 is L′ = NL = 500L, where L is the number of repeated
simulations of the systems. In fact, the simulations in the efficient statistically accurate algorithms
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are achieved with only L = 1. This means we only run the model (135) once and apply the
efficient statistically accurate algorithms that provide the accurate results in these figures. Therefore,
the statistical prediction here is extremely cheap! On the other hand, we take LC = 300 in Monte Carlo
simulations and again use statistical symmetry to generate the true PDFs and therefore the effective
sample size in Monte Carlo simulation is L′C = NLC = 150,000.
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Figure 20. Time evolution of the first four moments ((a) mean; (b) variance; (c) skewness and
(d) kurtosis) associated with u1 and v1 of the stochastically coupled FHN model with multiplicative
noise (135), where n = 500. Due to the statistical symmetry, the evolutions of these moments for
different ui and vi are the same as u1 and v1. The dots at t = 0.68 and t = 4.2 indicate the time instants
that the statistical prediction using the efficient statistically accurate algorithms are tested. Note that
t = 0.68 corresponds to the time instant that u arrives at its most non-Gaussian phase while t = 4.2 is a
non-Gaussian phase where u is nearly the statistical equilibrium while v is still transient.
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Figure 21. Statistical prediction of the 1D and 2D PDFs of the stochastically coupled FHN model with
multiplicative noise (135) at a transit phase t = 0.68, where n = 500. Note that there is a small but
non-zero probability around u1 = 2 (see the subpanel with the logarithm scale).

5.5.2. Application to the Two-Layer L-96 Model with Inhomogeneous Spatial Structures

Now we apply the efficient statistically accurate algorithms to predict the two-layer L-96 model
in (136). Here, I = 40 and J = 5. The parameters are given by (36) and (37). The model behavior with
different forcing F is shown in Figures 2–4.

Although the two-layer inhomogeneous L-96 model in (136) has no statistical symmetry, the model
structure nevertheless allows the effective block decomposition. Below, L = 500 trajectories of each
variable ui are simulated from (136) to implement the efficient statistically accurate algorithms. As a
comparison, a direct Monte Carlo method requires LC =150,000 samples for each of the 240 variables
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for an accurate estimation of at least the one-point statistics. This means the total number of samples is
around 4× 107! For an efficient calculation of the truth, we focus only on the statistical equilibrium
state here, but the algorithms are not restricted to the equilibrium statistics. The true PDFs are
calculated using the Monte Carlo samples over a long time series in light of the ergodicity while the
recovered PDFs from the efficient statistically accurate algorithms are computed at t = 25.
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Figure 22. Statistical prediction of the 1D and 2D PDFs of the stochastically coupled FHN model with
multiplicative noise (135) at a transit phase t = 4.2, where n = 500.

In Figures 23–25, we show the statistical prediction in all the three regimes with F = 5, 8 and 16,
respectively, using the efficient statistically accurate algorithm and compare them with the truth. Here,
we only show the results at i = 11. Qualitative similar results are found at other grid points. In these
figures, the diagonal subpanels here show the 1D marginal PDFs of u11 and v11,1, . . . , v11,5, where the
blue one is the prediction and the red one is the truth. The (ki, k j)-subpanel with ki > k j (below the
diagonal panel) shows the true 2D PDF using a large number of Monte Carlo samples (red colormap)
while the one with ki < k j (above the diagonal panels) shows the predicted one using the efficient
statistically accurate algorithm (blue colormap). The (ki, k j)-panel is compared with the (j, i)-panel.
Note that for the simplicity of comparison the labels u11 and v11,1, . . . , v11,5 on the bottom and left
of the (i, j)-panel correspond to the x-axis and y-axis of the truth and the y-axis and x-axis of the
predicted PDFs. On the other hand, Figure 26 shows several 2D joint PDFs of the large scale p(ui1 , ui2)

with different i1 and i2. It is clear that all the strong non-Gaussian features, including highly skewed,
multimodal and fat-tailed distribution, are accurately predicted by the statistically accurate algorithm.
Finally, Figure 27 shows the error in the predicted PDF as a function of the sample points L compared
with the truth, where the error is computed via the relative entropy (134). In fact, with L ∼ O(100)
samples in the efficient statistically accurate algorithms, the statistical prediction has already been
accurate enough. Note that the small non-zero asymptotic values as a function of L in the error curves
is due to the numerical error in computing the integral of the relative entropy (134) as well as the
sampling in the Monte Carlo simulations.

It is worthwhile pointing out that although only the predicted one-point and two-point statistics
are shown in both the examples here, the algorithms can actually provide an accurate estimation of
the full joint PDF of uII, using a small number of samples. This is because the sample size in these
algorithms does not grow exponentially as the dimension of uII, which is fundamentally different
from Monte Carlo methods. See [193] for a theoretical justification.
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Figure 23. Inhomogeneous two-layer L-96 model (35) with F = 5. The other parameters are given in (36)
and (37). Comparison of the 1D and 2D true and recovered PDFs at i = 11. The diagonal subpanels here
show the 1D marginal PDFs of u11 and v11,1, . . . , v11,5, where the blue one is the prediction and the red
one is the truth. In this figure with 6× 6 subpanels, the (ki, kj)-subpanel with ki > kj (below the diagonal
panel) shows the true 2D PDF using a large number of Monte Carlo samples (red colormap) while the
one with ki < kj (above the diagonal panels) shows the predicted one using the efficient statistically
accurate algorithm (blue colormap). The (ki, kj)-panel is compared with the (j, i)-panel. Note that for
the simplicity of comparison the labels u11 and v11,1, . . . , v11,5 on the bottom and left of the (i, j)-panel
correspond to the x-axis and y-axis of the truth and the y-axis and x-axis of the predicted PDFs.
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Figure 24. Inhomogeneous two-layer L-96 model (35), similar to Figure 23 but with F = 8.
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Figure 25. Inhomogeneous two-layer L-96 model (35), similar to Figure 23 but with F = 16.
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Figure 26. Inhomogeneous two-layer L-96 model (35) with F = 5 (top); F = 8 (middle) and F = 16
(bottom). The other parameters are given in (36) and (37). Comparison of the joint PDFs of the large
scale p(ui1 , ui2 ) with different i1 and i2.
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Figure 27. Inhomogeneous two-layer L-96 model (35) with F = 5. Error in the predicted PDF as a function
of the sample points L compared with the truth. The error is computed via the relative entropy (134).

6. Multiscale Data Assimilation, Particle Filters, Conditional Gaussian Systems and Information
Theory for Model Errors

6.1. Parameter Estimation

The conditional Gaussian system (1) and (2) and its closed analytic formula for solving the
conditional statistics (4) and (5) also provide a framework for parameter estimation. In fact, uII can be
written as

uII = (ũII, Λ),

where uII in RÑ2 is physical process variables and Λ = (λ1, λ2, . . . , λp) ∈ RN2,p denotes the model
parameters. Here, N2 = Ñ2 + N2,p. Rewriting the conditional Gaussian system (1) and (2) in terms of
uII = (ũII, Λ) yields

duI = [A0(t, uI) + A1(t, uI)ũII + A1,λ(t, uI)Λ]dt + ΣI(t, uI)dWI(t), (138)

duII = [a0(t, uI) + a1(t, uI)ũII + a1,λ(t, uI)Λ]dt + ΣII(t, uI)dWII(t). (139)

The Equation (138) and (139) includes both the dynamics of ũII and those of Λ. Both the physical
process variables ũII and the parameters Λ are coupled with any highly nonlinear functions of uI.
Nevertheless, any monomial involving both ũII and Λ is not allowed since otherwise the conditional
Gaussian structure will break. Notably, although ũII and Λ are named as model states and parameters,
they can also be understood as stochastic parameterization and simplification of complex physical
process via bulk average, respectively. Therefore, ũII and Λ often share the same role in providing
extra information of uI that leads to various non-Gaussian characteristics. This is a typical feature in
multiscale complex turbulent dynamical systems.

Below, we provide different frameworks for parameter estimation. Let’s temporally ignore ũII for
notation simplicity and the dynamics is given by

duI = [A0(t, uI) + A1,λ(t, uI)Λ
∗]dt + ΣI(t, uI)dWI(t), (140)

where Λ∗ is the true parameter.
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6.1.1. Direct Parameter Estimation Algorithm

Since Λ are constant parameters, it is natural to augment the dynamics with the
following relationship,

duI = [A0(t, uI) + A1,λ(t, uI)Λ]dt + ΣI(t, uI)dWI(t), (141)

dΛ = 0, (142)

where an initial uncertainty for the parameter Λ is assigned. According to (4) and (5), the time
evolutions of the mean uII and covariance RII of the estimate of Λ are given by

duII(t) =(RIIA∗1(t, uI))(ΣIΣ∗I )
−1(t, uI) [duI − (A0(t, uI) + A1(t, uI)uII)dt] , (143)

dRII(t) =− (RIIA∗1(t, uI))(ΣIΣ∗I )
−1(t, uI)(RIIA∗1(t, uI))

∗dt. (144)

The formula in (144) indicates that RII = 0 is a solution, plugging which into (143) results in
uII = Λ∗. This means, by knowing the perfect model, the estimated parameters in (141) and (142) and
(143) and (144) under certain conditions will converge to the truth.

