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Abstract: Climate has complex dynamics due to the plethora of phenomena underlying its evolution.
These characteristics pose challenges to conducting solid quantitative analysis and reaching assertive
conclusions. In this paper, the global temperature time series (TTS) is viewed as a manifestation of
the climate evolution, and its complexity is calculated by means of four different indices, namely the
Lempel–Ziv complexity, sample entropy, signal harmonics power ratio, and fractal dimension. In the
first phase, the monthly mean TTS is pre-processed by means of empirical mode decomposition,
and the TTS trend is calculated. In the second phase, the complexity of the detrended signals
is estimated. The four indices capture distinct features of the TTS dynamics in a 4-dim space.
Hierarchical clustering is adopted for dimensional reduction and visualization in the 2-dim space.
The results show that TTS complexity exhibits space-time variability, suggesting the presence of
distinct climate forcing processes in both dimensions. Numerical examples with real-world data
demonstrate the effectiveness of the approach.
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1. Introduction

Understanding climatic variability is extremely important nowadays. The Earth’s climate is
changing and we are facing an increasing number of extreme weather events, like floods, droughts
and anomalous temperatures. Since the beginning of the 20th century the Earth’s surface average
temperature has increased by nearly 0.8 ◦C [1–3], and several projections based on climate models
estimate that during this century, the average temperature may increase by between 1.1 ◦C and
6.4 ◦C [1]. It has been verified that the global surface temperature has risen at an average rate of about
0.17 ◦C per decade since 1970 [1]. Moreover, the annual mean Arctic sea-ice extent decreased at a
rate of about 3.5% to 4.1% per decade over the period from 1979 to 2012 [4]. The Earth is warming
and it seems that human activity is one of the main causes for this phenomenon [5,6]. Estimates
from the Intergovernmental Panel on Climate Change (IPCC) revealed a considerable increase of
anthropogenic greenhouse gas emissions since the pre-industrial era [1]. In the period from 1970–2010,
the annual growth rate of emissions was above 1.3% [7]. Some impacts of global warming, such as
record high temperatures, melting glaciers and severe flooding are becoming increasingly common
around the world [8–12]. Besides the direct effect on temperature, warming leads to the modification
of wind patterns, the development of humidity, and significant changes in the rates of precipitation.
These phenomena are under intensive research due to their major impacts on the social, economic and
health aspects of human life [13–16].
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The analysis of temperature time series (TTS) is an important topic that can help us understanding
better climate dynamics. Several indicators of climate change can be used, but the time evolution of the
Earth’s surface temperature is probably the more straightforward measure to follow [17]. Furthermore,
reliable temperature data records comprising information from meteorological stations around the
world are available to support data processing [18,19].

We can find in the literature several strategies for analyzing the TTS [20]. Grieser et al. [21] studied
the monthly mean temperatures of European meteorological stations. They applied statistical tools to
decompose the TTS into significant components and found that the phase of the annual cycle shifts
within the year, backwards and forwards in Western and Eastern Europe, respectively. The authors
observed that the occurrence of extreme events increased significantly and corresponded mostly to
cold peaks in winter. They also found large harmonic components with a period of 92.3 months
in data from Northern and Western Europe. Additionally, this period, corresponding to about
7.7 years, was also observed in the North Atlantic Oscillation. Hughes et al. [22] pointed out
that the Antarctic Peninsula region is warming faster than the rest of the world. They analyzed
the minimum and maximum TTS at the Faraday/Vernadsky (Latitude 65.25 S, Longitude 64.25 W)
station using a multiple regression model with non-Gaussian correlated errors. It was calculated that
there was an increase in the minimum monthly temperature of 6.78 ◦C during the years 1951–2003.
Viola et al. [23] adopted nonlinear processing tools to analyze TTS. The method of delay coordinates
was applied for state space reconstruction and the delay parameters were determined by means of two
methods, namely the average mutual information and the false nearest neighbors. Temperatures
were extrapolated until 2028 by means of simple nonlinear prediction, which, after the state
space reconstruction, uses a limited number of neighboring samples to perform predictions.
Founda et al. [24] employed linear regression fitting to analyze the air TTS in Athens from 1897
until 2001 and observed a tendency towards warmer years. Ge et al. [25] studied the temperature
variation in China over 20 centuries, revealing not only the cold periods from 1620–1710 and 1800–1860,
but also the warming registered during the 20th century. Deser et al. [26] examined the trends of the
sea surface and marine air temperatures and observed warming in all cases, with the exception of
the Northwestern Atlantic Ocean. The largest warming trends were found in the middle latitudes
of both the Northern and Southern hemispheres. Oñate and Pou [27] processed TTS from eleven
meteorological stations on the Iberian Peninsula. Trends were identified by means of the Mann–Kendall
test, and multidimensional scaling provided automatic clustering. More recently, Stephenson and
Doblas-Reyes [28] used multidimensional scaling as an exploratory tool to describe ensembles of
forecasts. Multidimensional scaling is a computational technique for exploring similarities between
groups of data and easing the visualization of hidden patterns [29]. Lopes and Machado [5] adopted
multidimensional scaling to study complex correlations between global TTS.