As a simple test example, we consider estimating the three parameters σ, ρ and γ in the noisy L-63
model (31) with ρ = 28, σ = 10, β = 8/3. Putting into the framework (141) and (142), the augmented
system becomes

dx = σ(y− x)dt + σxdWx,

dy =
(
x(ρ− z)− y

)
dt + σydWy,

dz = (xy− βz)dt + σzdWz,

dσ = 0,

dρ = 0,

dβ = 0,

(145)

where uI = (x, y, z)T and Λ = (σ, ρ, β)T . Figure 28 shows the parameter estimation skill with
σx = σy = σz = 5. Here, the initial guess of all the three parameters are ρ = σ = β = 0 and the initial
uncertainty is a 3× 3 identity matrix. It is clear that the estimated parameter converge quickly to
the truth and the corresponding uncertainty in the estimated parameters goes to zero. In Figure 29,
the parameter estimation skill with different noise level is compared. When the noise level σx, σy and
σz in the observed signals become larger, the convergence rate becomes slower.

In [28], systematic studies of both one-dimensional linear and nonlinear systems have revealed
that the convergence rate depends on different factors, such as the observability, the signal-to-noise
ratio and the initial uncertainty. In particular, both theoretical analysis and numerical simulations
in [28] showed that the convergence rate can be extremely slow and sometimes with an undesirable
initial guess the estimation even converges to a wrong solution for some highly nonlinear systems.
Thus, alternative parameter estimation scheme is required.
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Figure 28. Parameter estimation of the noisy L-63 system using the direct approach (145) with
σx = σy = σz = 5. (a–c) sample trajectories of x, y, z which are used as observations; (d–f) time
evolution of the estimated parameters and the truth (red); (g–i) the uncertainty evolution of each
estimated parameter.
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Figure 29. Parameter estimation of the noisy L-63 system using the direct approach (145) with
σx = σy = σz = 1, 5 and 15 for the three rows. For illustration purposes, only the trajectory of x
and the estimation of σ is shown in all the three cases. (a) sample trajectory of x; (b,c) mean estimation
of σ and the associated uncertainty.

6.1.2. Parameter Estimation Using Stochastic Parameterized Equations

Instead of augmenting the equation in a trivial but natural way for the parameters as shown
in (142), a new approach of the augmented system can be formed in the following way [28]:

duI = [A0(t, uI) + A1,λ(t, uI)Λ]dt + ΣI(t, uI)dWI(t), (146)

dΛ = [c1Λ + c2]dt + σΛdWΛ(t). (147)

Here, c1 is a negative-definite diagonal matrix, c2 is a constant vector and σΛ is a diagonal
noise matrix. Different from (142), a stochastic parameterized equation is used in (147) to describe
the time evolution of each component of the parameter Λi. This approach is motivated from
the stochastic parameterized extended Kalman filter model [64,65] as discussed in Section 4.5.1.
The stochastic parameterized equations in (147) serve as the prior information of the parameter
estimation. Although certain model error will be introduced in the stochastic parameterized equations
due to the appearance of c1, c2 and σΛ, it has shown in [28] that the convergence rate will be greatly
accelerated. In fact, in linear models, rigorous analysis reveals that the convergence rate using stochastic
parameterized Equation (146) and (147) is exponential while that using the direct method (146) and
(147) is only algebraic.
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Now, we apply the parameter estimation using stochastic parameterized Equation (146) and (147)
for the noisy L-63 model. The augmented system reads,

dx = σ(y− x)dt + σxdWx,

dy =
(
x(ρ− z)− y

)
dt + σydWy,

dz = (xy− βz)dt + σzdWz,

dσ = −dσ(σ− σ̂) + σσdWσ,

dρ = −dρ(ρ− ρ̂) + σρdWρ,

dβ = −dβ(β− β̂) + σβdWβ.

(148)

The same initial values are taken as those in the direct method. Recall in Figure 29 that the system
with a large observational noise σx = σy = σz = 15 leads to a slow convergence rate. Below, we focus
on this case and use the parameter estimation scheme (148) to improve the result. The parameters in
the stochastic parameterized equation are chosen as follows:

σ̂ = 10 + 2 = 12, ρ̂ = 28 + 5.6 = 33.6, β̂ = 8/3 + 1.6/3 = 3.2,

dσ = dρ = dβ = 0.5, σσ = 2, σρ = 5.6, σβ = 1.6/3.
(149)

Here, we introduce 20% errors in all the mean states σ̂, ρ̂ and β̂. The variance of the stochastic
parameters is given by σ2

σ/(2dσ), σ2
ρ /(2dρ) and σ2

β/(2dβ), respectively. Therefore, the truth is located
at one standard deviation (square root of the variance) of the mean state. The decorrelation time of all
the process is 1/dσ = 1/dρ = 1/dβ = 2 time units.

Figure 30 shows the results of parameter estimation using the method with stochastic
parameterized Equations (146) and (147). Despite the error in σ̂, ρ̂ and β̂ as the prior information,
the estimation of the parameters is quite accurate. In fact, by using the averaged value over the time
interval t ∈ [10, 50] as the estimation, we compare the estimated parameters with the truth:

Estimation: σ = 10.9, ρ = 29.1, β = 2.88,

Truth: σ = 10.0, ρ = 28.0, β = 2.67.
(150)
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Figure 30. Parameter estimation of the noisy L-63 system using the method with stochastic
parameterized Equations (146) and (147) with σx = σy = σz = 15. (a–c) sample trajectories of x, y, z
which are used as observations; (d–f) time evolution of the estimated parameters and the truth (red);
the thin black line shows the average of the estimation from t = 10 to t = 50; (g)–(i) the uncertainty
evolution of each estimated parameter.



Entropy 2018, 20, 509 59 of 80

The relative error in the three estimated parameters compared with the truth is 9.0%, 3.9% and
7.8%, respectively, all of which are much less than 20% in σ̂, ρ̂ and β̂. This is because the conditional
Gaussian framework (1) and (2) automatically makes use of the information in both the observations
and the stochastic parameterized equations. The combination of these two components reduces the
error even if the prior knowledge in the stochastic parameterized equations is biased (as in most
of the real-world applications). Notably, the convergence of the estimated parameters as shown in
Figure 30 is much faster than the direct method. This is one of the key features of the approach using
stochastic parameterized equations and is practically quite useful since only limited observational data
is known in many applications.

It is also important to note that the perfect model is unknown in most realistic situations. Therefore,
dealing with model error in the parameter estimation is a crucial topic. The judicious model error in the
approach using stochastic parameterized equations allows parameter uncertainties and provides more
robust results compared with the direct method. Thus, the approach using stochastic parameterized
equations has a wider application in real-world problems. More comparison between the two methods
developed here can be found in [28].

6.1.3. Estimating Parameters in the Unresolved Processes

As discussed in Sections 4.5.1 and 6.1.2, stochastic parameterizations are widely used in describing
turbulent signals as observed in nature. One important step is to estimate the parameters in the
equations associated with these stochastic parameterizations (e.g, σγ, γ̂, dγ, σω, ω̂, dω, σb, b̂ and db
in (119)). Note that there are typically no direct observations of these stochastic parameterized
processes since they usually represent unresolved variables or they may not have clear physical
correspondence. However, they play important roles in describing the underlying complex turbulent
dynamical system. An accurate estimation of these parameters is crucial. See examples in Sections 4.5.1
and 6.1.2 and those in [65,101].

Traditional methods in estimating these parameters include Markov Chain Monte Carlo
(MCMC) [198–201], maximum likelihood estimation [202,203] and the ensemble Kalman filter [204,205].
Note that, if both the state variables γ, ω, b and the associated 9 parameters in these three equations
are treated as unobserved variables uII, then the augmented system does not belong to the conditional
Gaussian model family. Thus, the closed form in (4) and (5) cannot be applied in the two methods
discussed in Sections 6.1.1 and 6.1.2 and ensemble Kalman filter has to be adopted in these methods,
which is computationally expensive.

Nevertheless, a judicious application of the conditional Gaussian framework still allows an
efficient parameter estimation algorithm for the parameters in the stochastic parameterized equations.
Below, we discuss the idea using the so-called SPEKF-M model, which is a simplified version of
the SPEKF model (119) and contains only the multiplicative noise process γ (and “M” stands for
multiplicative). The model reads

du =
(
− γu + F(t)

)
dt + σudWu,

dγ = −dγ(γ− γ̂)dt + σγdWγ.
(151)

The goal here is to estimate the three parameters σγ, dγ and γ̂ by observing only one sample

trajectory of u. First, choose an arbitrary initial estimation of the three parameters σ
(0)
γ , d(0)γ and γ̂(0).

Then, run the conditional Gaussian filter (4) and (5), which gives a time series of the conditional
mean γ(0)(t) and another time series of the conditional variance R(0)(t) of γ(t) conditioned on the
trajectory of u. With the γ(0)(t) and R(0)(t), applying the same argument as that in (124) but changing
the L Gaussian distributions associated with L different trajectories by those at L different time
instants, the distribution p(γ(0)) can be obtained via a Gaussian mixture. Here, p(γ(0)) is also a
Gaussian distribution due to its dynamical structure in (151). This Gaussian distribution provides two
quantities—the mean µ

(0)
γ,eq and the variance R(0)

γ,eq. In addition, the sample autocorrelation function
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τ
(0)
γ,eq of the conditional mean γ(0)(t) can be easily computed. Therefore, these three quantities are used

to update the iteration of the three parameters σγ, dγ and γ̂ with the relation

(σ
(1)
γ )2

2d(1)γ

= R(0)
γ , γ̂(1) = µ

(0)
γ,eq, d(1)γ =

1

τ
(0)
γ,eq

. (152)

Then, run the conditional Gaussian filter (4) and (5) again using the same observed time series
u(t) but with the updated parameters σ

(1)
γ , d(1)γ and γ̂(1). Repeating the above procedure leads to

another update of the parameters σ
(2)
γ , d(2)γ and γ̂(2). Continue this process until the updates of the

parameters converge. This fixed point iteration results in an efficient parameter estimation algorithm.
As a simple test example, the following parameters are adopted to generate the true signal in the

SPEKF-M model (151),

σγ = 0.5, dγ = 0.5, γ̂ = 1, σu = 0.5, F = 2. (153)

A pair of sample trajectories (u(t), γ(t)) is shown in Panel (a) of Figure 31 and the corresponding
PDFs are shown in Panel (b). Clearly, these parameters result in a highly intermittent time series of
u(t) with a non-Gaussian PDF with an one-side fat tail. Panel (c) shows the conditional mean and
conditional variance of γ conditioned on the trajectory of u with the perfect parameters. The conditional
mean does not equal the truth, but the conditional mean µ(t) at the intermittent phases of u are close
to the truth of γ with a small conditional variance. On the other hand, at quiescent phases, µ(t) differs
from the truth while the uncertainty (conditional variance) in the estimation is large.

Now, we apply the algorithm above to estimate the three parameters σγ, dγ and γ̂ assuming
the other two parameters σu = 0.5 and F = 2 are known. The trajectory of u (with the length of
1000 time units) in Panel (a) of Figure 31 is used as the input of the algorithm. The iteration curve
of the algorithm is shown in Figure 32, where the initial values σ

(0)
γ = 0.1, d(0)γ = 1 and γ̂(0) = 2.5

are far from the truth. It is clear that, after five iterations, the update of the parameters converges
to fixed points. The parameter γ̂ converges exactly to the truth while both dγ and σγ are slightly
larger than the true values. Nevertheless, the variance of γ using the estimated parameters, namely
σ2

γ/(2dγ) = 0.612/(2 · 0.66) = 0.28, is close to that of the truth, which is 0.52/(2 · 0.5) = 0.25.
The slightly overestimation of the variance compensates the slightly underestimation of the damping
time 1/dγ and therefore the model with the estimated parameters is able to generate essentially the
same intermittent signals as in the observed period of u in Figure 31. Note that since the input of the
time series of u is only of finite length (and is actually pretty short here), the estimated parameters
reflect the features in the observed signal, which may be slightly different from the true underlying
dynamics unless an infinitely long time series is used as the input. Next, the skill of the estimated
parameters is examined via the model statistics. In Figure 33, both the trajectories and the associated
PDFs of u and γ using the true parameters and the estimated parameters are shown. Due to the high
skill in estimating both the mean and variance of γ, the PDFs of γM and γ are quite close to each other
with only a slight overestimation of the variance in γM. The decorrelation time of the trajectory of γM

is slightly shorter than that of γ as discussed above. Nevertheless, γM and γ provide quite similar
feedback to uM and u. Therefore, the statistical features in uM, including the decorrelation time, mean,
variance and highly non-Gaussian PDF, are almost the same as those in u.
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Figure 31. (a) a pair of sample trajectories (u(t), γ(t)) of the SPEKF-M model (151) with parameters
in (153); (b) the corresponding PDFs. Note that the PDF of u is high non-Gaussian with an
one-side fat tail; (c) the conditional mean µ(t) and conditional variance R(t) using the model with
perfect parameters.

A more detailed study of this algorithm, including the application to the full SPEKF model (119)
and the convergence rate dependence on different model ingredients, will be included in a
follow-up work.
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6.2. Data Assimilation with Physics-Constrained Forecast Models and Information Theory for Quantifying
Model Errors

6.2.1. An Information Theoretical Framework for Data Assimilation and Prediction

The following two traditional path-wise measurements are widely used in assessing the skill
in data assimilation and prediction [15,206–210]. Denote ui, i = 1, . . . , n the true signal and ûi the
filtering/prediction estimate. These measurements are given by

1. The root-mean-square error (RMSE):

RMSE =

√
∑n

i=1(ûi − ui)2

n
. (154)

2. The pattern correlation (PC):

PC =
∑n

i=1(ûi − ûi)(ui − ui)√
∑n

i=1(ûi − ûi)2
√

∑n
i=1(ui − ui)2

, (155)

where ûi and ui denotes the mean of ûi and ui, respectively.
While these two path-wise measurements are easy to implement and are able to quantify the data

assimilation and prediction skill to some extent, they have fundamental limitations. It has been shown
in [42,211] that these two measurements fail to quantify the skill of capturing the extreme events and
other non-Gaussian features, which lead to misleading results. In fact, concrete examples even in the
Gaussian models [42,211] showed that two different predictions can have the same RMSE and PC,
but one is way more skillful than the other in capturing the extreme events.

Due to the fundamental limitations of assessing the data assimilation and prediction skill based
only on these two traditional path-wise measurements, various information measurements have been
proposed to improve the quantification of the data assimilation and prediction [16,194,195,212–218].
In [218–222], an information measurement called Shannon entropy difference was introduced and
was used to assess the data assimilation and prediction skill. The Shannon entropy difference takes
into account the estimation of the extreme events and improves the insufficiency in the traditional
path-wise measurements. However, relying solely on the Shannon entropy difference in assessing the
data assimilation and prediction skill is also misleading. In fact, the Shannon entropy difference fails
to capturing the model error in the mean state and it computes the uncertainty of the two distributions
separately rather than considering the pointwise difference between the two PDFs.

Due to the fundamental limitations in the two classical path-wise measurement, RMSE and PC,
as well as those in the Shannon entropy difference, a new information-theoretic framework [186]
has developed to assess the data assimilation/prediction skill. Denote π ≡ π(u) and πM ≡ π(uM)

the PDFs associated with truth u and the data assimilation/prediction estimate uM, respectively.
Denote p(u, uM) the joint PDF of u and uM. Let U = u− uM be the residual between the truth and the
estimate. This information-theoretic framework involves three information measurements:

1. The Shannon entropy residual,

S(U ) = −
∫

p(U ) log p(U ). (156)

2. The mutual information,

M(π, πM) =
∫∫

p(u, uM) log
(

p(u, uM)

π(u)π(uM)

)
. (157)
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3. The relative entropy,

R(π, πM) = −
∫

π log
( π

πM

)
. (158)

The Shannon entropy residual quantifies the uncertainty in the point-wise difference between
u and uM. It is an information surrogate of the RMSE in the Gaussian framework. The mutual
information quantifies the dependence between the two processes. It measures the lack of information
in the factorized density π(u)π(uM) relative to the joint density p(u, uM), which follows the identity,

M(π, πM) = P
(

p(u, uM), π(u)π(uM)
)

. (159)

The mutual information is an information surrogate of the PC in the Gaussian framework. On the
other hand, the relative entropy quantifies the lack of information in πM related to π and it is a good
indicator of the skill of uM in capturing the peaks and extreme events of u. It also takes into account
the pointwise discrepancy between π and πM rather than only computing the difference between
the uncertainties associated with the two individual PDFs (as in the Shannon entropy difference).
Therefore, the combination of these three information measurements is able to capture all the features
in assessing the data assimilation/prediction skill and overcomes the shortcomings as discussed in
the previous subsection. Note that, when π ∼ N (u, R) and πM ∼ N (uM, RM) are both Gaussian,
then the above three information measurements have explicit expressions [215].