Earth surface temperatures exhibit slow space-time system dynamics that embed long memory
effects and complex relationships. Climate data can be analyzed in a straightforward manner by
calculating the means and variances for different levels of spacial and temporal aggregation, but these
methods neglect long range dynamic phenomena. Furthermore, while many studies have addressed
the problem of global warming, the aspect of the increasing complexity of the data has been somewhat
overlooked. In fact, the complexity of the TTS is embedded into the measurements, but needs to be
tackled independently of the problem of increasing temperatures. The complexity point of view may
lead to a deeper insight into the predictability of future TTS evolution.

In this paper, global TTS are viewed as manifestations of a dynamic system. For each TTS, the trend
is calculated by means of empirical mode decomposition (EMD), and the complexity of the detrended
series is assessed by means of four indices, namely the Lempel–Ziv complexity (LZC), the sample
entropy (SampEn), the signal harmonics power ratio (η), and the fractal dimension (FracDim). The four
indices capture distinct features of the TTS in a multidimensional space that is projected in 2D through
hierarchical clustering. The space-time variability of the complexity measures suggests that the inputs
of climate vary in both dimensions. In particular, the increasing complexity of the TTS in recent years
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shows that temperatures are becoming more difficult to predict. Numerical examples using real-world
data for one century as well as the four complexity indices, illustrate the effectiveness of this new point
of view for tackling TTS.

With these ideas in mind, the paper is organized as follows. Section 2 presents the main
fundamental issues that influence global warming. Section 3 overviews the mathematical tools
used for processing data. Sections 4 and 5 analyze the global TTS complexity by means of different
indices. Finally, Section 6 outlines the conclusions.

2. Mathematical Fundamentals

This section introduces the main mathematical tools adopted for data processing, namely the
LZC, SampEn, Fourier series (FS), EMD, and FracDim. These tools are well suited to the time series
generated by many natural phenomena, such as climatic, geophysical and biological processes.

2.1. Lempel–Ziv Complexity

The LZC is a method of symbolic sequence analysis that measures the complexity of finite
time series [30–32]. The LZC is based on computing the number of distinct subsequences and their
recurrence rates along the series of data [33–36].

Let us consider the finite time series, x(k), where k = 1, 2, . . . , K represents the discrete sampling
instants. In the first phase, x(k) is converted into a symbolic binary sequence, S = {s(1), s(2), . . . , s(K)},
such that

s(k) =

{
0, i f x(k) < Th

1, i f x(k) ≥ Th
, (1)

where, Th denotes a pre-defined threshold value. Usually the median of x(k) is adopted for Th, since it
performs robustly against outliers [37]. In a second phase, we parse the original sequence, S, from left
to right, to obtain a new (parsed) sequence, S′, formed by distinct subsequences or words. To obtain S′,
different parsing methods are available [38–40]. Herein we summarize the original scheme proposed
by Lempel and Ziv [30,41].