The information-theoretic framework (156)–(158) is usually defined in the super-ensemble
sense [215]. Note that in many practical issues only one realization (trajectory) is available.
Nevertheless, the information-theoretic framework can also be used in a pathwise way, where the
statistics are computed by collecting all the sample points in the given realization. Some realistic
applications of the information-theoretic framework for filtering and prediction can be found
in [42,63,215].

6.2.2. Important Roles of Physics-Constrained Forecast Models in Data Assimilation

It has been shown in Section 3.3 that the physics-constrained nonlinear stochastic
models are the recent development for data-driven statistical models with partial observations.
The physics-constrained nonlinear stochastic models overcome the finite-time blowup and the lack
of physical meaning issues in various ad hoc multi-layer regression models [31,32]. Here, our goal
is to show that the physics-constrained nonlinear stochastic models also play important role in data
assimilation (or filtering). Ignoring the energy-conserving nonlinear interactions in the forecast models
will result in large model errors.

The test model below is a simple dyad model, which mimics the interactions between resolved
large-scale mean flow and unresolved turbulent fluctuations with intermittent instability [37,50,223].
The dyad model reads

du = (−duu + γuv + Fu)dt + σudWu, (160)

dv = (−dvv− γu2)dt + σvdWv. (161)

In (160) and (161), u is regarded as representing one of the resolved modes in a turbulent signal,
which interacts with the unresolved mode v through quadratic nonlinearities. The conserved energy
in the quadratic nonlinear terms in (160) and (161) is easily seen. Below, the physics-constrained
dyad model (160) and (161) is utilized to generate true signals of nature. The goal here is to filter the
unobserved process v given one single realization of the observed process u. In addition to adopting
the perfect filter (160) and (161), an imperfect filter with no energy-conserving nonlinear interactions is
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studied for comparison. In this imperfect filter, the nonlinear feedback −γu2 in v is dropped and the
result is a stochastic parameterized filter [20],

du = (−duu + γuv + Fu)dt + σudWu, (162)

dv = −dM
v (v− v̄M)dt + σM

v dWv. (163)

In the stochastic parameterized filter (162) and (163), the parameters in the resolved variable
u are assumed to be the same as nature (160) and (161). We further assume the statistics of the
unobserved variable v of nature (160) and (161) are available. Thus, the parameters dM

v , v̄M and σM
v in

the unresolved process v are calibrated [187,188,224] by matching the mean, variance and decorrelation
time of those in (160) and (161). Note that both (160) and (161) and (162) and (163) belong to the
conditional Gaussian framework (1) and (2) by denoting uI = u and uII = v and (4) and (5) is used to
efficiently calculate the filter estimates.

Note that in (160) and (161), if Fu = 0, then the fixed point associated with the deterministic part is
uc = vc = 0. This leads to an important issue in the state estimation of v, namely the observability [207,225].
The coupled system (160) and (161) is said to lose its observability if the observed process u provides
no information in determining the unobserved variable v. Intuitively, this corresponds to u = 0 in
(160) and (161), in which case v disappears in the observed process u. Therefore, if Fu = 0, then the
filtering skill of v is expected to deteriorate especially with a small σu. Below, we consider two different
dynamical regimes:

Regime I: du = 0.8, dv = 0.8, γ = 1.2, and Fu = 1,

Regime II: du = 0.8, dv = 0.8, γ = 1.2, and Fu = 0.
(164)

In Regime II, there is no practical observability in the quiescent phase (near the fixed point
associated with the deterministic model) while in Regime I the forcing drives the signal out of the
value with uc = 0.

Figure 34 shows the model error in terms of RMSE, PC and relative entropy as a function of
σu and σv. Both the perfect physics-constrained forecast model (160) and (161) and the stochastic
parameterized filter (162) and (163) are used. Here, instead of showing the Shannon entropy residual
and the mutual information, we still use the RMSE and PC since most readers are familiar with these
two measurements. Nevertheless, the readers should keep in mind that the Shannon entropy residual
and the mutual information are more suitable measurements in the non-Gaussian framework. On the
other hand, the relative entropy is shown here in assessing the model error.

First, in Columns (a,b) of Figure 34, the filtering skill in Regime I with Fu = 1 is illustrated. With a
small σu, both filters have skillful estimation. This is because when σu is small, the filters trust more
towards the observational process, which has a large signal to noise ratio and therefore it provides
accurate estimates. However, when σu is large but σv is small in generating the true signal, the stochastic
parameterized filter becomes much worse than the perfect filter using physics-constrained forecast
model. In fact, a large σu leads to large signals in u and it also tells the filter to trust more towards
the underlying process of v. This implies the filter estimate of v is then essentially driven by the
feedback term −γu2. Since the stochastic parameterized filter has no such feedback mechanism,
the error becomes large. See Panel (b) of Figure 35 for an example with path-wise trajectories. It is also
important to note that in such a situation the PDF of the filter estimate is completely different from the
truth and thus a large model error is found.

Columns (c,d) of Figure 34 show the filter estimates in Regime II with Fu = 0. Compared with the
results in Regime I, it is clear that when σu is small in generating the true signal, the filter estimates
become inaccurate. This is in fact due to the observability issue since small σu means the signal of u
stays near original. This is clearly seen in Panel (a) of Figure 36, where the filter estimate is accurate
only at intermittent phases. One interesting phenomenon is that although the filter estimate using
the stochastic parameterized filter in Panel (b) of Figure 35 has a smaller RMSE compared with that
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in Panel (a) of Figure 36, the relative entropy clearly indicates a much worse filter estimates in the
former case since they fail to capture any of the amplitudes. These facts all indicate the importance
in including the physics-constrained structure in designing filters especially in the regimes that are
dominated by the energy-conserving nonlinear interactions.

Figure 34. Model error in terms of RMSE, PC and relative entropy as a function of σu and σv in the true
signal. (a,b) Regime I with Fu = 1; (c,d) Regime I with Fu = 0; (a,c) show the model error using the
perfect physics-constrained forecast model (160) and (161) while (b,d) uses the stochastic parameterized
filter (162) and (163).
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Figure 35. Regime I with Fu = 1. Path-wise trajectories and the PDFs of the true signal (blue) and
the filter estimation of the physics-constrained forecast model (160) and (161) (red) and the stochastic
parameterized filter (162) and (163) (green). (a) σu = 0.2 and σv = 2; (b) σu = 2 and σv = 0.2.
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Figure 36. Regime II with Fu = 0. Path-wise trajectories and the PDFs of the true signal (blue) and
the filter estimation of the physics-constrained forecast model (160) and (161) (red) and the stochastic
parameterized filter (162) ans (163) (green). (a) σu = 0.2 and σv = 2; (b) σu = 2 and σv = 0.2.

Finally, it is important to note that although the stochastic parameterized filter (162) and (163) is not
able to recover the signal due to the strong feedback from the physics-constrained nonlinear interactions,
the stochastic parameterized filter (162) and (163) is still quite useful in detecting the intermittent phases
in turbulent signals. In fact, in Panel (a) of both Figures 35 and 36, the intermittent phases are all
accurately recovered by the stochastic parameterized filter. Other works showing the skillful behavior
of the stochastic parameterized filter and its advantages over the mean stochastic models can be found
in [16,64,65].

6.3. Multiscale Data Assimilation with Particles Interacting with Conditional Gaussian Statistics

6.3.1. A General Description

Data assimilation of turbulent signals is an important challenging problem because of the
extremely complicated large dimension of the signals and incomplete partial noisy observations
which usually mix the large scale mean flow and small scale fluctuations. See Chapter 7 of [20] for
examples of new phenomena due to this multiscale coupling through the observations even for linear
systems. Due to the limited computing power, it is desirable to use multi-scale forecast models which
are cheap and fast to mitigate the curse of dimensionality in turbulent systems. Thus, model errors
from imperfect forecast models are unavoidable in the development of a data assimilation method
in turbulence.

Among different methods, conventional superparameterization is a multi-scale algorithm that
was originally developed for the purpose of parameterizing unresolved cloud process in tropical
atmospheric convection [73,226,227]. This conventional superparameterization resolves the large
scale mean flow on a coarse grid in a physical domain while the fluctuating parts are resolved using
a fine grid high resolution simulation on periodic domains embedded in the coarse grid. A much
cheaper version of superparameterization, called stochastic superparameterization [70–73], replaces the
nonlinear eddy terms by quasilinear stochastic processes on formally infinite embedded domains
where the stochastic processes are Gaussian conditional to the large scale mean flow. The key ingredient
of these multiscale data assimilation methods is the systematic use of conditional Gaussian mixtures
which make the methods efficient by filtering a subspace whose dimension is smaller than the full
state. This conditional Gaussian closure approximation results in a seamless algorithm without
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using the high resolution space grid for the small scales and is much cheaper than the conventional
superparameterization, with significant success in difficult test problems [71,72,74] including the MMT
model [71,75] and ocean turbulence [76–78].

The key idea of the multiscale data assimilation method is to use conditional Gaussian
mixtures [80,228] whose distributions are compatible with superparameterization. The method uses
particle filters (see [79] and Chapter 15 of [20]) or ensemble filters on the large scale part [75,76] whose
dimension is small enough so that the non-Gaussian statistics of the large scale part can be calculated
from a particle filter, whereas the statistics of the small scale part are conditionally Gaussian given
the large scale part. This framework is not restricted to superparameterization as the forecast model
and other cheap forecast models can also be employed. See [80] for another multiscale filter with
quasilinear Gaussian dynamically orthogonality method as the forecast method in an adaptively
evolving low dimensional subspace without using superparameterization. Note that data assimilation
using superparameterization has already been discussed in [229] with noisy observations of the large
scale part of the signal alone. There it was shown that, even in this restricted setting, ignoring the small
scale fluctuations even when they are rapidly decaying can completely degrade the filter performance
compared with the high skill using superparameterization. Here, in contrast to [229], we consider
multiscale data assimilation methods with noisy observations with contributions from both the large
and small scale parts of the signal, which is a more difficult problem than observing only the large
scale because it requires accurate estimation of statistical information of the small scales [75,76,230].
In addition, mixed observations of the large and small scale parts occur typically in real applications.
For example, in geophysical fluid applications, the observed quantities such as temperature, moisture,
and the velocity field necessarily mix both the large and small scale parts of the signal [20,231].
Thus, the multiscale filtering also provides a mathematical framework for representation errors,
which are due to the contribution of unresolved scales [81,82] in the observations.

6.3.2. Particle Filters with Superparameterization

Superparameterization retains the large scale variables by resolving them on a coarse grid while
the effect of the small scales on the large scales is parameterized by approximating the small scales
on local or reduced spaces. Stochastic superparameterization discussed in the previous section uses
Gaussian closure for the small scales conditional to the large scale variable u with u ∈ RN [70–73].
Thus, we consider a multi-scale filtering algorithm with forecast prior distributions given by the
conditional distribution

p f (u) = p f (u, u′) = p f (u)p f
G(u

′|u), (165)

where p f
G(u

′|u) is a Gaussian distribution conditional to u

p f
G(u

′|u) = N (u′(u), R′(u)). (166)

Here, we assume that N1 is sufficiently small enough that particle filters (see Chapter 15 of [20])
can be applied to the large scales. For a low dimensional space u, the marginal distribution of u can be
approximated by Q particles

p f (u) =
Q

∑
j=1

p f
j δ(u− uj), (167)

where p f
j ≥ 0 are particle weights such that ∑j p f

j = 1. After the forecast step where
superparameterization is applied to each particle member, we have the following general form for the
prior distribution p f (u)
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p f (u) = p f (u, u′) =
Q

∑
j=1

p f
j δ(u− uj)p f

G(u
′ f |uj)

=
Q

∑
j=1

p f
j δ(u− uj)N (u′(uj)

f , R′(uj)
f ),

(168)

which is a conditional Gaussian mixture distribution where each summand is a Gaussian distribution
conditional to uj. The Gaussian mixture has already been used in data assimilation [232–234] but the
multi-scale method developed here is different in that conditional Gaussian distributions are applied in
the reduced subspace u′ with particle approximations only in the lower dimensional subspace u. Thus,
the proposed multi-scale data assimilation method can be highly efficient and fast in comparison with
conventional data assimilation methods which use the whole space for the filter.

Assume that the prior distribution from the forecast is in the from (168) and that the observations
have the following structure:

v = G(u, u′) + σθ = Gu + G′(u)u′ + σθ , (169)

where G′(uj) has rank M and σθ is the observation noise error which is Gaussian. Then, the posterior
distribution in the analysis step taking into account the observations (169) is in the form of (168)

pa(u) = pa(u, u′) =
Q

∑
j=1

pa
j δ(u− uj)N (u′(uj)

a, R′(uj)
a). (170)

The new mixture weights are

pa
j =

p f
j Ij

∑Q
k=1 p f

k Ik

, (171)

where Ij =
∫

p(v|uj, u′)p(u′|uj)du′ and for each particle uj, the posterior mean and variance of u′,
u′(uj)

a and R′(uj)
a, respectively, are

u′(uj)
a
= u′ f + K′(v−Gu f

j −G′(u f
j )u
′),

R′(uj)
a = (I−K′G′(u f

j ))R
′(u) f ,

(172)

where the Kalman gain matrix K′ is given by

K′ = R′ f G′(u f
j )

T(G′(u f
j )R

′ f G′(u f
j )

T + rθ)
−1. (173)

See the supplementary material of [80] for more details.

6.3.3. Clustered Particle Filters and Mutiscale Data Assimilation

Clustered particle filters (CPFs) [40,235] are a new class of particle filters, introduced for
high-dimensional dynamical systems such as geophysical systems. The clustered particle filters
use relatively few particles compared with the standard particle filter and capture the non-Gaussian
features of the true signal, which are typical in complex nonlinear systems. The method is also robust
for the difficult regime of high-quality sparse and infrequent observations and does not show any
filter divergence in our tests. In the clustered particle filter, coarse-grained localization is implemented
through the clustering of state variables and particles are adjusted to stabilize the filter.

One of the key features of the CPF is particle adjustment. Particle adjustment updates the
prior particles closer to the observation instead of reweighing the particles when the prior is too
far from the observation likelihood. When observations are sparse, unobserved adjacent state
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variables must have the same particle weights with the observed variable as they are updated using
cross-correlations. For this purpose, the CPF partitions the state variables into nonoverlapping clusters
{Cl , l = 1, 2, . . . , Nobs}, where each cluster boundary is chosen as the midpoint of two adjacent
observations, which is easily applicable to irregularly spaced observations. This yields Nobs clusters
corresponding to Nobs observationlocations. Instead of using different weights for each state variable
in the localized particle filter, the CPF uses scalar particle weights {ωl,k} for the state variables in
the same cluster Cl . For the substate vector xCl = {xi|xi ∈ Cl} corresponding to cluster Cl , the CPF
considers the marginalized PDF,

p(xCl ) =
K

∑
k

ωl,kδ(xCl − xCl ,k)

and each observation yj updates only the marginalized PDF of the corresponding cluster that
implements coarse-grained localization. Thus, the assimilation of the full state vector is decomposed
into Nobs independent assimilation problems for each cluster of a dimension smaller than the full
state dimension Nstate. Note that, in contrast to the localization using a smoothly varying correlation
function with a localization radius parameter, the CPF has no adjustable parameter to tune localization.
See [235] for more details.

The CPF can also be applied for multiscale particle filtering [40,235]. As a test example,
it is shown below the skill of the multiscale cluster particle filter for the wave turbulence model
introduced by Majda, McLaughlin and Tabak (MMT) [236,237] as a computationally tractable model of
waveturbulence. The model is described by the following one dimensional partial differential equation
for a complex scalar ψ:

i∂tψ = |∂x|1/2ψ− |ψ|2ψ + iF + iDψ. (174)

in a periodic domain of length L with large-scale forcing set to F = 0.0163 sin(4πx/L) and dissipation
D for both the large and small scales. It has several features of wave turbulence that make it a difficult
test problem for data assimilation. The model has a shallow energy spectrum proportional to k−5/6 for
wavenumber k and an inverse cascade of energy from small to large scales. It also has non-Gaussian
extreme event statistics caused by intermittent instability and breaking of solitons. Because the
unresolved small scales carry more than two-thirds of the total variance, it is a difficult filtering
problem to estimate resolved large scales using mixed observations of the large- and small-scale
components.

Here, we compare the filtering results of the ensemble-based multiscale data assimilation
method [75] and the multiscale CPF for the MMT model. As the forecast model for both filtering
methods, we use the stochastic superparameterization multiscale method [73] as discussed in the
previous subsection. The forecast model uses only 128 grid points, whereas the full resolution uses
8192 grid points, which yields about 250 times cheaper computational savings. Because the forecast
model has a low computational cost compared with the full-resolution model, the forecast model has
significant model errors. Observations of the full-scale variables are available at uniformly distributed
64 grid points (which are extremely sparse compared with the full-resolution 8192 grid points) with
an observation error variance corresponding to 3% of the total climatological variance at every time
interval of 0.25. The ensemble-based method uses the tuned parameters in [75] (i.e., a short localization
radius 1 and 2% covariance inflation). For the hard threshold version CPF, the particle adjustment is
triggered if either real or imaginary parts are not in the convex hull of the corresponding predicted
observations as we observe both parts of the true signal. Both particle and ensemble-based methods
use 129 samples.