Let S(p, q) denote a subsequence of S composed of the symbols between positions p and q (in our
case, time instants). Thus, we have S(p, q) = {s(p), s(p + 1), . . . , s(q)}, for q ≥ p, and S(p, q) = {}
(i.e., the empty set), for q < p. The parsed sequence, S′, is obtained as follows:

1. Initialize:

(a) The parsed sequence, S′ = {s(1)};
(b) An auxiliary sequence, Q = {};
(c) A pointer, θ, such that, θ(1) points to the symbol, s(1), of S;
(d) p = 1.

2. At the iteration p:

(a) Advance from θ(p) to θ(p + 1) and extend the auxiliary sequence, Q, by appending the
symbol s(p + 1);

(b) Check whether the current auxiliary sequence Q matches any subsequence of S(1, p). If no
match is found, then append, as a new word, the auxiliary sequence, Q, to the parsed
sequence, S′, and reset to Q = {};

3. Increment p;

(a) If p < K, then go to step 2;
(b) If p = K, then append Q to S′ to yield the final parsed sequence;

4. Count the number of different words, c(K), in S′.
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To obtain a complexity measure independent of the length of S, the count value c(K) is normalized,
yielding [30]

LZC =
c(K) log2(K)

K
, (2)

which reflects the rate of occurrence of new patterns in S.

2.2. Sample Entropy

The SampEn is a modified version of the “approximate entropy” [42], used to measure complexity.
It is defined as the symmetrical version of the logarithm of the conditional probability of two sequences
that are similar for m points, remain identical for m + 1 points. The value of SampEn has little variation
across the length of a time series, yielding a characteristic measure of its complexity [43]. The SampEn
can be calculated by the five steps presented below [44–48]:

1. Generate a set of m-dimensional vectors, Xm
p ,

Xm
p = [x(p), x(p + 1), . . . , x(p + m− 1)], 1 ≤ p ≤ K−m + 1, (3)

representing m consecutive values of x(k), starting at point p;
2. Determine the similarity, Dp,q(r), between Xm

p and Xm
q (i.e., the vector representing m consecutive

values of x(k), starting at point q), by calculating

Dp,q(r) =

{
1, i f dp,q < r

0, i f dp,q ≥ r
, (4)

where dp,q = max
n=0,1,...,m−1

|x(p + n)− x(q + n)| is a distance, and r is a tolerance value;

3. Compute the correlation sum, Bm
p (r), under the constraint p 6= q, to exclude self-matches,

Bm
p (r) =

∑K−m
q=1,q 6=p Dp,q(r)

K−m− 1
; (5)

4. Find the probability, Bm(r), of template matching for all vectors by

Bm(r) =
∑K−m

p=1 Bm
p (r)

K−m
; (6)

5. Calculate the SampEn as

SampEn = − ln
Bm+1(r)

Bm(r)
. (7)

The values of the parameters m and r are important in determining the SampEn, but no exact
guidelines exist for optimizing their values. We know that the accuracy and confidence of the SampEn
estimates increase when a small m (short template) and large r (wide tolerance) [42,46] are chosen.
Moreover, when r is too small, poor conditional probability estimates are obtained, while when r is too
large, detailed information is lost and SampEn tends to be 0. To avoid problems caused by noise r must
be chosen carefully [42,46]. The generally-adopted parameter values are m = 1 or m = 2, and r = ρσ,
where σ denotes the standard deviation of the original time series, x(k), and ρ ∈ [0.1, 0.25] [46].
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2.3. Fourier Analysis

The classical FS was proposed by Joseph Fourier (1768–1830) when studying problems in the
area of heat conduction. The FS expresses a given signal by means of an orthonormal basis of
trigonometric functions.