The time series of the large-scale estimation RMSE of the ensemble-based filter and clustered
multiscale particle filter are shown in Figure 37. The dashed and dotted line is the effective
observation error 0.34, which is defined as

√
observation error variance + small-scale variance by

treating the small-scale contribution as an additional error (i.e., a representation error). The dashed
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line is the climatological error 0.20, which is the standard deviation of the large-scale variables.
The ensemble-based method has RMSE smaller than the effective observation error but larger than the
climatological error. The CPF, however, shows skillful filter performance with RMSE smaller than the
climatological error. The forecast PDFs and forecast error PDFs that show the prediction skill of the
method are shown in Figure 37. The CPF has a better forecast PDF fit to the true signal and a narrower
peak in the forecast error PDF than the ensemble-based method.
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Figure 37. (a,b) time series of the large-scale estimation RMSE of the ensemble-based multiscale data
assimilation method [75] and the CPF with 64 observations for the MMT model. The dashed line
is the climatological error 0.20. The dashed and dotted line is the effective observation error 0.34;
(c,d) large-scale forecast PDF and forecast error PDF using 64 observations.

6.3.4. Blended Particle Methods with Adaptive Subspaces for Filtering Turbulent Dynamical Systems

In the multi-scale data assimilation algorithms discussed above based on superparameterization,
the subspace of particles defined by u is fixed. An attractive idea is to change the subspace with
particles adaptively in time to capture the non-Gaussian features as they change in time. Very accurate
filtering algorithms based on these ideas for multi-scale filtering utilizing this adaptive strategy
have been developed [80,238]. Nonlinear statistical forecast models such as the modified quasilinear
Gaussian [17,239] are implemented in the adaptive algorithm. In particular, the paper [238] also
contains many detailed numerical experiments and interesting counterexamples to more naive
strategies for multi-scale data assimilation.

6.3.5. Extremely Efficient Multi-Scale Filtering Algorithms: SPEKF and Dynamic Stochastic
Superresolution (DSS)

The SPEKF models as discussed in Section 4.5.1 are a class of nonlinear filters which are exact
statistical equations for the mean and covariance for nonlinear forecast models that learn hidden
parameters “on the fly” from the observed data. The parameters represent adaptive additive and
multiplicative bias corrections from model error. They explicitly make judicious model error and
utilize conditional Gaussian structure as developed in Section 4.5.1 above. The book [20] contains
many examples and successful applications of this method.

Dynamical Stochastic Superresolution (DSS) uses the same idea but in addition exploits the
aliased information in the observations to super-resolve a multi-scale turbulent signal [103,240].
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Nontrivial applications of DSS including recovering geophysical turbulence from surface satellite
observations [240] and filtering “black swans” and dispersive wave turbulence [103] with severe
judicious model errors. An interesting mathematical problem is to understand the reasons for the skill
of these radical methods. Recent progress in conceptual understanding of these methods for the two
dimensional Navier–Stokes equations can be found in [104].

7. Conclusions

Multiscale nonlinear dynamical systems are ubiquitous in different areas, including geoscience,
engineering, neural science and material science. In this article, a conditional Gaussian framework
is developed and applied to the prediction, the state estimation and the uncertainty quantification
of multiscale nonlinear stochastic systems. Despite the conditional Gaussianity, such systems are
nevertheless highly nonlinear and are able to capture the non-Gaussian features of nature. The special
structure of the system allows closed analytical formulae for solving the conditional statistics and is
thus computationally efficient.

In Section 2, an overview of data, model and data-driven modeling framework is presented.
Data and models are combined with each other to improve the understanding of nature and
promote the filtering and prediction skill. However, solving the high-dimensional complex multiscale
nonlinear dynamical systems in a direct way is computationally unaffordable and sometimes even
not necessary. Therefore, cheap and effective approaches are required to efficiently solve the systems.
Hybrid strategies can be used to greatly reduce the computational cost while they are able to
preserve the key feature of the complex systems. In the hybrid strategies, particle methods are
combined with analytically solvable conditional Gaussian statistics to deal with highly non-Gaussian
characteristics in a relatively low dimensional subspace and the conditional Gaussian features in
the remaining subspace, respectively. This indicates the importance of a systematic study of the
conditional Gaussian system. Section 3 summarizes the general mathematical structure of nonlinear
conditional Gaussian systems, the physics-constrained nonlinear stochastic models and the application
of the MTV strategy to the conditional Gaussian systems. To show the wide application of the
conditional Gaussian framework, a rich gallery of examples of conditional Gaussian systems are
illustrated in Section 4, which includes data-driven physics-constrained nonlinear stochastic models,
stochastically coupled reaction–diffusion models in neuroscience and ecology, large-scale dynamical
models in turbulence, fluids and geophysical flow, and other models for filtering and predicting
complex multiscale turbulent dynamical systems. Section 5 involves the effective statistically accurate
algorithms that beat the curse of dimension for Fokker–Planck equation for conditional Gaussian
systems. A hybrid strategy is developed where a conditional Gaussian mixture in a high-dimensional
subspace via an extremely efficient parametric method is combined with a judicious non-parametric
Gaussian kernel density estimation in the remaining low-dimensional subspace. For even larger
dimensional systems, a judicious block decomposition and statistical symmetry are further applied
that facilitate an extremely efficient parallel computation and a significant reduction of sample numbers.
These algorithms are applied to the statistical prediction of a stochastically coupled FHN model with
1500 dimensions and an inhomogeneous two-layer Lorenz 96 model with 240 dimensions. Significant
prediction skill shows the advantages of these algorithms in terms of both accuracy and efficiency.
In Section 6, the conditional Gaussian framework is applied to develop extremely cheap multiscale
data assimilation schemes, such as the stochastic superparameterization, which use particle filters
to capture the non-Gaussian statistics on the large-scale part whose dimension is small whereas the
statistics of the small-scale part are conditional Gaussian given the large-scale part. Other topics of the
conditional Gaussian systems studied here include designing new parameter estimation schemes and
understanding model errors using information theory.

The conditional Gaussian framework can also be used to study many other important topics.
For example, the closed analytic formulae in the conditional statistics provide an efficient way to understand
the causality between different processes in light of the information theory. The representation error is
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another important issue that requires a comprehensive study and the conditional Gaussian framework
have great potentials to provide both theoretic and applied insights. In addition, model selection,
model reduction and more studies on the parameter estimation are all important future works within the
conditional Gaussian framework.

Author Contributions: Conceptualization, N.C. and A.J.M.; Data curation, N.C. and A.J.M.; Formal analysis,
N.C. and A.J.M.; Funding acquisition, A.J.M.; Methodology, N.C. and A.J.M.; Visualization, N.C.; Writing—Original
draft, N.C.; Writing—Review and editing, A.J.M.

Funding: The research of A.J.M. is partially supported by the Office of Naval Research (ONR) Multidisciplinary
University Research Initiative (MURI) Grant N0001416-1-2161 and the New York University Abu Dhabi Research
Institute. N.C. is supported as a postdoctoral fellow through A.J.M.’s ONR MURI Grant.

Acknowledgments: The authors thank Yoonsang Lee, Di Qi and Sulian Thual for useful discussion.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Majda, A.J. Introduction to Turbulent Dynamical Systems in Complex Systems; Springer: New York, NY, USA, 2016.
2. Majda, A.; Wang, X. Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows; Cambridge

University Press: Cambridge, UK, 2006.
3. Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering;

CRC Press: Boca Raton, FL, USA, 2018.
4. Baleanu, D.; Machado, J.A.T.; Luo, A.C. Fractional Dynamics and Control; Springer: New York, NY, USA, 2011.
5. Deisboeck, T.; Kresh, J.Y. Complex Systems Science in Biomedicine; Springer: Boston, MA, USA, 2007.
6. Stelling, J.; Kremling, A.; Ginkel, M.; Bettenbrock, K.; Gilles, E. Foundations of Systems Biology; MIT Press:

Cambridge, MA, USA, 2001.
7. Sheard, S.A.; Mostashari, A. Principles of complex systems for systems engineering. Syst. Eng. 2009,

12, 295–311. [CrossRef]
8. Wilcox, D.C. Multiscale model for turbulent flows. AIAA J. 1988, 26, 1311–1320. [CrossRef]
9. Mohamad, M.A.; Sapsis, T.P. Probabilistic description of extreme events in intermittently unstable dynamical

systems excited by correlated stochastic processes. SIAM/ASA J. Uncertain. Quantif. 2015, 3, 709–736. [CrossRef]
10. Sornette, D. Probability distributions in complex systems. In Encyclopedia of Complexity and Systems Science;

Springer: New York, NY, USA, 2009; pp. 7009–7024.
11. Majda, A. Introduction to PDEs and Waves for the Atmosphere and Ocean; American Mathematical Society:

Providence, RI, USA, 2003; Volume 9.
12. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos; Springer: New York, NY, USA,

2003; Volume 2.
13. Vespignani, A. Predicting the behavior of techno-social systems. Science 2009, 325, 425–428. [CrossRef]

[PubMed]
14. Latif, M.; Anderson, D.; Barnett, T.; Cane, M.; Kleeman, R.; Leetmaa, A.; O’Brien, J.; Rosati, A.; Schneider, E.