Let us assume that x(k) = x(k + T), k, T ∈ N, is a periodic function with period T, T = 1
f ,

and ω = 2π f , where f and ω denote the frequency and angular frequency, respectively. The signal
x(k) can be expressed by means of FS expansion [49,50]:

x(k) =
T−1

∑
n=0

anej2π f nk, (8)

where j =
√
−1, and the Fourier coefficients, an, are given by

an =
1
T

T−1

∑
k=0

x(k)e−j2π f nk. (9)

According to Parseval’s theorem, the average power of x(k) is given by

Px =
1
T

T−1

∑
k=0
|x(k)|2 =

T−1

∑
n=0
|an|2. (10)

2.4. Empirical Mode Decomposition

The EMD is a powerful signal processing tool that is able to deal with non-stationary and
non-linear time series [51–53]. The basic idea is that the original signal x(k) is decomposed into a finite
set of simpler signals called intrinsic mode functions (IMF). The algorithm is as follows [51]:

1. Identify all extrema of x(k);
2. Interpolate between minima and maxima, and find the lower and upper envelopes, emin(k) and

emax(k), respectively;
3. Calculate the mean using m(k) = 1

2 [emin(k) + emax(k)];
4. Extract the details using d(k) = x(k)−m(k);
5. Iterate on the residual, m(k).

For real-world data, this procedure iterates steps 1–4 until the detail signal, d(k), is an intrinsic
mode function (IMF), meaning that it has a zero-mean according to some criterion. It should be noted
that the complete process guarantees that the number of extrema decreases between two successive
residuals and that the decomposition is achieved with a finite number of modes.

The original signal can be represented by

x(k) = mL(k) +
L

∑
l=1

dl(k), (11)

where dl(k) represent the modes and mL(k) denotes the residual.

2.5. Fractal Dimension

A fractal is a geometrical object that displays identical patterns at different scales. The FracDim is a
measure of how much the fractal fills the space as it is magnified from larger to smaller scales [54–56].
The box-counting method is often adopted for estimating the FracDim, due to its straightforward
numerical implementation. For a fractal represented by a binary image, with non-zero pixels belonging to
the fractal, and zero pixels forming the image background, the box counting algorithm is as follows [56]:

1. Pad the image with background pixels so that its dimensions are at a power of 2;
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2. Cover the fractal object with a grid of squares with size ε (in the first iteration, there is just one
square of equal size to the size of the image);

3. Count the number of boxes (i.e., squares), Nε ∈ N, needed to cover the object;
4. If ε > 1, then make ε← ε

2 and repeat step 2.
5. Estimate the FracDim as the slope of the log-log plot, Nε versus ε, calculated by means of the

least squares method.

The estimate of FracDim obtained by the algorithm is a good approximation to

FracDim = − lim
ε→0+

log Nε

log ε
. (12)

3. Dataset

The University of Delaware “Terrestrial Air Temperature: 1900–2014 Gridded Monthly Time Series
(V 4.01)” was used. The dataset is publicly available at the website http://climate.geog.udel.edu/
~climate/html_pages/download.html#T2014, and was retrieved on 1 March 2018. The archive consists
of monthly mean air TTS for the period from January 1900 up to December 2014. The spatial coverage
corresponds to land areas, with one TTS per cell, on a 0.5◦× 0.5◦ latitude× longitude grid of resolution.
The dataset was compiled by means of interpolation techniques on data gathered from several sources,
including the Global Historical Climatology Network Monthly Version 3 (GHCN3) dataset [18];
the Daily Global Historical Climatology Network (GHCN-Daily) archive [57]; the Atmospheric
Environment Service/Environment Canada archive; records from the State Hydrometeorological
Institute of St. Petersburg, Russia; data for Greenland provided by the GC-Net [58]; records from
the Automatic Weather Station Project (Charles R. Stearns, University of Wisconsin—Madison);
the Global Synoptic Climatology Network archive (Dataset 9290c, of the National Climatic Data
Center); and observations contained within the Global Surface Summary of Day (GSOD) [59].

Herein, we illustrate the usability of the dataset, while highlighting some aspects of the global
warming revealed by the temperature anomalies [13]. Given a reference period, P12 = [P1, P2],
from year P1 up to year P2, the temperature anomaly for the period P34 = [P3, P4] is

A34
12 =

1
P4 − P3

P4

∑
n=P3

y(n)− 1
P2 − P1

P2

∑
n=P1

y(n), (13)

where y(n) represents the average temperature of year n.
Temperature anomalies represent deviations from a reference value, or long-term average [13].