A review of the predictability and prediction of ENSO. J. Geophys. Res. Oceans 1998, 103, 14375–14393. [CrossRef]
15. Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press:

Cambridge, UK, 2003.
16. Majda, A.J.; Branicki, M. Lessons in uncertainty quantification for turbulent dynamical systems.

Discret. Contin. Dyn. Syst. A 2012, 32, 3133–3221.
17. Sapsis, T.P.; Majda, A.J. Statistically accurate low-order models for uncertainty quantification in turbulent

dynamical systems. Proc. Natl. Acad. Sci. USA 2013, 110, 13705–13710. [CrossRef] [PubMed]
18. Mignolet, M.P.; Soize, C. Stochastic reduced order models for uncertain geometrically nonlinear dynamical

systems. Comput. Methods Appl. Mech. Eng. 2008, 197, 3951–3963. [CrossRef]
19. Lahoz, W.; Khattatov, B.; Ménard, R. Data assimilation and information. In Data Assimilation; Springer:

New York, NY, USA, 2010; pp. 3–12.
20. Majda, A.J.; Harlim, J. Filtering Complex Turbulent Systems; Cambridge University Press: Cambridge, UK, 2012.
21. Evensen, G. Data Assimilation: The Ensemble Kalman Filter; Springer: New York, NY, USA, 2009.

http://dx.doi.org/10.1002/sys.20124
http://dx.doi.org/10.2514/3.10042
http://dx.doi.org/10.1137/140978235
http://dx.doi.org/10.1126/science.1171990
http://www.ncbi.nlm.nih.gov/pubmed/19628859
http://dx.doi.org/10.1029/97JC03413
http://dx.doi.org/10.1073/pnas.1313065110
http://www.ncbi.nlm.nih.gov/pubmed/23918398
http://dx.doi.org/10.1016/j.cma.2008.03.032


Entropy 2018, 20, 509 73 of 80

22. Law, K.; Stuart, A.; Zygalakis, K. Data Assimilation: A Mathematical Introduction; Springer: New York, NY, USA,
2015; Volume 62.

23. Palmer, T.N. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic
parametrization in weather and climate prediction models. Q. J. R. Meteorol. Soc. 2001, 127, 279–304. [CrossRef]

24. Orrell, D.; Smith, L.; Barkmeijer, J.; Palmer, T. Model error in weather forecasting. Nonlinear Process. Geophys.
2001, 8, 357–371. [CrossRef]

25. Hu, X.M.; Zhang, F.; Nielsen-Gammon, J.W. Ensemble-based simultaneous state and parameter estimation
for treatment of mesoscale model error: A real-data study. Geophys. Res. Lett. 2010, 37, L08802. [CrossRef]

26. Benner, P.; Gugercin, S.; Willcox, K. A survey of projection-based model reduction methods for parametric
dynamical systems. SIAM Rev. 2015, 57, 483–531. [CrossRef]

27. Majda, A.J. Challenges in climate science and contemporary applied mathematics. Commun. Pure Appl. Math.
2012, 65, 920–948. [CrossRef]

28. Chen, N.; Majda, A.J. Filtering nonlinear turbulent dynamical systems through conditional Gaussian
statistics. Mon. Weather Rev. 2016, 144, 4885–4917. [CrossRef]

29. Olbers, D. A gallery of simple models from climate physics. In Stochastic Climate Models; Springer:
Berlin, Germany, 2001; pp. 3–63.

30. Liptser, R.S.; Shiryaev, A.N. Statistics ofRandom Processes II: Applications. In Applied Mathematics; Springer:
Berlin/Heidelberg, Germany, 2001; Volume 6.

31. Majda, A.J.; Harlim, J. Physics constrained nonlinear regression models for time series. Nonlinearity 2012,
26, 201. [CrossRef]

32. Harlim, J.; Mahdi, A.; Majda, A.J. An ensemble Kalman filter for statistical estimation of physics constrained
nonlinear regression models. J. Comput. Phys. 2014, 257, 782–812. [CrossRef]

33. Majda, A.J.; Yuan, Y. Fundamental limitations of ad hoc linear and quadratic multi-level regression models
for physical systems. Discret. Contin. Dyn. Syst. B 2012, 17, 1333–1363. [CrossRef]

34. Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
35. Lorenz, E.N. Formulation of a low-order model of a moist general circulation. J. Atmos. Sci. 1984,

41, 1933–1945. [CrossRef]
36. Chen, N.; Majda, A.J. Beating the curse of dimension with accurate statistics for the Fokker–Planck equation

in complex turbulent systems. Proc. Natl. Acad. Sci. USA 2017, 114, 12864–12869. [CrossRef] [PubMed]
37. Majda, A.J.; Lee, Y. Conceptual dynamical models for turbulence. Proc. Natl. Acad. Sci. USA 2014,

111, 6548–6553. [CrossRef] [PubMed]
38. Chen, N.; Majda, A.J. Efficient statistically accurate algorithms for the Fokker–Planck equation in large

dimensions. J. Comput. Phys. 2018, 354, 242–268. [CrossRef]
39. Ferrari, R.; Cessi, P. Seasonal synchronization in a chaotic ocean–atmosphere model. J. Clim. 2003, 16, 875–881.

[CrossRef]
40. Lee, Y.; Majda, A. Multiscale data assimilation and prediction using clustered particle filters. J. Comput. Phys.

2017, in press.
41. Chen, N.; Majda, A.J.; Giannakis, D. Predicting the cloud patterns of the Madden–Julian Oscillation through

a low-order nonlinear stochastic model. Geophys. Res. Lett. 2014, 41, 5612–5619. [CrossRef]
42. Chen, N.; Majda, A.J. Predicting the real-time multivariate Madden–Julian oscillation index through a

low-order nonlinear stochastic model. Mon. Weather Rev. 2015, 143, 2148–2169. [CrossRef]
43. Chen, N.; Majda, A.J. Predicting the Cloud Patterns for the Boreal Summer Intraseasonal Oscillation through

a Low-Order Stochastic Model. Math. Clim. Weather Forecast. 2015, 1, 1–20. [CrossRef]
44. Chen, N.; Majda, A.J.; Sabeerali, C.; Ajayamohan, R. Predicting Monsoon Intraseasonal Precipitation using a

Low-Order Nonlinear Stochastic Model. J. Clim. 2018, 25, 4403–4427. [CrossRef]
45. Majda, A.J.; Timofeyev, I.; Eijnden, E.V. Models for stochastic climate prediction. Proc. Natl. Acad. Sci. USA

1999, 96, 14687–14691. [CrossRef] [PubMed]
46. Majda, A.J.; Timofeyev, I.; Vanden Eijnden, E. A mathematical framework for stochastic climate models.

Commun. Pure Appl. Math. 2001, 54, 891–974. [CrossRef]
47. Majda, A.; Timofeyev, I.; Vanden-Eijnden, E. A priori tests of a stochastic mode reduction strategy. Phys. D

Nonlinear Phenom. 2002, 170, 206–252. [CrossRef]
48. Majda, A.J.; Timofeyev, I.; Vanden-Eijnden, E. Systematic strategies for stochastic mode reduction in climate.

J. Atmos. Sci. 2003, 60, 1705–1722. [CrossRef]

http://dx.doi.org/10.1002/qj.49712757202
http://dx.doi.org/10.5194/npg-8-357-2001
http://dx.doi.org/10.1029/2010GL043017
http://dx.doi.org/10.1137/130932715
http://dx.doi.org/10.1002/cpa.21401
http://dx.doi.org/10.1175/MWR-D-15-0437.1
http://dx.doi.org/10.1088/0951-7715/26/1/201
http://dx.doi.org/10.1016/j.jcp.2013.10.025
http://dx.doi.org/10.3934/dcdsb.2012.17.1333
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1984)041<1933:FOALOM>2.0.CO;2
http://dx.doi.org/10.1073/pnas.1717017114
http://www.ncbi.nlm.nih.gov/pubmed/29158403
http://dx.doi.org/10.1073/pnas.1404914111
http://www.ncbi.nlm.nih.gov/pubmed/24753605
http://dx.doi.org/10.1016/j.jcp.2017.10.022
http://dx.doi.org/10.1175/1520-0442(2003)016<0875:SSIACO>2.0.CO;2
http://dx.doi.org/10.1002/2014GL060876
http://dx.doi.org/10.1175/MWR-D-14-00378.1
http://dx.doi.org/10.1515/mcwf-2015-0001
http://dx.doi.org/10.1175/JCLI-D-17-0411.1
http://dx.doi.org/10.1073/pnas.96.26.14687
http://www.ncbi.nlm.nih.gov/pubmed/10611273
http://dx.doi.org/10.1002/cpa.1014
http://dx.doi.org/10.1016/S0167-2789(02)00578-X
http://dx.doi.org/10.1175/1520-0469(2003)060<1705:SSFSMR>2.0.CO;2


Entropy 2018, 20, 509 74 of 80

49. Majda, A.J.; Franzke, C.; Khouider, B. An applied mathematics perspective on stochastic modelling for
climate. Philos. Trans. R. Soc. Lond. A 2008, 366, 2427–2453. [CrossRef] [PubMed]

50. Majda, A.J.; Franzke, C.; Crommelin, D. Normal forms for reduced stochastic climate models. Proc. Natl.
Acad. Sci. USA 2009, 106, 3649–3653. [CrossRef] [PubMed]

51. Thual, S.; Majda, A.J.; Stechmann, S.N. A stochastic skeleton model for the MJO. J. Atmos. Sci. 2014,
71, 697–715. [CrossRef]

52. Chen, N.; Majda, A.J. Simple stochastic dynamical models capturing the statistical diversity of El Niño
Southern Oscillation. Proc. Natl. Acad. Sci. USA 2017, 114, 201620766. [CrossRef] [PubMed]

53. Castaing, B.; Gunaratne, G.; Heslot, F.; Kadanoff, L.; Libchaber, A.; Thomae, S.; Wu, X.Z.; Zaleski, S.; Zanetti, G.
Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J. Fluid Mech. 1989, 204, 1–30. [CrossRef]

54. Wang, X. Infinite Prandtl number limit of Rayleigh-Bénard convection. Commun. Pure Appl. Math. 2004,
57, 1265–1282. [CrossRef]

55. Majda, A.J.; Grote, M.J. Model dynamics and vertical collapse in decaying strongly stratified flows.
Phys. Fluids 1997, 9, 2932–2940. [CrossRef]

56. Kelliher, J.P.; Temam, R.; Wang, X. Boundary layer associated with the Darcy–Brinkman–Boussinesq model
for convection in porous media. Phys. D Nonlinear Phenom. 2011, 240, 619–628. [CrossRef]

57. Lindner, B.; Garcıa-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L. Effects of noise in excitable systems.
Phys. Rep. 2004, 392, 321–424. [CrossRef]

58. Medvinsky, A.B.; Petrovskii, S.V.; Tikhonova, I.A.; Malchow, H.; Li, B.L. Spatiotemporal complexity of
plankton and fish dynamics. SIAM Rev. 2002, 44, 311–370. [CrossRef]

59. Shulgin, B.; Stone, L.; Agur, Z. Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 1998,
60, 1123–1148. [CrossRef]

60. Ferreira, S., Jr.; Martins, M.; Vilela, M. Reaction-diffusion model for the growth of avascular tumor.
Phys. Rev. E 2002, 65, 021907. [CrossRef] [PubMed]

61. Chen, N.; Majda, A.J.; Tong, X.T. Information barriers for noisy Lagrangian tracers in filtering random
incompressible flows. Nonlinearity 2014, 27, 2133. [CrossRef]

62. Chen, N.; Majda, A.J.; Tong, X.T. Noisy Lagrangian tracers for filtering random rotating compressible flows.
J. Nonlinear Sci. 2015, 25, 451–488. [CrossRef]

63. Chen, N.; Majda, A.J. Model error in filtering random compressible flows utilizing noisy Lagrangian tracers.
Mon. Weather Rev. 2016, 144, 4037–4061. [CrossRef]

64. Gershgorin, B.; Harlim, J.; Majda, A.J. Improving filtering and prediction of spatially extended turbulent systems
with model errors through stochastic parameter estimation. J. Comput. Phys. 2010, 229, 32–57. [CrossRef]

65. Gershgorin, B.; Harlim, J.; Majda, A.J. Test models for improving filtering with model errors through
stochastic parameter estimation. J. Comput. Phys. 2010, 229, 1–31. [CrossRef]

66. Gardiner, C.W. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences; Springer Series
in Synergetics; Springer: Berlin/Heidelberg, Germany, 2004; Volume 13.

67. Risken, H. The Fokker–Planck Equation—Methods of Solution and Applications; Springer Series in Synergetics;
Springer: Berlin/Heidelberg, Germany, 1989; Volume 18, p. 301.

68. Pichler, L.; Masud, A.; Bergman, L.A. Numerical solution of the Fokker–Planck equation by finite difference
and finite element methods-a comparative study. In Computational Methods in Stochastic Dynamics; Springer:
Dordrecht, The Netherlands, 2013; pp. 69–85.

69. Robert, C.P. Monte Carlo Methods; Wiley Online Library: Hoboken, NJ, USA, 2004.
70. Majda, A.J.; Grote, M.J. Mathematical test models for superparametrization in anisotropic turbulence.

Proc. Natl. Acad. Sci. USA 2009, 106, 5470–5474. [CrossRef] [PubMed]
71. Grooms, I.; Majda, A.J. Stochastic superparameterization in a one-dimensional model for wave turbulence.

Commun. Math. Sci 2014, 12, 509–525. [CrossRef]
72. Grooms, I.; Majda, A.J. Stochastic superparameterization in quasigeostrophic turbulence. J. Comput. Phys.

2014, 271, 78–98. [CrossRef]
73. Majda, A.J.; Grooms, I. New perspectives on superparameterization for geophysical turbulence.

J. Comput. Phys. 2014, 271, 60–77. [CrossRef]
74. Grooms, I.; Lee, Y.; Majda, A.J. Numerical schemes for stochastic backscatter in the inverse cascade of

quasigeostrophic turbulence. Multiscale Model. Simul. 2015, 13, 1001–1021. [CrossRef]

http://dx.doi.org/10.1098/rsta.2008.0012
http://www.ncbi.nlm.nih.gov/pubmed/18445572
http://dx.doi.org/10.1073/pnas.0900173106
http://www.ncbi.nlm.nih.gov/pubmed/19228943
http://dx.doi.org/10.1175/JAS-D-13-0186.1
http://dx.doi.org/10.1073/pnas.1620766114
http://www.ncbi.nlm.nih.gov/pubmed/28137886
http://dx.doi.org/10.1017/S0022112089001643
http://dx.doi.org/10.1002/cpa.3047
http://dx.doi.org/10.1063/1.869405
http://dx.doi.org/10.1016/j.physd.2010.11.012
http://dx.doi.org/10.1016/j.physrep.2003.10.015
http://dx.doi.org/10.1137/S0036144502404442
http://dx.doi.org/10.1016/S0092-8240(98)90005-2
http://dx.doi.org/10.1103/PhysRevE.65.021907
http://www.ncbi.nlm.nih.gov/pubmed/11863563
http://dx.doi.org/10.1088/0951-7715/27/9/2133
http://dx.doi.org/10.1007/s00332-014-9226-5
http://dx.doi.org/10.1175/MWR-D-15-0438.1
http://dx.doi.org/10.1016/j.jcp.2009.09.022
http://dx.doi.org/10.1016/j.jcp.2009.08.019
http://dx.doi.org/10.1073/pnas.0901383106
http://www.ncbi.nlm.nih.gov/pubmed/19297626
http://dx.doi.org/10.4310/CMS.2014.v12.n3.a6
http://dx.doi.org/10.1016/j.jcp.2013.09.020
http://dx.doi.org/10.1016/j.jcp.2013.09.014
http://dx.doi.org/10.1137/140990048


Entropy 2018, 20, 509 75 of 80

75. Grooms, I.; Lee, Y.; Majda, A.J. Ensemble Kalman filters for dynamical systems with unresolved turbulence.
J. Comput. Phys. 2014, 273, 435–452. [CrossRef]

76. Grooms, I.; Lee, Y.; Majda, A.J. Ensemble filtering and low-resolution model error: Covariance inflation,
stochastic parameterization, and model numerics. Mon. Weather Rev. 2015, 143, 3912–3924. [CrossRef]

77. Grooms, I.; Majda, A.J. Efficient stochastic superparameterization for geophysical turbulence. Proc. Natl.
Acad. Sci. USA 2013, 110, 4464–4469. [CrossRef] [PubMed]

78. Grooms, I.; Majda, A.J.; Smith, K.S. Stochastic superparameterization in a quasigeostrophic model of the
Antarctic Circumpolar Current. Ocean Model. 2015, 85, 1–15. [CrossRef]

79. Bain, A.; Crisan, D. Fundamentals of stochastic filtering; Springer: New York, NY, USA, 2009; Volume 3.
80. Majda, A.J.; Qi, D.; Sapsis, T.P. Blended particle filters for large-dimensional chaotic dynamical systems.

Proc. Natl. Acad. Sci. USA 2014, 111, 7511–7516. [CrossRef] [PubMed]
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