Positive (negative) anomalies mean that the observed temperatures are higher (lower) than the
reference value. Figure 1 depicts the annual land temperature anomalies for the years P34 = [1970, 1974],
P34 = [1990, 1994], P34 = [2000, 2004] and P34 = [2010, 2014], relative to the period P12 = [1951, 1980].
The results show the Earth’s warming clearly, with emphasis on certain regions, namely in the
Northern Hemisphere.

http://climate.geog.udel.edu/~climate/html_pages/download.html#T2014
http://climate.geog.udel.edu/~climate/html_pages/download.html#T2014
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(a) (b)

(c) (d)

Figure 1. Worldwide land temperature anomalies relative to P12 = [1951, 1980] for the 5-year periods:
(a) P34 = [1970, 1974]; (b) P34 = [1990, 1994]; (c) P34 = [2000, 2004]; (d) P34 = [2010, 2014].

4. On the Complexity of TTS

The TTS, x(k), k = 1, · · · , K, exhibits a trend. Here, k represents time with a 1-month resolution,
and k = 1 and k = K = 1380 correspond to the initial and final instants—January 1900 and December
2014, respectively. The EMD proved to be a good method for determining the trends of data from
nonstationary and nonlinear processes, without the need to know the trends’ functional forms [53].
Within this approach, the TTS trend was estimated by the residuals of the EMD.

Figure 2 depicts the original data, x(k), the IMF modes, dl(k), l = 1, · · · , 7, and the residuals,
mL(k), obtained for a TTS of a station with latitude/longitude coordinates (71.25◦, 89.75◦), following
the procedure reported in [60]. Figure 3 illustrates the original data, x(k), and the trend, x̄(k) = mL(k).
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Figure 2. The intrinsic mode functions (IMF), dl(k), l = 1, · · · , 7, and the residuals, m7(k), obtained for
a temperature time series (TTS) of a station with latitude/longitude coordinates (71.25◦, 89.75◦).
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Figure 3. Monthly mean TTS, x(k), and trend approximation, x̄(k), for the TTS at the latitude/longitude
coordinates (71.25◦, 89.75◦).

4.1. Lempel–Ziv Complexity of the TTS

Before determining the LZC, we first detrended the original TTS by calculating x̃(k) = x(k)− x̄(k),
where x̄(k) was determined by EMD. Figure 4 exemplifies the detrending pre-processing ofn the TTS
with latitude/longitude coordinates (71.25◦, 89.75◦).

 k
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Figure 4. The detrending pre-processing of the TTS with latitude/longitude coordinates (71.25◦, 89.75◦)
by means of EMD.

The LZC algorithm shown in Section 2.1 was then applied to each x̃(k) on the regular grid (i, j)
covering land areas, totaling L = 85, 690 TTS. Figure 5 represents the LZCij on a contour map. Using
to the LZC index, we verified that the monthly mean TTS values in the Northern Hemisphere and
in certain regions of South America and Australia are more complex than those in other regions of
the Earth. This spatial variability of complexity suggests that climate dynamics are driven by distinct
regional forcing processes.
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Figure 5. Contour map depicting LZCij for the total L = 85, 690 TTS of the grid (i, j) on land.

4.2. Sample Entropy of the TTS

To calculate the SampEn, we applied the algorithm from Section 2.2 to the detrended TTS, x̃(k),
with m = 2 and r = 0.5, as discussed in Section 2.2. Figure 6 represents the SampEnij for each TTS of
the grid (i, j) on land.

Figure 6. Contour map depicting SampEnij for the total L = 85, 690 TTS of the grid (i, j) on land.

To compare the results obtained with LZCij and SampEnij we calculated the two-dimensional
correlation, R, as

R =
∑i ∑j

(
LZCij − 〈LZC〉) · (SampEnij − 〈SampEn〉

)√
∑i ∑j

(
LZCij − 〈LZC〉

)2 ·
√

∑i ∑j
(
SampEnij − 〈LZC〉

)2
, (14)

where 〈·〉 denotes the mean of all values in a matrix. The correlation value obtained, R = 0.97,
quantified the similarities observed between Figures 5 and 6, showing that both indices yield similar
spacial patterns. The results thus suggest the existence of distinct regional climate forcing processes.
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4.3. Harmonic Content of the TTS

In this sub-section, we propose an alternative index for measuring the complexity of TTS.
The index, η, is given by the harmonics power ratio of the signals:

η =

(
1− Ph
Pt

)
× 100%, (15)

where
Ph = |a0|2 + |a1|2, (16a)

Pt =
1
T

T−1

∑
k=0
|x̃(k)|2, (16b)

when T = 12 months.
Following Parseval’s theorem (10), Ph and Pt denote the signal power captured by the DC and

first harmonic components, and the total power of x̃(k), respectively. Therefore, η measures the signal
power contained on the higher harmonics of x̃(k).

Figure 7 represents the ηij for the TTS of the grid (i, j) on land. We verified that tropical and
equatorial regions are characterized by larger values of η.

Figure 7. Contour map depicting ηij for the total L = 85, 690 TTS of the grid (i, j) on land.

4.4. Fractal Dimension of the TTS

Here we calculate the FracDim for the phase portrait of the TTS. A n-dimensional dynamical
system can be represented by a set of first-order differential equations governing n state variables.
By knowing the state variables at time k = k0 and the system inputs for k ≥ k0, the system behavior
for k ≥ k0 can be determined. The state space consists of the set of all possible states, each one
corresponding to a unique point. As k evolves, sequences of points describing trajectories in the state
space are obtained. The set of trajectories is known as the state space portrait. The phase portrait (PP)
corresponds to the two-dimensional state space representation [61,62].

We consider the detrended TTS, x̃(k), and its numerical time derivative, ˙̃x(k) = x̃(k + 1)− x̃(k),
to be the state variables. Figure 8 represents the PP (x̃, ˙̃x) of the detrended TTS with latitude/longitude
coordinates (71.25◦, 89.75◦).
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Figure 8. The phase portrait (PP) (x̃, ˙̃x) of the detrended TTS with latitude/longitude coordinates
(71.25◦, 89.75◦).

Figure 9 represents the FacDimij for all TTS of the grid (i, j) on land.

Figure 9. Contour map depicting FracDimij for the total L = 85, 690 TTS of the grid (i, j) on land.

5. Temporal Dynamics of Global Warming

In this section we describe the study of the temporal complexity of global warming. In the first
phase, TTS measured on land (within a total of L = 85, 690) was divided into W = 43 time intervals,
wt, t = 1, . . . , W, by means of a 30-year length sliding window, with a 28-year overlap. For each
time interval, wt, we calculated the L-dimensional vectors, LZCwt , SampEnwt , ηwt and FracDimwt ,
representing the complexity of the detrended TTS at the time intervals wt, captured in the perspective
of each of the four indices. Experiments demonstrated that the window adopted established a good
compromise between time discrimination and statistical significance of the data within each time
interval. In a second phase, for each indice and wt we determined the relative frequency histograms.
Figure 10 depicts the histograms for the four indices versus wt on contour maps, where the years
correspond to the center of the time windows. The LZCwt and ηwt maps exhibited two modes that
increased with wt almost monotonically. Regarding the LZCwt index, higher modes were mainly due
to the TTS in the regions of Antarctica, South Africa, East Australia, North Africa, the Middle East and
some setentrional areas of America and Asia. On the other hand, lower modes were obtained from
TTS located in the tropical regions of Earth. In the ηwt , the higher and lower modes were due to TTS
from equatorial and tropical regions, and to the TTS from North Australia, North Africa, East Asia and
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Northwest America. The SampEnwt and FracDimwt indices had single mode. For the SampEnwt , most
TTS were from North Africa, South Asia, South America, Australia and Antarctica. For the FracDimwt ,
the main contribution was due to TTS from tropical regions.

(a) (b)

(c) (d)

Figure 10. Contour maps of the histograms of the complexity indices versus wt, t = 1, · · · , W:
(a) LZCwt ; (b) SampEnwt ; (c) log[ηwt ]; (d) FracDimwt . Each year corresponds to the center of a
time interval.

In the follow-up, to unveil temporal patterns, we adopted a hierarchical clustering (HC) analysis
and visualization trees. The main objective of HC is to group together objects that are similar to one
another in some sense [63,64]. The input of HC is a W ×W symmetric matrix [dtu], t, u = 1, ..., W,
where dtu represents the Canberra distance between the time periods, (wt, wu) [29,65]:

dtu =
L

∑
l=1

(
|LZCwt(l)− LZCwu(l)|
|LZCwt(l)|+ |LZCwu |(l)

+
|SampEnwt(l)− SampEnwu(l)|
|SampEnwt(l)|+ |SampEnwu |(l)

+

|ηwt(l)− ηwu(l)|
|ηwt(l)|+ |ηwu |(l)

+
|FracDimwt(l)− FracDimwu(l)|
|FracDimwt(l)|+ |FracDimwu |(l)

)
.

(17)

In the HC algorithm, the successive (agglomerative) clustering and average-linkage methods
were adopted. Figure 11 depicts the corresponding graph generated by the software, PHYLIP
(http://evolution.genetics.washington.edu/phylip.html). We identified three clusters of TTS
complexity patterns, closely coincident to time periods characterized by different temperature
trends [66], namely the warming period, A = [1915, 1947], the cooling trend in the middle of the 20th
century, B = [1947, 1977], and the new warming period, C = [1977, 1999]. Moreover, in A, the HC
unveiled two groups, namely A1 = [1915, 1927] and A2 = [1927, 1947]. In the clusters A2, B and C,

http://evolution.genetics.washington.edu/phylip.html
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we noted the emergence of some smaller clusters. In A2, we found subclusters composed of the years
{1929, 1931, 1933, 1935} and {1937, 1939, 1941, 1945, 1947}. In B, we verified the appearance of the
groups {1949, 1951, 1953, 1955, 1957, 1959} and {1961, 1963, 1965, 1967, 1969, 1971, 1973, 1975, 1977}.
Finally, in C, there were {1979, 1981, 1983, 1985, 1987} and {1991, 1993, 1995, 1997, 1999}.
These subclusters include between 4 and 6 time windows, suggesting some kind of periodicity.
However, to the authors’ best knowledge, there have been no studies addressing these fluctuations
with the standard perspective of the rise in temperature. Therefore, we question whether there is some
hidden correlation between the increasing temperatures and their complexity that has somehow been
overlooked in previous approaches. This open question will require additional studies with more
detailed data analyses in time and space.

Figure 11. The hierarchical tree generated by the hierarchical clustering (HC) algorithm based on (17).

In summary, we verified that the complexity of the TTS is increasing, that a solid assessment
is accomplished when a combination of several distinct measures is used, and that complexity is an
important issue to consider when analyzing global warming.

6. Conclusions

The TTS embeds rich information contributed by a multitude of distinct factors at different scales.
The complexity of the TTS is related to climate forcing factors. In this paper, information from worldwide
land meteorological stations was processed and its complexity was calculated in space and time by
means of different indices. The increasing complexity of the TTS in recent years demonstrates that there
has been a change in the dominating factors that drive the climate. On one hand, we have natural forces,
such as the orbital effect, solar radiation, volcanic eruptions, changes in land cover, greenhouse gas,
and aerosols. On the other hand, we find anthropogenic factors, including the rise in greenhouse gas
and aerosols caused by human activities, as well as sulfate air pollutants, reactive nitrogen, dust, urban
heat islands, ozone change, and land-surfaces changes also due to human activities. Four complexity
measures were adopted. However, no single measure captured all effects and a multi-measurement
perspective led to a superior assessment of the system state. The resulting multidimensional set of
measurements was synthesized by means of the HC visualization technique. The obtained clusters
revealed clear patterns in the increasing complexity embedded in the TTS. More detailed quantification
of these patterns by means of spatial statistics, namely spatial Fourier power spectrum, will be addressed
in further research.
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